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1. Introduction

Nonlinear evolution equations are essential to applied mathematics, applied science, and
engineering because of their wide range of practical applications. Many models have drawn a lot of
attention, including those related to fluid dynamics, fluid mechanics, neurons, optical fibers, electrical
circuits, waves in water, plasma oscillations, capillary-gravity waves, physics of plasma, chemical
kinetics, and chemical physics. To gain a greater understanding of the dynamics of these real-world
components, methods for solving fractional nonlinear partial differential equations (PDEs) must be
investigated. To further study and understand the complex behaviors that are inherent in the
aforementioned systems, this exploration is essential. Solutions to fractional nonlinear PDEs are of
academic interest because of the increased detail and generality they provide, which outperforms
traditional solutions in terms of descriptive power. Additionally, graphs representing the physical
solutions of various fractional orders can be compared. To investigate new findings for the exact
traveling wave solutions, mathematicians have developed and implemented innovative and reliable
techniques. Some of these methods are the Khater II method [1], generalized Khater method [2],
modified Khater method [3], simple equation method [4], Poincare-Lighthill-Kuo method [5],
generalized Kudryashov method [6], modified Kudryashov method [7], fractional sub-equation
method [8] and (G′/G)-expansion method [9]. Recent studies have used a variety of techniques to
investigate solutions for solitary waves, revealing a wide range of approaches to comprehending
intricate physical phenomena. Scholars have conscientiously employed several techniques, all of
which have added significant value to our understanding of the nature and dynamics of isolated
waves [10–14]. These joint efforts have improved our knowledge of nonlinear dynamics and provided
a wide range of solitary wave solutions, which have enhanced the scientific discourse [15–19].

Numerous mathematical strategies have been developed to solve the difficulties involved in solving
fractional partial differential equations (FPDEs) analytically. Through the revelation of the exact
behavior of the modeled system, these strategies seek to overcome the inherent complexity of FPDEs
and provide benefits over numerical methods. The knowledge obtained from analytical solutions
advances our understanding of basic physical processes more thoroughly. As such, the study of
analytical solutions in the field of FPDEs is an important and constantly developing field of
research [20–24]. The scientific literature demonstrates the wide range of mathematical techniques
used to analytically solve FPDEs, highlighting the complexity of the methods used by experts in this
area. Interestingly, a range of approaches [25–33] have been included, highlighting their importance
in the variety of strategies that are being examined.

Furthermore, within the parameters of the suggested methodology [34–36], which is known for its
skillful management of complex algebraic calculations, the extraction of solutions for a wide range of
phenomena, such as fluid dynamics and transport phenomena, offers a potential pathway for
applications in a variety of scientific and engineering fields. The intended application in biological
systems, industrial processes, and environmental flows has the potential to provide insightful
knowledge about the complexities of fluid behavior, leading to improved prediction and optimization
techniques. The given partial differential equations are converted into an algebraic system of
equations by using the Riccati-Bernoulli equation in conjunction with the Backlund transformation.
This approach makes it easier to retrieve important information from the complex behaviors these
dynamic systems display, which improves our understanding of the underlying physical processes.
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Most notably, the method guarantees the derivation of finite solutions, guaranteeing the accuracy and
effectiveness of solutions for the examined equations. One important aspect of this method is its
ability to produce a wide range of single-wave solutions.

In addition, the current study attempts to apply this analytical approach to clarify the complex
dynamics found in the Estevez-Mansfield-Clarkson (EMC) equation. The 1997 study by Mansfield
and Clarkson on pattern dispersion in liquid drops provided the basis for this fourth-order nonlinear
evolution equation. The EMC equation poses a difficult set of complications and is mostly used to
examine wave behavior in shallow water. By putting the suggested technique to use, this study hopes
to further our understanding of these complexities and promote improvements in the field of complex
phenomenon analysis. The goals that have been mentioned are intended to improve our
comprehension of the behavior of the EMC equation and further our collective efforts to address the
difficulties presented by very complex mathematical models.

The EMC equation was developed as a result of research into the dispersion patterns found in liquid
droplets. This specific equation, which is utilized in the research, is essential for deciphering the
complex dynamics of waves in shallow water. The particular form under examination is a fourth-order
fractional nonlinear space-time EMC equation, which may be stated as follows [4]:

D3β
y (Dα

t (F)) + λDβ
y(F)Dα

t (Dβ
y(F)) + λD2β

y (F)Dα
t (F) + D2α

t (F) = 0, 0 < α, β ≤ 1, (1.1)

where F = F(x, y, t) and (λ , 0) is a constant. The EMC equation is a key equation in the vast field of
nonlinear science. It has applications in fluid dynamics, optics, image processing, and plasma physics.
The importance of the EMC equation has been highlighted by recent studies [37–39], which highlight
how vital it is to comprehending intricate physical processes. For higher-dimensional nonlinear
evolution equations, the investigations use novel approaches like the Sine-Gordon expansion method
to find steady soliton solutions for non-linear equations that have not been solved before.
Furthermore, the dynamics of important equations are investigated, such as the fractional
Ablowitz-Kaup-Newell-Segur equation and the non-linear space-time fractional EMC equation.
These investigations offer important insights into wave propagation in many scientific fields.
Continuing this direction, the studies explore linked sine-Gordon equations and solitary wave
solutions for the EMC equation, two essential mathematical models for studying shape development
in many physical contexts. All of these discoveries highlight how important the EMC equation is to
improve our comprehension of complex systems and how they materialize in the actual world.

The operator that represents the derivatives of order α adheres to the definition provided in [40].

Dα
θq(θ) = lim

m→0

q(θ + m(θ)1−α − q(θ))
m

, 0 < α ≤ 1. (1.2)

2. Methodology

Consider the following fractional partial differential equation (FPDE) that we have presented:

P1

(
f ,Dα

t ( f ),Dβ
ζ1

( f ),D2β
ζ2

( f ), f Dβ
ζ1

( f ), . . .
)
= 0, 0 < α, β ≤ 1. (2.1)

Polynomial P1 is a function of f (ζ1, ζ2, ζ3, · · · , t). This polynomial includes the fractional order
derivatives as well as the nonlinear terms. The primary stages of this method are then thoroughly
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covered. The wave transformations that follow are our suggestions for looking into possible solutions
for Eq (1.1):

F(x, y, t) = eiψ f (ψ), (2.2)

where

ψ(x, y, t) = p
(

xγ

γ

)
+ q

(
yβ

β

)
− ω

(
tα

α

)
. (2.3)

A universal variable denoting the transformation of propagating waves is represented by the
symbol (ψ). Three non-zero constants, (p), (q) and (ω), give different features to the travelling wave
dynamics. More specifically, for ω > 0, the wave travels in a positive direction and for ω < 0, the
wave travels in a negative direction. We apply a transformation to Eq (2.1) that results in the
formation of a nonlinear ordinary differential equation (NODE) and, as a result, assumes a modified
mathematical expression. This change reflects an intrinsic change in the nature of the equation, which
goes from its original form to a non-linear one. This introduces new dynamics and behaviors, which
call for an improved mathematical representation.

P2
(
f , f ′(ψ), f ′′(ψ), f f ′(ψ), . . .

)
= 0. (2.4)

Consider the formal solution for Eq (2.4):

f (ψ) =
m∑

i=−m

biϑ(ψ)i. (2.5)

Under the restriction that both bm , 0 and b−m , 0 simultaneously, the bi constants must be determined.
Concurrently, the function is generated via the subsequent Backlund transformation.

ϑ(ψ) =
−τB + Aϕ(ψ)

A + Bϕ(ψ)
. (2.6)

With the requirement that B , 0, let (τ), (A) and (B) be constants. Furthermore, suppose that ϕ(ψ) is a
function that has the following definition:

dϕ
dψ
= τ + ϕ(ψ)2. (2.7)

It is commonly acknowledged that the following are the solutions to Eq (2.7):

(i) If τ < 0, then ϕ(ψ) = −
√
−τ tanh(

√
−τψ), or ϕ(ψ) = −

√
−τcoth(

√
−τψ). (2.8)

(ii) If τ > 0, then ϕ(ψ) =
√
τ tan(

√
τψ), or ϕ(ψ) = −

√
τcot(

√
τψ). (2.9)

(iii) If τ = 0, then ϕ(ψ) =
−1
ψ
. (2.10)

Under the framework of Eq (2.5), the positive integer (N) can be found by using homogeneous
balancing principles, which entail finding equilibrium between the highest order derivatives and the
nonlinear variables in Eq (2.4). f (ψ) degree can be expressed more precisely as D[ f (ψ)] = N.
Therefore, this enables us to perform the following computation of the degree of linked expressions:

D
[
dk f
dψk

]
= N + k, D

[
f J dk f

dψk

]s

= NJ + s(k + N). (2.11)
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Algebraic equations are established by combining Eq (2.4) with Eqs (2.5) and (2.7), grouping terms
with the same powers of f (ψ), and then equating them to zero. Applying Maple software to deduce
the pertinent values for various parameters will result in an efficient resolution of this system. Thus,
this makes it easier to compute the soliton wave-propagating solutions to Eq (2.1) with accuracy by
computational analysis.

3. Execution of the problem

Using the approach outlined in Section 2, we methodically solve the fractional EMC
equation (1.1), concentrating on solutions for single waves. Using the wave transformation described
in Eq (2.3), our analysis is simplified inside the EMC equation framework. We then show the
resulting equation, a derived nonlinear ordinary differential equation (ODE), that captures the
nonlinear dynamics after this transformation step. This new equation is a concise expression derived
from the original fractional partial differential equation (PDE) and represents a breakthrough in our
comprehension of the fundamental dynamics in the frictional EMC framework.

q3 f ′′′ + 2λq2( f ′)2 − ω f ′ = 0. (3.1)

Equation (3.1) as well as Eqs (2.7) and (2.6) all incorporate the replacement given in Eq (2.5). After
collecting coefficients for ϕi(ψ) in a methodical manner, we create an algebraic system of equations
that equals zero. By utilizing the computing power of Maple, we can solve this system of algebraic
equations and obtain the following answers. This methodology guarantees a methodical and effective
extraction of the solutions, revealing insights into the interrelationships between variables in the
specified mathematical context:
Case 1.

b0 = b0, b1 = b1, b−1 = −
A2b1

B2 , q = q, ω = −16
A2q3

B2 , λ = −3
q
b1
, τ =

A2

B2 , B = B. (3.2)

Case 2.

b0 = b0, b1 = 0, b−1 = b−1, q = 1/3
λ b−1

τ
, ω = −

4
27

λ3b−1
3

τ2 , λ = λ, τ = τ, B = B. (3.3)

Case 3.

b0 = b0, b1 = b1, b−1 = 0, q = −1/3 λ b1, ω =
4

27
λ3b1

3τ, λ = λ, τ = τ, B = B. (3.4)

The solution set for the values of (ψ) that follow is obtained by assuming Case 1:

ψ =
qyβ

β
+ 16

A2q3tα

B2α
. (3.5)

Solution Set 1: When τ < 0, then Eq (1.1) brings about the resulting single-wave solutions:

F1(x, y, t) =eiψ

−A2b1

A − B

√
−

A2

B2 tanh


√
−

A2

B2ψ

 B−2

−A2

B
− A

√
−

A2

B2 tanh


√
−

A2

B2ψ

−1

+ b0


+ eiψ

b1

−A2

B
− A

√
−

A2

B2 tanh


√
−

A2

B2ψ

 A − B

√
−

A2

B2 tanh


√
−

A2

B2ψ

−1 ,
(3.6)
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or

F2(x, y, t) =eiψ

−A2b1

A − B

√
−

A2

B2 coth


√
−

A2

B2ψ

 B−2

−A2

B
− A

√
−

A2

B2 coth


√
−

A2

B2ψ

−1

+ b0


+ eiψ

b1

−A2

B
− A

√
−

A2

B2 coth


√
−

A2

B2ψ

 A − B

√
−

A2

B2 coth


√
−

A2

B2ψ

−1 .
(3.7)

Solution Set 2: When τ > 0, then Eq (1.1) brings about the resulting single-wave solutions:

F3(x, y, t) =eiψ

−A2b1

A + B

√
A2

B2 tan


√

A2

B2ψ

 B−2

−A2

B
+ A

√
A2

B2 tan


√

A2

B2ψ

−1

+ b0


+ eiψ

b1

−A2

B
+ A

√
A2

B2 tan


√

A2

B2ψ

 A + B

√
A2

B2 tan


√

A2

B2ψ

−1 ,
(3.8)

or

F4(x, y, t) =eiψ

−A2b1

A − B

√
A2

B2 cot


√

A2

B2ψ

 B−2

−A2

B
− A

√
A2

B2 cot


√

A2

B2ψ

−1

+ b0


+ eiψ

b1

−A2

B
− A

√
A2

B2 cot


√

A2

B2ψ

 A − B

√
A2

B2 cot


√

A2

B2ψ

−1 .
(3.9)

Solution Set 3: When τ = 0, then Eq (1.1) brings about the resulting single-wave solutions:

F5(x, y, t) =eiψ

−A2b1

(
A −

B
ψ

)
B−2

(
−

A2

B
−

A
ψ

)−1

+ b0 + b1

(
−

A2

B
−

A
ψ

) (
A −

B
ψ

)−1 . (3.10)

The solution set for the values of (ψ) that follow is obtained by assuming Case 2:

ψ = 1/3
λ b−1yβ

τ β
+

4
27

λ3b−1
3tα

τ2α
. (3.11)

Solution Set 1: When τ < 0, then Eq (1.1) brings about the resulting single-wave solutions:

F6(x, y, t) = eiψ

b−1

(
A − B

√
−τ tanh

(√
−τψ

))
−τ B − A

√
−τ tanh

(√
−τψ

) + b0

 , (3.12)

or

F7(x, y, t) = eiψ

b−1

(
A − B

√
−τ coth

(√
−τψ

))
−τ B − A

√
−τ coth

(√
−τψ

) + b0

 . (3.13)
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Solution Set 2: When τ > 0, then Eq (1.1) brings about the resulting single-wave solutions:

F8(x, y, t) = eiψ

b−1

(
A + B

√
τ tan

(√
τψ

))
−τ B + A

√
τ tan

(√
τψ

) + b0

 , (3.14)

or

F9(x, y, t) = eiψ

b−1

(
A − B

√
τ cot

(√
τψ

))
−τ B − A

√
τ cot

(√
τψ

) + b0

 . (3.15)

Solution Set 3: When τ = 0, then Eq (1.1) brings about the resulting single-wave solutions:

F10(x, y, t) = eiψ

b−1

(
A −

B
ψ

) (
−τ B −

A
ψ

)−1

+ b0

 . (3.16)

The solution set for the values of (ψ) that follow is obtained by assuming Case 3:

ψ = −1/3
λ b1yβ

β
−

4
27

λ3b1
3τ tα

α
. (3.17)

Solution Set 1: When τ < 0, then Eq (1.1) brings about the resulting single-wave solutions:

F11(x, y, t) = eiψ

b0 +
b1

(
−τ B − A

√
−τ tanh

(√
−τψ

))
A − B

√
−τ tanh

(√
−τψ

)  , (3.18)

or

F12(x, y, t) = eiψ

b0 +
b1

(
−τ B − A

√
−τ coth

(√
−τψ

))
A − B

√
−τ coth

(√
−τψ

)  . (3.19)

Solution Set 2: When τ > 0, then Eq (1.1) brings about the resulting single-wave solutions:

F13(x, y, t) = eiψ

b0 +
b1

(
−τ B + A

√
τ tan

(√
τψ

))
A + B

√
τ tan

(√
τψ

)  , (3.20)

or

F14(x, y, t) = eiψ

b0 +
b1

(
−τ B − A

√
τ cot

(√
τψ

))
A − B

√
τ cot

(√
τψ

)  . (3.21)

Solution Set 3: When τ = 0, then Eq (1.1) brings about the resulting single-wave solutions:

F15(x, y, t) = eiψ

b0 + b1

(
−τ B −

A
ψ

) (
A −

B
ψ

)−1 . (3.22)
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4. Results and discussion

When used in conjunction with the Backlund transformation, the Riccati-Bernoulli sub-ODE
technique becomes a powerful analytical tool for studying complex dynamic systems, including
shallow water waves, tsunami modeling, coastal engineering, environmental impact assessment, river
and estuary dynamics, and biophysical applications. This method is well-known for its flexibility in a
wide range of physical systems and its capacity to produce a large number of periodic and single
traveling wave solutions, each with unique properties. Interestingly, this is accomplished without
using the discretization and linearization steps that are frequently used in problem-solving techniques.
This highlights the Riccati-Bernoulli sub-ODE technique’s intrinsic effectiveness and wide
applicability as a sophisticated analytical framework in the investigation of complicated
dynamic systems.

The results obtained with this approach provide exact solutions for systems representing the
physical phenomena outlined above, which contributes to our comprehension of the complex
dynamics involved in these processes. The flexibility of the approach is crucial for capturing complex
behaviors, yielding a wide range of solutions with different parameters. Moreover, the analytical
solutions that are obtained are used as standards, which makes it easier to thoroughly assess accuracy
and strengthen stability analyses, which are essential for guaranteeing the dependability of computer
models. One notable feature of this approach is its ability to produce self-reinforcing solitary waves
with solitons with the least amount of energy loss. Because soliton formation is a complex process
resulting from a fine balance between linear and nonlinear mechanisms, it opens up new possibilities
for investigating and understanding the dynamics of complex physical systems. The recently found
exact solutions to this equation exhibit a high degree of variation compared to the previously reported
results in the literature. We visualize these solutions as part of our thorough investigation, and the
results show a broad spectrum including shock-type, periodic, kink, and anti-kink structures. Each
wave has unique applications and significance. Shock waves are used in fluid dynamics, especially in
supersonic flows and explosive events. They are characterized by abrupt and fast changes in the
physical properties. Periodic waves can be thought of as steady, recurring perturbations in the domain
of solitary waves. Kink waves can be seen in a variety of systems, including some plasma waves.
They are characterized by a sudden change in amplitude that frequently has a discernible bend. In
contrast, the anti-kink waves imply non-linear optics and plasma physics due to their abrupt amplitude
change in the opposite direction.

The graphical discussion delves into the interpretation of the figures presented in the study. Each
figure showcases variations in the real and imaginary parts of specific solutions, providing insights into
their behavior and characteristics.

Figure 1 illustrates the variations in the real and imaginary parts of the solution F1(x, y, t),
highlighting any oscillatory patterns, amplitude changes, or spatial distribution of the solution.
Figure 2 presents similar variations for the solution F5(x, y, t), allowing for comparisons with Figure 1
and potentially revealing differences in behavior or dynamics. In Figure 3, the focus shifts to
the solution F10(x, y, t), offering further insights into its real and imaginary components,
potentially uncovering unique features or phenomena. Figure 4 provides additional perspectives on
the solution F11(x, y, t), enabling a comprehensive analysis of its behavior and interaction with
the underlying system dynamics. Finally, Figure 5 offers insights into the solution F15(x, y, t),
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potentially highlighting any distinct characteristics or noteworthy phenomena compared to the
previous solutions.

(a) A three-dimensional plot depicting the
multiple singular kinks of the real part of
F1(x, y, t) is presented.

(b) A contour plot representing the real part of
F1(x, y, t) is depicted.

(c) A three-dimensional plot depicting the
multiple singular kinks of the imaginary part of
F1(x, y, t) is presented.

(d) A contour plot representing the imaginary
part of F1(x, y, t) is depicted.

Figure 1. In these graphical representations, variations are shown for the real and imaginary
parts of the solution F1(x, y, t).

AIMS Mathematics Volume 9, Issue 6, 13589–13606.



13598

(a) A three-dimensional plot depicting the
periodic wave of the real part of F5(x, y, t) is
presented.

(b) A contour plot representing the real part of
F5(x, y, t) is depicted.

(c) A three-dimensional plot depicting the
periodic wave of the imaginary part of F5(x, y, t)
is presented.

(d) A contour plot representing the imaginary
part of F5(x, y, t) is depicted.

Figure 2. In these graphical representations, variations are shown for the real and imaginary
parts of the solution F5(x, y, t).
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(a) A three-dimensional plot depicting the
bifurcating periodic wave of the real part of
F10(x, y, t) is presented.

(b) A contour plot representing the real part of
F10(x, y, t) is depicted.

(c) A three-dimensional plot depicting the
bifurcating periodic wave of the imaginary part
of F10(x, y, t) is presented.

(d) A contour plot representing the imaginary
part of F10(x, y, t) is depicted.

Figure 3. In these graphical representations, variations are shown for the real and imaginary
parts of the solution F10(x, y, t).
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(a) A three-dimensional plot depicting the bright
soliton of the real part of F11(x, y, t) is presented.

(b) A contour plot representing the real part of
F11(x, y, t) is depicted.

(c) A three-dimensional plot depicting the dark
soliton of imaginary part of F11(x, y, t) is
presented.

(d) A contour plot representing the imaginary
part of F11(x, y, t) is depicted.

Figure 4. In these graphical representations, variations are shown for the real and imaginary
parts of the solution F11(x, y, t).
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(a) A three-dimensional plot depicting the
cuspon kink of the real part of F15(x, y, t) is
presented.

(b) A contour plot representing the real part of
F15(x, y, t) is depicted.

(c) A three-dimensional plot depicting the
bifurcated wave of imaginary part of F15(x, y, t)
is presented.

(d) A contour plot representing the imaginary
part of F15(x, y, t) is depicted.

Figure 5. In these graphical representations, variations are shown for the real and imaginary
parts of the solution F15(x, y, t).

In Table 1, comparison of the current approach with the alternative approaches, the simple equation
approach [4] and G′/G-expansion method [9]. Through a detailed examination of these graphical
representations, the study aims to enhance understanding of the soliton solutions within the context of
the investigated equations, providing valuable insights for further analysis and interpretation.
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Table 1. Comparison of the current approach with the alternative approaches, the simple
equation approach [4] and G′/G-expansion method [9].

Case I: τ < 0 Present method

u = eiψ

[
−A2b1

(
A − B

√
−A2

B2 tanh
(√
−A2

B2ψ
))

B−2
(
−A2

B − A
√
−A2

B2 tanh
(√
−A2

B2ψ
))−1

+ b0

]
+ eiψ

[
b1

(
−A2

B − A
√
−A2

B2 tanh
(√
−A2

B2ψ
)) (

A − B
√
−A2

B2 tanh
(√
−A2

B2ψ
))−1]

Case I: λ2 − 4µ < 0 G′/G-expansion method

u = 6/
β

[
−λ
2 + ϑ2

(
−c1 sin(ϑ2ζ)+c2 cos(ϑ2ζ)
c1 cos(ϑ2ζ)+c2 sin(ϑ2ζ)

)]
Case I: µ > 0, η < 0 Simple equation method

u = a0 −
6/η
δ

(
µeµ(ψ+ψ0)

1−ηeµ(ψ+ψ0)

)
Case II: τ > 0 Present method

u = eiψ

[
−A2b1

(
A + B

√
A2

B2 tan
(√

A2

B2ψ
))

B−2
(
−A2

B + A
√

A2

B2 tan
(√

A2

B2ψ
))−1

+ b0

]
eiψ

[
b1

(
−A2

B + A
√

A2

B2 tan
(√

A2

B2ψ
)) (

A + B
√

A2

B2 tan
(√

A2

B2ψ
))−1]

Case II: λ2 − 4µ > 0 G′/G-expansion method

u = 6l
β

[
−λ
2 + ϑ1

(
c1 sinh(ϑ1ζ)+c2 cosh(ϑ1ζ)
c1 cosh(ϑ1ζ)+c2 sinh(ϑ1ζ)

)]
Case II: µ < 0, η > 0 Simple equation method

u = a0 +
6/η
δ

(
µeµ(ψ+ψ0)

1+ηeµ(ψ+ψ0)

)
where ψ = kxα

Γ(α+1) +
lyα

Γ(α+1) −
βµ2tα

Γ(α+1)

Case III: τ = 0 Present method

u = eiψ
[
−A2b1

(
A − B

ψ

)
B−2

(
−A2

B −
A
ψ

)−1
+ b0 + b1

(
−A2

B −
A
ψ

) (
A − B

ψ

)−1
]

Case III: λ2 − 4µ = c = 0 G′/G-expansion method

u = a0 +
6l
β

(
−λ
2 +

c2
c1+c2ζ

)
where ζ = kxα

Γ(α+1) +
lyα

Γ(α+1) −
ctα
Γ(α+1)

and ϑ1 =

√
c/β3

2 , ϑ2 =

√
−c/l3

2

5. Conclusions

Through the use of Backlund transformation techniques, we have improved the application of the
Riccati Bernoulli sub-ODE method in this work. The fractional EMC equation stable solitary wave
solutions have been successfully derived using this extension. The results validate the flexibility of
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our suggested method, which may now be used to solve a larger class of nonlinear evolution
equations. Future research avenues and intriguing applications can be pursued with the kink,
anti-kink, and periodic solutions obtained by using our proposed approach. These results have the
potential to improve the communications systems by employing solitary wave stability for
long-distance transmission. Investigating the behavior of kink, anti-kink, and periodic solutions
provides important insights for manipulating nonlinear optical phenomena and creating cutting-edge
optical devices in the fields of material sciences and non-linear optics. Moreover, energy transmission
in periodic structures can be studied using periodic solutions, which might advance knowledge of
energy propagation and possibly enhance energy harvesting technology. Our analysis demonstrates
the effectiveness of the technique, establishing it as a useful resource for theoretical physicists and
mathematicians, especially when dealing with discrete nonlinear dynamics. Systems that can be
solved analytically or that admit explicit solutions are given preference. This work is important not
only for theoretical biologists looking for insights into physical applications but also for fluid
dynamics engineers.
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