Research article Special Issues

The Riccati-Bernoulli sub-optimal differential equation method for analyzing the fractional Dullin-Gottwald-Holm equation and modeling nonlinear waves in fluid mediums

  • Received: 01 February 2024 Revised: 15 April 2024 Accepted: 17 April 2024 Published: 08 May 2024
  • The present study investigates the fractional Dullin-Gottwald-Holm equation by using the Riccati-Bernoulli sub-optimal differential equation method with the Bäcklund transformation. By employing a well-established criterion, the present study reveals novel cusp soliton solutions that resemble peakons and offers valuable insights into their dynamic behaviors and mysterious phenomena. The solution family encompasses various analytical solutions, such as peakons, periodic, and kink-wave solutions. Furthermore, the impact of both the time- and space-fractional parameters on all derived solutions' profiles is examined. This investigation's significance lies in its contribution to understanding intricate dynamics inside physical systems, offering valuable insights into various domains like fluid mechanics and nonlinear phenomena across different physical models. The computational technique's straightforward, effective, and concise nature is demonstrated through introduction of some graphical representations in two- and three-dimensional plots generated by adjusting the related parameters. The findings underscore the versatility of this methodology and demonstrate its applicability as a tool to solve more complicated nonlinear problems as well as its ability to explain many mysterious phenomena.

    Citation: Humaira Yasmin, Haifa A. Alyousef, Sadia Asad, Imran Khan, R. T. Matoog, S. A. El-Tantawy. The Riccati-Bernoulli sub-optimal differential equation method for analyzing the fractional Dullin-Gottwald-Holm equation and modeling nonlinear waves in fluid mediums[J]. AIMS Mathematics, 2024, 9(6): 16146-16167. doi: 10.3934/math.2024781

    Related Papers:

  • The present study investigates the fractional Dullin-Gottwald-Holm equation by using the Riccati-Bernoulli sub-optimal differential equation method with the Bäcklund transformation. By employing a well-established criterion, the present study reveals novel cusp soliton solutions that resemble peakons and offers valuable insights into their dynamic behaviors and mysterious phenomena. The solution family encompasses various analytical solutions, such as peakons, periodic, and kink-wave solutions. Furthermore, the impact of both the time- and space-fractional parameters on all derived solutions' profiles is examined. This investigation's significance lies in its contribution to understanding intricate dynamics inside physical systems, offering valuable insights into various domains like fluid mechanics and nonlinear phenomena across different physical models. The computational technique's straightforward, effective, and concise nature is demonstrated through introduction of some graphical representations in two- and three-dimensional plots generated by adjusting the related parameters. The findings underscore the versatility of this methodology and demonstrate its applicability as a tool to solve more complicated nonlinear problems as well as its ability to explain many mysterious phenomena.



    加载中


    [1] M. A. Helal, A. R. Seadawy, M. H. Zekry, Stability analysis solutions for the sixth-order nonlinear Boussinesq water wave equations in two-dimensions, Chin. J. Phys., 55 (2017), 378–385.
    [2] M. Arshad, A. R. Seadawy, D. Lu, J. Wang, Travelling wave solutions of Drinfel'd-sokolov-wilson, Whithambroer-kaup and (2+1)-dimensional Broer-Kaup-Kupershmit equations and their applications, Chin. J. Phys., 55 (2017), 780–797.
    [3] D. Kumar, A. R. Seadawy, A. K. Joardar, Modified Kudryashov method via new analytic solutions for some conformable fractional differential equations arising in mathematical biology, Chin. J. Phys., 56 (2018), 75–85.
    [4] M. K. Elboree, Lump solitons, rogue wave solutions and lump-stripe interaction phenomena to an extended (3+1)-dimensional KP equation, Chin. J. Phys., 63 (2020), 290–303.
    [5] A. Riaz, R. Ellahi, M. M. Bhatti, M. Marin, Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel, Heat Trans. Res., 50 (2019), 1539–1560.
    [6] M. M. Bhatti, R. Ellahi, A. Zeeshan, M. Marin, N. Ijaz, Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties, Modern Phys. Lett. B, 33 (2019), 1950439.
    [7] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, Investigating families of soliton solutions for the complex structured coupled fractional biswas-arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491.
    [8] T. Botmart, R.P. Agarwal, M. Naeem, A. Khan, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Mathematics, 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693
    [9] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512.
    [10] R. Shah, H. Khan, D. Baleanu, Fractional Whitham-Broer-Kaup equations within modified analytical approaches, Axioms, 8 (2019), 125.
    [11] P. Sunthrayuth, A. M. Zidan, S. W. Yao, M. Inc, The comparative study for solving fractional-order Fornberg-Whitham equation via $\rho$-Laplace transform, Symmetry, 13 (2021), 784.
    [12] X. Gao, Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system, Appl. Math. Lett., 152 (2024), 109018.
    [13] X. Gao, Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system, Chin. J. Phys., 86 (2023), 572–577.
    [14] X. Gao, Oceanic shallow-water investigations on a generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt system, Phys. Fluids, 35 (2023), 127106. https://doi.org/10.1063/5.0170506 doi: 10.1063/5.0170506
    [15] Y. Shen, B. Tian, T. Zhou, C. Cheng, Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium, Chaos, Soliton. Fract., 171 (2023), 113497.
    [16] T. Y. Zhou, B. Tian, Y. Shen, Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid, Nonlinear Dyn. 111 (2023), 8647–8658.
    [17] S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
    [18] Y. Shi, C. Song, Y. Chen, H. Rao, T. Yang, Complex Standard Eigenvalue Problem Derivative Computation for Laminar-Turbulent Transition Prediction, AIAA J., 61 (2023), 3404–3418. https://doi.org/10.2514/1.J062212 doi: 10.2514/1.J062212
    [19] X. Cai, R. Tang, H. Zhou, Q. Li, S. Ma, D. Wang, L. Zhou, Dynamically controlling terahertz wavefronts with cascaded metasurfaces, Adv. Photonics, 3 (2021), 036003. https://doi.org/10.1117/1.AP.3.3.036003 doi: 10.1117/1.AP.3.3.036003
    [20] A. Saad Alshehry, M. Imran, A. Khan, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022) 1463.
    [21] H. M. Srivastava, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Methods Appl. Sci., 43 (2020), 199–212.
    [22] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled konno-onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686.
    [23] M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Mathematics, 7 (2022), 18334–18359. http://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [24] A. A. Alderremy, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944.
    [25] T. A. A. Ali, Z. Xiao, H. Jiang, B. Li, A Class of Digital Integrators Based on Trigonometric Quadrature Rules, IEEE Trans. Ind. Electron., 71 (2024), 6128–6138. https://doi.org/10.1109/TIE.2023.3290247 doi: 10.1109/TIE.2023.3290247
    [26] C. Guo, J. Hu, Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance, IEEE T. Circuits II, 70 (2023), 2670–2674. https://doi.org/10.1109/TCSII.2023.3242856 doi: 10.1109/TCSII.2023.3242856
    [27] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. doilinkhttps://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [28] S. S. Ray, R. K. Bera, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., 174 (2006), 329–336.
    [29] B. K. Singh, P. Kumar, Fractional variational iteration method for solving fractionalpartial differential equations with proportional delay, Int. J. Differ. Equ., 2017 (2017), 11. https://doi.org/10.1155/2017/5206380 doi: 10.1155/2017/5206380
    [30] J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), 1364–1377.
    [31] Y. Nikolova, L. Boyadjiev, Integral transforms method to solve a time-space fractional diffusion equation, Fract. Calculus Appl. Anal., 13 (2010), 57–68.
    [32] M. S. Rawashdeh, H. Al-Jammal, New approximate solutions to fractional nonlinear systems of partial differential equations using the FNDM, Adv. Differ. Equ., 2016 (2016), 235. https://doi.org/10.1186/s13662-016-0960-x doi: 10.1186/s13662-016-0960-x
    [33] A. Elsaid, S. Shamseldeen, S. Madkour, Analytical approximate solution of fractional wave equation by the optimal homotopy analysis method, Eur. J. Pure Appl. Math., 10 (2017), 586–601.
    [34] R. K. Saxena, S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199 (2008), 504–511.
    [35] A, Cetinkaya, O. Kymaz, The solution of the time-fractional diffusion equation by the generalized differential transform method, Math. Comput. Modell., 57 (2013), 2349–2354.
    [36] H, Khan, S, Barak, P, Kumam, M. Arif, Analytical Solutions of Fractional Klein-Gordon and Gas Dynamics Equations, via the $G/G^{\prime}$-Expansion Method, Symmetry, 11 (2019), 566.
    [37] Y, Kai, J, Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dynamics, 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [38] Q, Han, F. Chu, Nonlinear dynamic model for skidding behavior of angular contact ball bearings, J. Sound Vib., 354 (2015), 219–235. https://doi.org/10.1016/j.jsv.2015.06.008 doi: 10.1016/j.jsv.2015.06.008
    [39] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017), 214. https://doi.org/10.4172/2090-0902.1000214 doi: 10.4172/2090-0902.1000214
    [40] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus., 132 (2017), 339.
    [41] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Diff. Equa., 1 (2015), 117–133.
    [42] H. R. Dullin, G. A. Gottwald, D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501.
    [43] H. R. Dullin, G. A. Gottwald, D. D. Holm, On asymptotically equivalent shallow water wave equations, Physica. D., 190 (2004), 1–14.
    [44] L. X. Tian, G. Gui, Y. Liu, On the well-posedness problem and the scattering problem for the Dullin–Gottwald–Holm Equation, Commun. Math. Phys., 257 (2005), 667–701.
    [45] M. Y. Tang, C. X. Yang, Extension on peaked wave solutions of CH-$\gamma$ equation, Chaos Soliton. Fract., 20 (2004), 815–825.
    [46] C. L. Chen, Y. S. Li, J. E. Zhang, The multi-soliton solutions of the CH-$\gamma$ equation, Sci. China Ser. A-Math., 51 (2008), 314–320. https://doi.org/10.1007/s11425-007-0137-x doi: 10.1007/s11425-007-0137-x
    [47] L. J. Zhang, L. Q. Chen, X. W. Huo, Peakons and periodic cusp wave solutions in a generalized Camassa–Holm equation, Chaos Soliton. Fract., 30 (2006), 1238–1249.
    [48] Y. Liu, Global existence and blow-up solutions for a nonlinear shallow water equation, Math. Ann., 335 (2006), 717–735.
    [49] H. R. Dullin, G. A. Gottwald, D. D. Holm, Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dyn. Res., 33 (2003), 73–95.
    [50] M. Z. Sarikaya, H. Budak, H. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792799.
    [51] D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325.
    [52] S. A. Almutlak, S. Parveen, S. Mahmood, A. Qamar, B. M. Alotaibi, S. A. El-Tantawy, On the propagation of cnoidal wave and overtaking collision of slow shear Alfvén solitons in low $\beta -$magnetized plasmas, Phys. Fluids, 35 (2023), 075130. https://doi.org/10.1063/5.0158292 doi: 10.1063/5.0158292
    [53] T. Hashmi, R. Jahangir, W. Masood, B. M. Alotaibi, S. M. E, Ismaeel, S. A. El-Tantawy, Head-on collision of ion-acoustic (modified) Korteweg-de Vries solitons in Saturn's magnetosphere plasmas with two temperature superthermal electrons, Phys. Fluids, 35 (2023), 103104.
    [54] R. A. Alharbey, W. R. Alrefae, H. Malaikah, E. Tag-Eldin, S. A. El-Tantawy, Novel approximate analytical solutions to the nonplanar modified Kawahara equation and modeling nonlinear structures in electronegative plasmas, Symmetry, 15 (2023), 97.
    [55] S. A. El-Tantawy, A. H. Salas, H. A. Alyouse, M. R. Alharthi, Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma, Chin. J. Phys., 77 (2022), 2454.
    [56] M. R. Alharthi, R. A. Alharbey, S. A. El-Tantawy, Novel analytical approximations to the nonplanar Kawahara equation and its plasma applications, Eur. Phys. J. Plus, 137 (2022), 1172.
    [57] M. Irshad, Ata-ur-Rahman, M. Khalid, S. Khan, B. M. Alotaibi, L. S. El-Sherif, S. A. El-Tantawy, Effect of $\kappa$-deformed Kaniadakis distribution on the modulational instability of electron-acoustic waves in a non-Maxwellian plasma, Phys. Fluids, 35 (2023), 105116. https://doi.org/10.1063/5.0171327 doi: 10.1063/5.0171327
    [58] S. A. El-Tantawy, T. Aboelenen, Simulation study of planar and nonplanar super rogue waves in an electronegative plasma: Local discontinuous Galerkin method, Phys. Plasmas, 24 (2017), 052118. https://doi.org/10.1063/1.4983327 doi: 10.1063/1.4983327
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(841) PDF downloads(72) Cited by(1)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog