We consider the inverse scattering problem of reconstructing the boundary of an obstacle by using far-field data. With the plane wave as the incident wave, a priori information of the impenetrable obstacle can be obtained via the linear sampling method. We have constructed the shape parameter inversion model based on a neural network to reconstruct the obstacle. Numerical experimental results demonstrate that the model proposed in this paper is robust and performs well with a small number of observation directions.
Citation: Bowen Tang, Xiaoying Yang, Lin Su. Shape reconstruction of acoustic obstacle with linear sampling method and neural network[J]. AIMS Mathematics, 2024, 9(6): 13607-13623. doi: 10.3934/math.2024664
We consider the inverse scattering problem of reconstructing the boundary of an obstacle by using far-field data. With the plane wave as the incident wave, a priori information of the impenetrable obstacle can be obtained via the linear sampling method. We have constructed the shape parameter inversion model based on a neural network to reconstruct the obstacle. Numerical experimental results demonstrate that the model proposed in this paper is robust and performs well with a small number of observation directions.
[1] | G. Alessandrini, L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691. |
[2] |
H. Liu, J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Probl., 22 (2006), 515–524. http://doi.org/10.1088/0266-5611/22/2/008 doi: 10.1088/0266-5611/22/2/008
![]() |
[3] |
O. Ivanyshyn, R. Kress, Nonlinear integral equations in inverse obstacle scattering, Mathematical Methods in Scattering Theory and Biomedical Engineering, 51 (2006), 39–50. https://doi.org/10.1142/9789812773197_0005 doi: 10.1142/9789812773197_0005
![]() |
[4] | J. Li, H. Liu, Numerical methods for inverse scattering problems, Singapore: Springer, 2023. https://doi.org/10.1007/978-981-99-3772-1 |
[5] | H. Diao, H. Liu, Spectral geometry and inverse scattering theory, Cham: Springer, 2023. https://doi.org/10.1007/978-3-031-34615-6 |
[6] | L. Borcea, H. Kang, H. Liu, G. Uhlmann, Inverse problems and imaging, panoramas et Syntheses, 2015. |
[7] | J. Li, H. Liu, J. Zou, An efficient multilevel algorithm for inverse scattering problem, In: Advances in computation and intelligence, Berlin, Heidelber: Springer, 2007,234–242. https://doi.org/10.1007/978-3-540-74581-5_25 |
[8] |
J. Xiang, G. Yan, The factorization method for a mixed inverse elastic scattering problem, IMA. J. Appl. Math., 87 (2022), 407–437. http://doi.org/10.1093/imamat/hxac010 doi: 10.1093/imamat/hxac010
![]() |
[9] |
J. Wang, B. Chen, Q. Yu, Y. Sun, A novel sampling method for time domain acoustic inverse source problems, Phys. Scr., 99 (2024), 035221. http://doi.org/10.1088/1402-4896/ad21c7 doi: 10.1088/1402-4896/ad21c7
![]() |
[10] |
D. Colton, A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Probl., 12 (1996), 383–393. http://doi.org/10.1088/0266-5611/12/4/003 doi: 10.1088/0266-5611/12/4/003
![]() |
[11] |
J. Li, J. Yang, B. Zhang, A linear sampling method for inverse acoustic scattering by a locally rough interface, Inverse Probl. Imag., 15 (2021), 1247–1267. http://doi.org/10.3934/ipi.2021036 doi: 10.3934/ipi.2021036
![]() |
[12] |
Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2021), 110771. http://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771
![]() |
[13] |
W. Yin, Z. Yang, P. Meng, Solving inverse scattering problem with a crack in inhomogeneous medium based on a convolutional neural network, Symmetry, 15 (2023), 119. https://doi.org/10.3390/sym15010119 doi: 10.3390/sym15010119
![]() |
[14] |
P. Zhang, P. Meng, W. Yin, H. Liu, A neural network method for time-dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842. https://doi.org/10.1016/j.cam.2022.114842 doi: 10.1016/j.cam.2022.114842
![]() |
[15] |
W. Yin, J. Ge, P. Meng, F. Qu, A neural network method for the inverse scattering problem of impenetrable cavities, Electron. Res. Arch., 28 (2020), 1123–1142. https://doi.org/10.3934/era.2020062 doi: 10.3934/era.2020062
![]() |
[16] |
W. Yin, W. Yang, H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594
![]() |
[17] |
H. Liu, C. Mou, S. Zhang, Inverse problems for mean field games, Inverse Probl., 39 (2023), 085003. https://doi.org/10.1088/1361-6420/acdd90 doi: 10.1088/1361-6420/acdd90
![]() |
[18] |
Y. He, H. Liu, X. Wang, A novel quantitative inverse scattering scheme using interior resonant modes, Inverse Probl., 39 (2023), 085002. https://doi.org/10.1088/1361-6420/acdc49 doi: 10.1088/1361-6420/acdc49
![]() |
[19] |
X. Cao, H. Diao, H. Liu, J. Zou, Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries, Inverse Probl. Imag., 16, (2022), 1501–1528. https://doi.org/10.3934/ipi.2022023 doi: 10.3934/ipi.2022023
![]() |
[20] |
X. Cao, H. Diao, H. Liu, J. Zou, On nodal and singular structures of Laplacian eigenfunctions and applications to inverse scattering problems, J. Math. Pures Appl., 143 (2020), 116–161. https://doi.org/10.1016/j.matpur.2020.09.011 doi: 10.1016/j.matpur.2020.09.011
![]() |
[21] |
L. Liu, W. Liu, D. Teng, Y. Xiang, F.-Z. Xuan, A multiscale residual U-net architecture for super-resolution ultrasonic phased array imaging from full matrix capture data, J. Acoust. Soc. Am., 154 (2023), 2044–2054. http://doi.org/10.1121/10.0021171 doi: 10.1121/10.0021171
![]() |
[22] |
A. Reed, T. Blanford, D. Brown, S. Jayasuriya, SINR: Deconvolving circular sas images using implicit neural representations, IEEE J. Sel. Topics Signal Process., 17 (2023), 458–472. http://doi.org/10.1109/JSTSP.2022.3215849 doi: 10.1109/JSTSP.2022.3215849
![]() |
[23] |
W. Yu, X. Huang, Reconstruction of aircraft engine noise source using beamforming and compressive sensing, IEEE Access, 6 (2018), 11716–11726. http://doi.org/10.1109/ACCESS.2018.2801260 doi: 10.1109/ACCESS.2018.2801260
![]() |
[24] |
T. Nagata, K. Nakai, K. Yamada, Y. Saito, T. Nonomura, M. Kano, et al., Seismic wavefield reconstruction based on compressed sensing using data-driven reduced-order model, Geophys. J. Int., 233 (2023), 33–50. http://doi.org/10.1093/gji/ggac443 doi: 10.1093/gji/ggac443
![]() |
[25] |
M. Suhonen, A. Pulkkinen, T. Tarvainen, Single-stage approach for estimating optical parameters in spectral quantitative photo acoustic tomography, Journal of the Optical Society of America A, 41 (2024), 527–542. http://doi.org/10.1364/JOSAA.518768 doi: 10.1364/JOSAA.518768
![]() |
[26] |
M. Ding, H. Liu, G. Zheng, Shape reconstructions by using plasmon resonances with enhanced sensitivity, J. Comput. Phys., 486 (2023), 112131. http://doi.org/10.1016/j.jcp.2023.112131 doi: 10.1016/j.jcp.2023.112131
![]() |
[27] |
W. Yin, H. Qi, P. Meng, Broad learning system with preprocessing to recover the scattering obstacles with far-field data, Adv. Appl. Math. Mech., 15 (2023), 984–1000. https://doi.org/10.4208/aamm.OA-2021-0352 doi: 10.4208/aamm.OA-2021-0352
![]() |
[28] |
Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two-layered cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. https://doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069
![]() |
[29] |
Y. Yin, W. Yin, P. Meng, H. Liu, On a hybrid approach for recovering multiple obstacle, Commun. Comput. Phys., 31 (2022), 869–892. https://doi.org/10.4208/cicp.OA-2021-0124 doi: 10.4208/cicp.OA-2021-0124
![]() |
[30] |
P. Meng, J. Zhuang, L. Zhou, W. Yin, D. Qi, Efficient synchronous retrieval of OAM modes and AT strength using multi-task neural networks, Opt. Express, 32 (2024), 7816–7831. http://doi.org/10.1364/OE.511098 doi: 10.1364/OE.511098
![]() |
[31] |
P. Meng, X. Wang, W. Yin, ODE-RU: a dynamical system view on recurrent neural networks, Electron. Res. Arch., 30 (2022), 257–271. http://doi.org/10.3934/era.2022014 doi: 10.3934/era.2022014
![]() |
[32] |
Y. Gao, H. Liu, X. Wang, K. Zhang, A bayesian scheme for reconstructing obstacles in acoustic waveguides, J. Sci. Comput., 97 (2023), 53. http://doi.org/10.1007/s10915-023-02368-2 doi: 10.1007/s10915-023-02368-2
![]() |
[33] |
D. Colton, R. Kress, Using fundamental solutions in inverse scattering, Inverse Probl., 22 (2006), R49–R66. http://doi.org/10.1088/0266-5611/22/3/R01 doi: 10.1088/0266-5611/22/3/R01
![]() |
[34] | F. Cakoni, D. Colton, A qualitative approach to inverse scattering theory, New York: Springer, 2014. http://doi.org/10.1007/978-1-4614-8827-9 |
[35] |
J. Li, H. Liu, J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comput., 30 (2008), 1228–1250. http://doi.org/10.1137/060674247 doi: 10.1137/060674247
![]() |
[36] |
T. Arens, Why linear sampling works, Inverse Probl., 20 (2004), 163–173. http://doi.org/10.1088/0266-5611/20/1/010 doi: 10.1088/0266-5611/20/1/010
![]() |
[37] |
Y. Guo, P. Monk, D. Colton, The linear sampling method for sparse small aperture data, Appl. Anal., 95 (2016), 1599–1615. http://doi.org/10.1080/00036811.2015.1065317 doi: 10.1080/00036811.2015.1065317
![]() |
[38] |
P. Meng, L. Su, W. Yin, S. Zhang, Solving a kind of inverse scattering problem of acoustic waves based on linear sampling method and neural network, Alex. Eng. J., 59 (2020), 1451–1462. https://doi.org/10.1016/j.aej.2020.03.047 doi: 10.1016/j.aej.2020.03.047
![]() |