Research article Special Issues

Analytical insights into solitary wave solutions of the fractional Estevez-Mansfield-Clarkson equation

  • Received: 12 January 2024 Revised: 26 March 2024 Accepted: 27 March 2024 Published: 12 April 2024
  • MSC : 33B15, 34A34, 35A20, 35A22, 44A10

  • This study delved into the dynamics of wave solutions within the Estevez-Mansfield-Clarkson equation in fractional nonlinear space-time. Utilizing conformable fractional derivatives, the equation governing shallow water phenomena and fluid dynamics was transformed into a nonlinear ordinary differential equation. Applying the Riccati Bernoulli sub-ODE approach yielded a finite series representation. Notably, our findings revealed novel solitary wave solutions characterized by kink, anti-kink, periodic, and shock functions. Visualized through 3D and contour graphs, kink and periodic waves emerged as distinct observable manifestations. Intriguingly, the diversity of results surpassed previous results, contributing to a deeper understanding of the intricate dynamics inherent in the system.

    Citation: M. Mossa Al-Sawalha, Saima Noor, Saleh Alshammari, Abdul Hamid Ganie, Ahmad Shafee. Analytical insights into solitary wave solutions of the fractional Estevez-Mansfield-Clarkson equation[J]. AIMS Mathematics, 2024, 9(6): 13589-13606. doi: 10.3934/math.2024663

    Related Papers:

  • This study delved into the dynamics of wave solutions within the Estevez-Mansfield-Clarkson equation in fractional nonlinear space-time. Utilizing conformable fractional derivatives, the equation governing shallow water phenomena and fluid dynamics was transformed into a nonlinear ordinary differential equation. Applying the Riccati Bernoulli sub-ODE approach yielded a finite series representation. Notably, our findings revealed novel solitary wave solutions characterized by kink, anti-kink, periodic, and shock functions. Visualized through 3D and contour graphs, kink and periodic waves emerged as distinct observable manifestations. Intriguingly, the diversity of results surpassed previous results, contributing to a deeper understanding of the intricate dynamics inherent in the system.



    加载中


    [1] M. M. A. Khater, Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers, Chaos Solitons Fract., 167 (2023), 113098. https://doi.org/10.1016/j.chaos.2022.113098 doi: 10.1016/j.chaos.2022.113098
    [2] M. M. A. Khater, Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect, Int. J. Modern Phys. B, 37 (2023), 2350083. https://doi.org/10.1142/S0217979223500832 doi: 10.1142/S0217979223500832
    [3] M. M. A. Khater, Prorogation of waves in shallow water through unidirectional Dullin-Gottwald-Holm model; computational simulations, Int. J. Modern Phys. B, 37 (2023), 2350071. https://doi.org/10.1142/S0217979223500716 doi: 10.1142/S0217979223500716
    [4] S. Phoosree, W. Thadee, Wave effects of the fractional shallow water equation and the fractional optical fiber equation, Front. Appl. Math. Stat., 8 (2022), 900369. https://doi.org/10.3389/fams.2022.900369 doi: 10.3389/fams.2022.900369
    [5] M. M. Bhatti, D. Q. Lu, An application of Nwogu's Boussinesq model to analyze the head-on collision process between hydroelastic solitary waves, Open Phys., 17 (2019), 177–191. https://doi.org/10.1515/phys-2019-0018 doi: 10.1515/phys-2019-0018
    [6] A. A. Gaber, A. F. Aljohani, A. Ebaid, J. T. Machado, The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of Burgers type, Nonlinear Dyn., 95 (2019), 361–368. https://doi.org/10.1007/s11071-018-4568-4 doi: 10.1007/s11071-018-4568-4
    [7] M. H. Hao, Y. N. Zhang, J. Pang, Solving fractional nonlinear partial differential equations by the modified Kudryashov method, J. Phys. Conf. Ser., 1300 (2019), 012059. https://doi.org/10.1088/1742-6596/1300/1/012059 doi: 10.1088/1742-6596/1300/1/012059
    [8] H. Yepez-Martinez, J. F. Gomez-Aguilar, Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana's conformable derivative, Waves Random Complex Media, 29 (2019), 678–693. https://doi.org/10.1080/17455030.2018.1464233 doi: 10.1080/17455030.2018.1464233
    [9] S. Phoosree, S. Chinviriyasit, New analytic solutions of some fourth-order nonlinear space-time fractional partial differential equations by $G'/G$-expansion method, Songklanakarin J. Sci. Technol., 43 (2021), 795–801.
    [10] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 1–30. https://doi.org/10.3390/math11122686 doi: 10.3390/math11122686
    [11] A. Shafee, Y. Alkhezi, R. Shah, Efficient solution of fractional system partial differential equations using Laplace residual power series method, Fractal Fract., 7 (2023), 1–12. https://doi.org/10.3390/fractalfract7060429 doi: 10.3390/fractalfract7060429
    [12] T. Y. Han, Z. B. Zhao, K. Zhang, C. Tang, Chaotic behavior and solitary wave solutions of stochastic-fractional Drinfel'd-Sokolov-Wilson equations with Brownian motion, Results Phys., 51 (2023), 106657. https://doi.org/10.1016/j.rinp.2023.106657 doi: 10.1016/j.rinp.2023.106657
    [13] A. H. Arnous, M. Mirzazadeh, L. Akinyemi, A. Akbulut, New solitary waves and exact solutions for the fifth-order nonlinear wave equation using two integration techniques, J. Ocean Eng. Sci., 8 (2023), 475–480. https://doi.org/10.1016/j.joes.2022.02.012 doi: 10.1016/j.joes.2022.02.012
    [14] A. H. Arnous, M. Mirzazadeh, A. Akbulut, L. Akinyemi, Optical solutions and conservation laws of the Chen-Lee-Liu equation with Kudryashov's refractive index via two integrable techniques, Waves Random Complex Media, 2022, 1–17. https://doi.org/10.1080/17455030.2022.2045044
    [15] M. Iqbal, A. R. Seadawy, D. C. Lu, Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods, Modern Phys. Lett. A, 33 (2018), 1850183. https://doi.org/10.1142/S0217732318501833 doi: 10.1142/S0217732318501833
    [16] M. Iqbal, A. R. Seadawy, O. H. Khalil, D. C. Lu, Propagation of long internal waves in density stratified ocean for the (2+1)-dimensional nonlinear Nizhnik-Novikov-Vesselov dynamical equation, Results Phys., 16 (2020), 102838. https://doi.org/10.1016/j.rinp.2019.102838 doi: 10.1016/j.rinp.2019.102838
    [17] M. Iqbal, A. R. Seadawy, D. C. Lu, Dispersive solitary wave solutions of nonlinear further modified Korteweg-de Vries dynamical equation in an unmagnetized dusty plasma, Modern Phys. Lett. A, 33 (2018), 1850217. https://doi.org/10.1142/S0217732318502176 doi: 10.1142/S0217732318502176
    [18] M. Iqbal, A. R. Seadawy, D. C. Lu, Applications of nonlinear longitudinal wave equation in a magneto-electro-elastic circular rod and new solitary wave solutions, Modern Phys. Lett. B, 33 (2019), 1950210. https://doi.org/10.1142/S0217984919502105 doi: 10.1142/S0217984919502105
    [19] A. R. Seadawy, M. Iqbal, D. C. Lu, Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation, Comput. Math. Appl., 78 (2019), 3620–3632. https://doi.org/10.1016/j.camwa.2019.06.013 doi: 10.1016/j.camwa.2019.06.013
    [20] A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1–20. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [21] H. M. Srivastava, R. Shah, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Methods Appl. Sci., 43 (2020), 199–212. https://doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846
    [22] A. S. Alshehry, M. Imran, A. Khan, R. Shah, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022), 1–24. https://doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463
    [23] S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1–21. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102
    [24] M. Naeem, O. F. Azhar, A. M. Zidan, K. Nonlaopon, R. Shah, Numerical analysis of fractional-order parabolic equations via Elzaki transform, J. Funct. Spaces, 2021 (2021), 1–10. https://doi.org/10.1155/2021/3484482 doi: 10.1155/2021/3484482
    [25] S. S. Ray, R. K. Bera, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., 174 (2006), 329–336. https://doi.org/10.1016/j.amc.2005.04.082 doi: 10.1016/j.amc.2005.04.082
    [26] B. K. Singh, P. Kumar, Fractional variational iteration method for solving fractional partial differential equations with proportional delay, Int. J. Differ. Equ., 2017 (2017), 1–11. https://doi.org/10.1155/2017/5206380 doi: 10.1155/2017/5206380
    [27] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scr., 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [28] H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
    [29] S. Alshammari, K. Moaddy, R. Shah, M. Alshammari, Z. Alsheekhhussain, M. M. Al-Sawalha, et al., Analysis of solitary wave solutions in the fractional-order Kundu-Eckhaus system, Sci. Reports, 14 (2024), 3688. https://doi.org/10.1038/s41598-024-53330-7 doi: 10.1038/s41598-024-53330-7
    [30] Z. Alsheekhhussain, K. Moaddy, R. Shah, S. Alshammari, M. Alshammari, M. M. Al-Sawalha, et al., Extension of the optimal auxiliary function method to solve the system of a fractional-order Whitham-Broer-Kaup equation, Fractal Fract., 8 (2024), 1–14. https://doi.org/10.3390/fractalfract8010001 doi: 10.3390/fractalfract8010001
    [31] M. M. Al-Sawalha, S. Mukhtar, R. Shah, A. H. Ganie, K. Moaddy, Solitary waves propagation analysis in nonlinear dynamical system of fractional coupled Boussinesq-Whitham-Broer-Kaup equation, Fractal Fract., 7 (2023), 1–26. https://doi.org/10.3390/fractalfract7120889 doi: 10.3390/fractalfract7120889
    [32] M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
    [33] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 1–29. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [34] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017), 1–6.
    [35] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrodinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339. https://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5
    [36] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 1–17.
    [37] H. K. Barman, M. E. Islam, M. A. Akbar, A study on the compatibility of the generalized Kudryashov method to determine wave solutions, Propuls. Power Res., 10 (2021), 95–105. https://doi.org/10.1016/j.jppr.2020.12.001 doi: 10.1016/j.jppr.2020.12.001
    [38] Z. Y. Yan, Abundant symmetries and exact compacton-like structures in the two-parameter family of the Estevez-Mansfield-Clarkson equations, Commun. Theor. Phys., 37 (2002), 27. https://doi.org/10.1088/0253-6102/37/1/27 doi: 10.1088/0253-6102/37/1/27
    [39] P. R. Kundu, M. R. A. Fahim, M. E. Islam, M. A. Akbar, The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis, Heliyon, 7 (2021), E06459. https://doi.org/10.1016/j.heliyon.2021.e06459 doi: 10.1016/j.heliyon.2021.e06459
    [40] M. Z. Sarikaya, H. Budak, F. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(839) PDF downloads(51) Cited by(4)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog