Research article Special Issues

Shape reconstruction of acoustic obstacle with linear sampling method and neural network

  • Received: 03 February 2024 Revised: 29 March 2024 Accepted: 07 April 2024 Published: 12 April 2024
  • MSC : 65B99, 68T07

  • We consider the inverse scattering problem of reconstructing the boundary of an obstacle by using far-field data. With the plane wave as the incident wave, a priori information of the impenetrable obstacle can be obtained via the linear sampling method. We have constructed the shape parameter inversion model based on a neural network to reconstruct the obstacle. Numerical experimental results demonstrate that the model proposed in this paper is robust and performs well with a small number of observation directions.

    Citation: Bowen Tang, Xiaoying Yang, Lin Su. Shape reconstruction of acoustic obstacle with linear sampling method and neural network[J]. AIMS Mathematics, 2024, 9(6): 13607-13623. doi: 10.3934/math.2024664

    Related Papers:

  • We consider the inverse scattering problem of reconstructing the boundary of an obstacle by using far-field data. With the plane wave as the incident wave, a priori information of the impenetrable obstacle can be obtained via the linear sampling method. We have constructed the shape parameter inversion model based on a neural network to reconstruct the obstacle. Numerical experimental results demonstrate that the model proposed in this paper is robust and performs well with a small number of observation directions.



    加载中


    [1] G. Alessandrini, L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691.
    [2] H. Liu, J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Probl., 22 (2006), 515–524. http://doi.org/10.1088/0266-5611/22/2/008 doi: 10.1088/0266-5611/22/2/008
    [3] O. Ivanyshyn, R. Kress, Nonlinear integral equations in inverse obstacle scattering, Mathematical Methods in Scattering Theory and Biomedical Engineering, 51 (2006), 39–50. https://doi.org/10.1142/9789812773197_0005 doi: 10.1142/9789812773197_0005
    [4] J. Li, H. Liu, Numerical methods for inverse scattering problems, Singapore: Springer, 2023. https://doi.org/10.1007/978-981-99-3772-1
    [5] H. Diao, H. Liu, Spectral geometry and inverse scattering theory, Cham: Springer, 2023. https://doi.org/10.1007/978-3-031-34615-6
    [6] L. Borcea, H. Kang, H. Liu, G. Uhlmann, Inverse problems and imaging, panoramas et Syntheses, 2015.
    [7] J. Li, H. Liu, J. Zou, An efficient multilevel algorithm for inverse scattering problem, In: Advances in computation and intelligence, Berlin, Heidelber: Springer, 2007,234–242. https://doi.org/10.1007/978-3-540-74581-5_25
    [8] J. Xiang, G. Yan, The factorization method for a mixed inverse elastic scattering problem, IMA. J. Appl. Math., 87 (2022), 407–437. http://doi.org/10.1093/imamat/hxac010 doi: 10.1093/imamat/hxac010
    [9] J. Wang, B. Chen, Q. Yu, Y. Sun, A novel sampling method for time domain acoustic inverse source problems, Phys. Scr., 99 (2024), 035221. http://doi.org/10.1088/1402-4896/ad21c7 doi: 10.1088/1402-4896/ad21c7
    [10] D. Colton, A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Probl., 12 (1996), 383–393. http://doi.org/10.1088/0266-5611/12/4/003 doi: 10.1088/0266-5611/12/4/003
    [11] J. Li, J. Yang, B. Zhang, A linear sampling method for inverse acoustic scattering by a locally rough interface, Inverse Probl. Imag., 15 (2021), 1247–1267. http://doi.org/10.3934/ipi.2021036 doi: 10.3934/ipi.2021036
    [12] Y. Gao, H. Liu, X. Wang, K. Zhang, On an artificial neural network for inverse scattering problems, J. Comput. Phys., 448 (2021), 110771. http://doi.org/10.1016/j.jcp.2021.110771 doi: 10.1016/j.jcp.2021.110771
    [13] W. Yin, Z. Yang, P. Meng, Solving inverse scattering problem with a crack in inhomogeneous medium based on a convolutional neural network, Symmetry, 15 (2023), 119. https://doi.org/10.3390/sym15010119 doi: 10.3390/sym15010119
    [14] P. Zhang, P. Meng, W. Yin, H. Liu, A neural network method for time-dependent inverse source problem with limited-aperture data, J. Comput. Appl. Math., 421 (2023), 114842. https://doi.org/10.1016/j.cam.2022.114842 doi: 10.1016/j.cam.2022.114842
    [15] W. Yin, J. Ge, P. Meng, F. Qu, A neural network method for the inverse scattering problem of impenetrable cavities, Electron. Res. Arch., 28 (2020), 1123–1142. https://doi.org/10.3934/era.2020062 doi: 10.3934/era.2020062
    [16] W. Yin, W. Yang, H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 109594. https://doi.org/10.1016/j.jcp.2020.109594 doi: 10.1016/j.jcp.2020.109594
    [17] H. Liu, C. Mou, S. Zhang, Inverse problems for mean field games, Inverse Probl., 39 (2023), 085003. https://doi.org/10.1088/1361-6420/acdd90 doi: 10.1088/1361-6420/acdd90
    [18] Y. He, H. Liu, X. Wang, A novel quantitative inverse scattering scheme using interior resonant modes, Inverse Probl., 39 (2023), 085002. https://doi.org/10.1088/1361-6420/acdc49 doi: 10.1088/1361-6420/acdc49
    [19] X. Cao, H. Diao, H. Liu, J. Zou, Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries, Inverse Probl. Imag., 16, (2022), 1501–1528. https://doi.org/10.3934/ipi.2022023 doi: 10.3934/ipi.2022023
    [20] X. Cao, H. Diao, H. Liu, J. Zou, On nodal and singular structures of Laplacian eigenfunctions and applications to inverse scattering problems, J. Math. Pures Appl., 143 (2020), 116–161. https://doi.org/10.1016/j.matpur.2020.09.011 doi: 10.1016/j.matpur.2020.09.011
    [21] L. Liu, W. Liu, D. Teng, Y. Xiang, F.-Z. Xuan, A multiscale residual U-net architecture for super-resolution ultrasonic phased array imaging from full matrix capture data, J. Acoust. Soc. Am., 154 (2023), 2044–2054. http://doi.org/10.1121/10.0021171 doi: 10.1121/10.0021171
    [22] A. Reed, T. Blanford, D. Brown, S. Jayasuriya, SINR: Deconvolving circular sas images using implicit neural representations, IEEE J. Sel. Topics Signal Process., 17 (2023), 458–472. http://doi.org/10.1109/JSTSP.2022.3215849 doi: 10.1109/JSTSP.2022.3215849
    [23] W. Yu, X. Huang, Reconstruction of aircraft engine noise source using beamforming and compressive sensing, IEEE Access, 6 (2018), 11716–11726. http://doi.org/10.1109/ACCESS.2018.2801260 doi: 10.1109/ACCESS.2018.2801260
    [24] T. Nagata, K. Nakai, K. Yamada, Y. Saito, T. Nonomura, M. Kano, et al., Seismic wavefield reconstruction based on compressed sensing using data-driven reduced-order model, Geophys. J. Int., 233 (2023), 33–50. http://doi.org/10.1093/gji/ggac443 doi: 10.1093/gji/ggac443
    [25] M. Suhonen, A. Pulkkinen, T. Tarvainen, Single-stage approach for estimating optical parameters in spectral quantitative photo acoustic tomography, Journal of the Optical Society of America A, 41 (2024), 527–542. http://doi.org/10.1364/JOSAA.518768 doi: 10.1364/JOSAA.518768
    [26] M. Ding, H. Liu, G. Zheng, Shape reconstructions by using plasmon resonances with enhanced sensitivity, J. Comput. Phys., 486 (2023), 112131. http://doi.org/10.1016/j.jcp.2023.112131 doi: 10.1016/j.jcp.2023.112131
    [27] W. Yin, H. Qi, P. Meng, Broad learning system with preprocessing to recover the scattering obstacles with far-field data, Adv. Appl. Math. Mech., 15 (2023), 984–1000. https://doi.org/10.4208/aamm.OA-2021-0352 doi: 10.4208/aamm.OA-2021-0352
    [28] Y. Yin, W. Yin, P. Meng, H. Liu, The interior inverse scattering problem for a two-layered cavity using the Bayesian method, Inverse Probl. Imag., 16 (2022), 673–690. https://doi.org/10.3934/ipi.2021069 doi: 10.3934/ipi.2021069
    [29] Y. Yin, W. Yin, P. Meng, H. Liu, On a hybrid approach for recovering multiple obstacle, Commun. Comput. Phys., 31 (2022), 869–892. https://doi.org/10.4208/cicp.OA-2021-0124 doi: 10.4208/cicp.OA-2021-0124
    [30] P. Meng, J. Zhuang, L. Zhou, W. Yin, D. Qi, Efficient synchronous retrieval of OAM modes and AT strength using multi-task neural networks, Opt. Express, 32 (2024), 7816–7831. http://doi.org/10.1364/OE.511098 doi: 10.1364/OE.511098
    [31] P. Meng, X. Wang, W. Yin, ODE-RU: a dynamical system view on recurrent neural networks, Electron. Res. Arch., 30 (2022), 257–271. http://doi.org/10.3934/era.2022014 doi: 10.3934/era.2022014
    [32] Y. Gao, H. Liu, X. Wang, K. Zhang, A bayesian scheme for reconstructing obstacles in acoustic waveguides, J. Sci. Comput., 97 (2023), 53. http://doi.org/10.1007/s10915-023-02368-2 doi: 10.1007/s10915-023-02368-2
    [33] D. Colton, R. Kress, Using fundamental solutions in inverse scattering, Inverse Probl., 22 (2006), R49–R66. http://doi.org/10.1088/0266-5611/22/3/R01 doi: 10.1088/0266-5611/22/3/R01
    [34] F. Cakoni, D. Colton, A qualitative approach to inverse scattering theory, New York: Springer, 2014. http://doi.org/10.1007/978-1-4614-8827-9
    [35] J. Li, H. Liu, J. Zou, Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comput., 30 (2008), 1228–1250. http://doi.org/10.1137/060674247 doi: 10.1137/060674247
    [36] T. Arens, Why linear sampling works, Inverse Probl., 20 (2004), 163–173. http://doi.org/10.1088/0266-5611/20/1/010 doi: 10.1088/0266-5611/20/1/010
    [37] Y. Guo, P. Monk, D. Colton, The linear sampling method for sparse small aperture data, Appl. Anal., 95 (2016), 1599–1615. http://doi.org/10.1080/00036811.2015.1065317 doi: 10.1080/00036811.2015.1065317
    [38] P. Meng, L. Su, W. Yin, S. Zhang, Solving a kind of inverse scattering problem of acoustic waves based on linear sampling method and neural network, Alex. Eng. J., 59 (2020), 1451–1462. https://doi.org/10.1016/j.aej.2020.03.047 doi: 10.1016/j.aej.2020.03.047
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(854) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog