Research article Special Issues

Analysis of bifurcation, chaotic structures, lump and $ M-W $-shape soliton solutions to $ (2+1) $ complex modified Korteweg-de-Vries system

  • Received: 15 March 2024 Revised: 22 April 2024 Accepted: 28 April 2024 Published: 08 May 2024
  • MSC : 35A09, 35C08

  • This research focuses on the fascinating exploration of the $ (2+1) $-dimensional complex modified Korteweg-de Vries (CmKdV) system, exhibiting its complex dynamics and solitary wave solutions. This system is a versatile mathematical model that finds applications in various branches of physics, including fluid dynamics, plasma physics, optics, and nonlinear dynamics. Two newly developed methodologies, namely the auxiliary equation (AE) method and the Hirota bilinear (HB) method, are implemented for the construction of novel solitons in various formats. Numerous novel soliton solutions are synthesised in distinct formats, such as dark, bright, singular, periodic, combo, $ W $-shape, mixed trigonometric, exponential, hyperbolic, and rational, based on the proposed methods. Furthermore, we also find some lump solutions, including the periodic cross rational wave, the homoclinic breather (HB) wave solution, the periodic wave solution, the $ M $-shaped rational wave solution, the $ M $-shaped interaction with one kink wave, and the multiwave solution, which are not documented in the literature. In addition, we employ the Galilean transformation to derive the dynamic framework for the presented equation. Our inquiry includes a wide range of topics, including bifurcations, chaotic flows, and other intriguing dynamic properties. Also, for the physical demonstration of the acquired solutions, 3D, 2D, and contour plots are provided. The resulting structure of the acquired results can enrich the nonlinear dynamical behaviors of the given system and may be useful in many domains, such as mathematical physics and fluid dynamics, as well as demonstrate that the approaches used are effective and worthy of validation.

    Citation: M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey. Analysis of bifurcation, chaotic structures, lump and $ M-W $-shape soliton solutions to $ (2+1) $ complex modified Korteweg-de-Vries system[J]. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780

    Related Papers:

  • This research focuses on the fascinating exploration of the $ (2+1) $-dimensional complex modified Korteweg-de Vries (CmKdV) system, exhibiting its complex dynamics and solitary wave solutions. This system is a versatile mathematical model that finds applications in various branches of physics, including fluid dynamics, plasma physics, optics, and nonlinear dynamics. Two newly developed methodologies, namely the auxiliary equation (AE) method and the Hirota bilinear (HB) method, are implemented for the construction of novel solitons in various formats. Numerous novel soliton solutions are synthesised in distinct formats, such as dark, bright, singular, periodic, combo, $ W $-shape, mixed trigonometric, exponential, hyperbolic, and rational, based on the proposed methods. Furthermore, we also find some lump solutions, including the periodic cross rational wave, the homoclinic breather (HB) wave solution, the periodic wave solution, the $ M $-shaped rational wave solution, the $ M $-shaped interaction with one kink wave, and the multiwave solution, which are not documented in the literature. In addition, we employ the Galilean transformation to derive the dynamic framework for the presented equation. Our inquiry includes a wide range of topics, including bifurcations, chaotic flows, and other intriguing dynamic properties. Also, for the physical demonstration of the acquired solutions, 3D, 2D, and contour plots are provided. The resulting structure of the acquired results can enrich the nonlinear dynamical behaviors of the given system and may be useful in many domains, such as mathematical physics and fluid dynamics, as well as demonstrate that the approaches used are effective and worthy of validation.



    加载中


    [1] S. Akram, J. Ahmad, A. Ali, T. Mohammad, Retrieval of diverse soliton, lump solutions to a dynamical system of the nonlinear $(4+1)$ Fokas equation and stability analysis, Opt. Quant. Electron., 55 (2023), 1273. https://doi.org/10.1007/s11082-023-05429-w doi: 10.1007/s11082-023-05429-w
    [2] B. Li, Y. Zhang, X. Li, Z. Eskandari, Q. He, Bifurcation analysis and complex dynamics of a Kopel triopoly model, J. Comput. Appl. Math., 426 (2023), 115089. https://doi.org/10.1016/j.cam.2023.115089 doi: 10.1016/j.cam.2023.115089
    [3] B. Li, H. Liang, Q. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model, Chaos Soliton. Fract., 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
    [4] X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Coke price prediction approach based on dense GRU and opposition-based learning salp swarm algorithm, Int. J. Bio-Inspir. Com., 21 (2023), 106–121. https://doi.org/10.1504/IJBIC.2023.130549 doi: 10.1504/IJBIC.2023.130549
    [5] X. Zhu, P. Xia, Q. He, Z. Ni, L. Ni, Ensemble classifier design based on perturbation binary Salp swarm algorithm for classification, Comput. Model. Eng. Sci., 135 (2023), 653–671. https://doi.org/10.32604/cmes.2022.022985 doi: 10.32604/cmes.2022.022985
    [6] S. Akram, J. Ahmad, Shafqat-Ur-Rehman, S. Alkarni, N. A. Shah, Analysis of lump solutions and modulation instability to fractional complex Ginzburg–Landau equation arise in optical fibers, Results Phys., 53 (2023), 106991. https://doi.org/10.1016/j.rinp.2023.106991 doi: 10.1016/j.rinp.2023.106991
    [7] M. S. Ullah, M. Mostafa, M. Z. Ali, H.-O. Roshid, M. Akter, Soliton solutions for the Zoomeron model applying three analytical techniques, PLoS ONE, 18 (2023), e0283594. https://doi.org/10.1371/journal.pone.0283594 doi: 10.1371/journal.pone.0283594
    [8] K. J. Wang, Soliton molecules, Y-type soliton and complex multiple soliton solutions to the extended $(3+1)$-dimensional Jimbo-Miwa equation, Phys. Scr., 99 (2024), 015254. https://doi.org/10.1088/1402-4896/ad16fd doi: 10.1088/1402-4896/ad16fd
    [9] Y.-H. Yin, X. Lü, R. Jiang, B. Jia, Z. Gao, Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS, Physica A, 635 (2024), 129494. https://doi.org/10.1016/j.physa.2024.129494 doi: 10.1016/j.physa.2024.129494
    [10] Y. Wang, X. Lü, Bäcklund transformation and interaction solutions of a generalized Kadomtsev–Petviashvili equation with variable coefficients, Chinese J. Phys., 89 (2024), 37–45. https://doi.org/10.1016/j.cjph.2023.10.046 doi: 10.1016/j.cjph.2023.10.046
    [11] R. Luo, Rafiullah, H. Emadifar, M. ur Rahman, Bifurcations, chaotic dynamics, sensitivity analysis and some novel optical solitons of the perturbed non-linear Schrödinger equation with Kerr law non-linearity, Results Phys., 54 (2023), 107133. https://doi.org/10.1016/j.rinp.2023.107133 doi: 10.1016/j.rinp.2023.107133
    [12] I. Onder, A. Secer, M. Ozisik, M. Bayram, Investigation of optical soliton solutions for the perturbed Gerdjikov-Ivanov equation with full-nonlinearity, Heliyon, 9 (2023), e13519. https://doi.org/10.1016/j.heliyon.2023.e13519 doi: 10.1016/j.heliyon.2023.e13519
    [13] S. Tarla, K. K. Ali, R. Yilmazer, M. S. Osman, On dynamical behavior for optical solitons sustained by the perturbed Chen-Lee-Liu model, Commun. Theor. Phys, 74 (2022), 075005. https://doi.org/10.1088/1572-9494/ac75b2 doi: 10.1088/1572-9494/ac75b2
    [14] S. Sarwar, New soliton wave structures of nonlinear $(4+1)$-dimensional Fokas dynamical model by using different methods, Alex. Eng. J., 60 (2021), 795–803. https://doi.org/10.1016/j.aej.2020.10.009 doi: 10.1016/j.aej.2020.10.009
    [15] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, M. S. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results Phys., 21 (2021), 103769. https://doi.org/10.1016/j.rinp.2020.103769 doi: 10.1016/j.rinp.2020.103769
    [16] M. Subasi, H. Durur, Refraction simulation of nonlinear wave for Shallow Water-Like equation, Celal Bayar University Journal of Science, 19 (2023), 47–52. https://doi.org/10.18466/cbayarfbe.1145651 doi: 10.18466/cbayarfbe.1145651
    [17] M. A. El-Shorbagy, S. Akram, M. ur Rahman, Propagation of solitary wave solutions to $(4+1)$-dimensional Davey–Stewartson–Kadomtsev–Petviashvili equation arise in mathematical physics and stability analysis, Partial Differential Equations in Applied Mathematics, 10 (2024), 100669. https://doi.org/10.1016/j.padiff.2024.100669 doi: 10.1016/j.padiff.2024.100669
    [18] S. Akram, J. Ahmad, Shafqat-Ur-Rehman, S. Sarwar, A. Ali, Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis, Opt. Quant. Electron., 55 (2023), 450. https://doi.org/10.1007/s11082-023-04723-x doi: 10.1007/s11082-023-04723-x
    [19] Hamood-Ur-Rehman, M. I. Asjad, M. Inc, T. Iqbal, Exact solutions for new coupled Konno–Oono equation via Sardar subequation method, Opt. Quant. Electron., 54 (2022), 798. https://doi.org/10.1007/s11082-022-04208-3 doi: 10.1007/s11082-022-04208-3
    [20] J. Ahmad, S. Akram, S. U. Rehman, N. B. Turki, N. A. Shah, Description of soliton and lump solutions to $M$-truncated stochastic Biswas–Arshed model in optical communication, Results Phys., 51 (2023), 106719. https://doi.org/10.1016/j.rinp.2023.106719 doi: 10.1016/j.rinp.2023.106719
    [21] J. Ahmad, S. Akram, K. Noor, M. Nadeem, A. Bucur, Y. Alsayaad, Soliton solutions of fractional extended nonlinear Schrödinger equation arising in plasma physics and nonlinear optical fiber, Sci. Rep., 13 (2023), 10877. https://doi.org/10.1038/s41598-023-37757-y doi: 10.1038/s41598-023-37757-y
    [22] S. Gulsen, M. S. Hashemi, R. Alhefthi, M. Inc, H. Bicer, Nonclassical symmetry analysis and heir-equations of forced Burger equation with time variable coefficients, J. Comput. Appl. Math., 42 (2023), 221. https://doi.org/10.1007/s40314-023-02358-y doi: 10.1007/s40314-023-02358-y
    [23] Y. He, L. Zhang, M. S. Tong, Microwave imaging of 3D dielectric-magnetic penetrable objects based on integral equation method, IEEE Trans. Antenn. Propag., 71 (2023), 5110–5120. https://doi.org/10.1109/TAP.2023.3262299 doi: 10.1109/TAP.2023.3262299
    [24] Y. Shen, B. Tian, T. Y. Zhou, X. T. Gao, N-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material, Nonlinear Dyn., 111 (2023), 2641–2649. https://doi.org/10.1007/s11071-022-07959-6 doi: 10.1007/s11071-022-07959-6
    [25] S.-W. Yao, S. Gulsen, M. S. Hashemi, M. İnç, H. Bicer, Periodic Hunter–Saxton equation parametrized by the speed of the Galilean frame: Its new solutions, Nucci's reduction, first integrals and Lie symmetry reduction, Results Phys., 47 (2023), 106370. https://doi.org/10.1016/j.rinp.2023.106370 doi: 10.1016/j.rinp.2023.106370
    [26] A. Akbulut, M. Mirzazadeh, M. S. Hashemi, K. Hosseini, S. Salahshour, C. Park, Triki–Biswas model: Its symmetry reduction, Nucci's reduction and conservation laws, Int. J. Mod. Phys. B, 37 (2023), 2350063. https://doi.org/10.1142/S0217979223500637 doi: 10.1142/S0217979223500637
    [27] Z.-Y. Wang, S.-F. Tian, J. Cheng, The $\partial^{-}$ dressing method and soliton solutions for the three-component coupled Hirota equations, J. Math. Phys., 62 (2021), 093510. https://doi.org/10.1063/5.0046806 doi: 10.1063/5.0046806
    [28] S.-F. Tian, M.-J. Xu, T.-T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [29] Y. Li, S.-F. Tian, J.-J. Yang, Riemann–Hilbert problem and interactions of solitons in the‐component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
    [30] Z.-Q. Li, S.-F. Tian, J.-J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
    [31] M. ur Rahman, M. Sun, S. Boulaaras, D. Baleanu, Bifurcations, chaotic behavior, sensitivity analysis, and various soliton solutions for the extended nonlinear Schrödinger equation, Bound. Value Probl., 2024 (2024), 15. https://doi.org/10.1186/s13661-024-01825-7 doi: 10.1186/s13661-024-01825-7
    [32] Z.-Q. Li, S.-F. Tian, J.-J. Yang, E. Fan, Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, J. Differ. Equation, 329 (2022), 31–88. https://doi.org/10.1016/j.jde.2022.05.003 doi: 10.1016/j.jde.2022.05.003
    [33] R. Myrzakulov, G. Mamyrbekova, G. Nugmanova, M. Lakshmanan, Integrable $(2+1)$-dimensional spin models with self-consistent potentials, Symmetry, 7 (2015), 1352–1375. https://doi.org/10.3390/sym7031352 doi: 10.3390/sym7031352
    [34] K. Yesmakhanova, G. Shaikhova, G. Bekova, R. Myrzakulov, Darboux transformation and soliton solution for the $(2+1)$-dimensional complex modified Korteweg-de Vries equations, J. Phys.: Conf. Ser., 936 (2017), 012045. https://doi.org/10.1088/1742-6596/936/1/012045 doi: 10.1088/1742-6596/936/1/012045
    [35] F. Yuan, X. Zhu, Y. Wang, Deformed solitons of a typical set of $(2+1)$–dimensional complex modified Korteweg–de Vries equations, Int. J. Appl. Math. Comput. Sci, 30 (2020), 337–350. https://doi.org/10.34768/amcs-2020-0026 doi: 10.34768/amcs-2020-0026
    [36] F. Yuan, The order-n breather and degenerate breather solutions of the $(2+1)$-dimensional cmKdV equations, Int. J. Mod. Phys. B, 35 (2021), 2150053. https://doi.org/10.1142/S0217979221500533 doi: 10.1142/S0217979221500533
    [37] G. Shaikhova, N. Serikbayev, K. Yesmakhanova, R. Myrzakulov, Nonlocal complex modified Korteweg-de Vries equations: reductions and exact solutions, In: Proceedings of the Twenty-First International Conference on Geometry, Integrability and Quantization, June 3–8, 2019, Varna, Bulgaria, 2020,265–271. https://doi.org/10.7546/giq-21-2020-265-271
    [38] A.-M. Wazwaz, The Camassa–Holm–KP equations with compact and noncompact travelling wave solutions, Appl. Math. Comput., 170 (2005), 347–360. https://doi.org/10.1016/j.amc.2004.12.002 doi: 10.1016/j.amc.2004.12.002
    [39] G. Shaikhova, B. Kutum, R. Myrzakulov, Periodic traveling wave, bright and dark soliton solutions of the $(2+1)$-dimensional complex modified Korteweg-de Vries system of equations by using three different methods, AIMS Mathematics, 7 (2022), 18948–18970. http://doi.org/10.3934/math.20221043 doi: 10.3934/math.20221043
    [40] S. Roy, S. Raut, R. R. Kairi, P. Chatterjee, Bilinear Bäcklund, Lax pairs, breather waves, lump waves and soliton interaction of $(2+1)$-dimensional non-autonomous Kadomtsev–Petviashvili equation, Nonlinear Dyn., 111 (2023), 5721–5741. https://doi.org/10.1007/s11071-022-08126-7 doi: 10.1007/s11071-022-08126-7
    [41] I. Alazman, B. S. T. Alkahtani, M. ur Rahman, M. N. Mishra, Nonlinear complex dynamical analysis and solitary waves for the $(3+1)$-D nonlinear extended Quantum Zakharov-Kuznetsov equation, Results Phys., 58 (2024), 107432. https://doi.org/10.1016/j.rinp.2024.107432 doi: 10.1016/j.rinp.2024.107432
    [42] S. S. Kazmi, A. Jhangeer, N. Raza, H. I. Alrebdi, A.-H. Abdel-Aty, H. Eleuch, The analysis of bifurcation, quasi-periodic and solitons patterns to the new form of the generalized q-deformed Sinh-Gordon equation, Symmetry, 15 (2023), 1324. https://doi.org/10.3390/sym15071324 doi: 10.3390/sym15071324
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(496) PDF downloads(67) Cited by(9)

Article outline

Figures and Tables

Figures(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog