Research article Special Issues

Solving quaternion nonsymmetric algebraic Riccati equations through zeroing neural networks

  • Received: 09 December 2023 Revised: 18 January 2024 Accepted: 24 January 2024 Published: 31 January 2024
  • MSC : 65F20, 68T05

  • Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel HZNN model, called HZ-QNARE, is presented for solving the TQNARE. The model functions fairly well, as demonstrated by two simulation tests. Additionally, the results demonstrated that, while both approaches function remarkably well, the HZNN architecture works better than the ZNN architecture.

    Citation: Houssem Jerbi, Izzat Al-Darraji, Saleh Albadran, Sondess Ben Aoun, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis. Solving quaternion nonsymmetric algebraic Riccati equations through zeroing neural networks[J]. AIMS Mathematics, 2024, 9(3): 5794-5809. doi: 10.3934/math.2024281

    Related Papers:

  • Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel HZNN model, called HZ-QNARE, is presented for solving the TQNARE. The model functions fairly well, as demonstrated by two simulation tests. Additionally, the results demonstrated that, while both approaches function remarkably well, the HZNN architecture works better than the ZNN architecture.



    加载中


    [1] R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, 5 (1960), 102–119.
    [2] G. Rigatos, K. Busawon, J. Pomares, M. Abbaszadeh, Nonlinear optimal control for the wheeled inverted pendulum system, Robotica, 38 (2020), 29–47. https://doi.org/10.1017/S0263574719000456 doi: 10.1017/S0263574719000456
    [3] X. Dong, G. Hu, Time-varying formation tracking for linear multiagent systems with multiple leaders, IEEE Trans. Autom. Control, 62 (2017), 3658–3664. https://doi.org/10.1109/TAC.2017.2673411 doi: 10.1109/TAC.2017.2673411
    [4] B. Qin, H. Sun, J. Ma, W. Li, T. Ding, Z. Wang, et al., Robust ${H_\infty }$ control of doubly fed wind generator via state-dependent Riccati equation technique, IEEE Trans. Power Syst., 34 (2019), 2390–2400. https://doi.org/10.1109/TPWRS.2018.2881687 doi: 10.1109/TPWRS.2018.2881687
    [5] L. T. Aguilar, Y. Orlov, L. Acho, Nonlinear ${H}_{\infty}$-control of nonsmooth time-varying systems with application to friction mechanical manipulators, Automatica, 39 (2003), 1531–1542. https://doi.org/10.1016/S0005-1098(03)00148-1 doi: 10.1016/S0005-1098(03)00148-1
    [6] A. J. Laub, A schur method for solving algebraic Riccati equations, IEEE Trans. Autom. Control, 24 (1979), 913–921. https://doi.org/10.1109/TAC.1979.1102178 doi: 10.1109/TAC.1979.1102178
    [7] A. Ferrante, L. Ntogramatzidis, The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control, Automatica, 50 (2014), 1176–1180. https://doi.org/10.1016/j.automatica.2014.02.014 doi: 10.1016/j.automatica.2014.02.014
    [8] T. Ohtsuka, A recursive elimination method for finite-horizon optimal control problems of discrete-time rational systems, IEEE Trans. Autom. Control, 59 (2014), 3081–3086. https://doi.org/10.1109/TAC.2014.2321231 doi: 10.1109/TAC.2014.2321231
    [9] Y. Oshman, I. Bar-Itzhack, Eigenfactor solution of the matrix Riccati equation–a continuous square root algorithm, IEEE Trans. Autom. Control, 30 (1985), 971–978. https://doi.org/10.1109/TAC.1985.1103823 doi: 10.1109/TAC.1985.1103823
    [10] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Stat. Comput., 2 (1981), 121–135. https://doi.org/10.1137/0902010 doi: 10.1137/0902010
    [11] R. C. Li, W. Kahan, A family of anadromic numerical methods for matrix Riccati differential equations, Math. Comp., 81 (2012), 233–265. https://doi.org/10.1090/S0025-5718-2011-02498-1 doi: 10.1090/S0025-5718-2011-02498-1
    [12] L. Xiao, P. Cao, W. Song, L. Luo, W. Tang, A fixed-time noise-tolerance ZNN model for time-variant inequality-constrained quaternion matrix least-squares problem, IEEE Trans. Neur. Net. Lear. Syst., 2023, 1–10. https://doi.org/10.1109/TNNLS.2023.3242313
    [13] L. Xiao, S. Liu, X. Wang, Y. He, L. Jia, Y. Xu, Zeroing neural networks for dynamic quaternion-valued matrix inversion, IEEE Trans. Ind. Inf., 18 (2022), 1562–1571. https://doi.org/10.1109/TII.2021.3090063
    [14] V. N. Kovalnogov, R. V. Fedorov, D. A. Demidov, M. A. Malyoshina, T. E. Simos, S. D. Mourtas, et al., Computing quaternion matrix pseudoinverse with zeroing neural networks, AIMS Math., 8 (2023), 22875–22895. https://doi.org/10.3934/math.20231164 doi: 10.3934/math.20231164
    [15] S. B. Aoun, N. Derbel, H. Jerbi, T. E. Simos, S. D. Mourtas, V. N. Katsikis, A quaternion Sylvester equation solver through noise-resilient zeroing neural networks with application to control the SFM chaotic system, AIMS Math., 8 (2023), 27376–27395. https://doi.org/10.3934/math.20231401 doi: 10.3934/math.20231401
    [16] N. Tan, P. Yu, F. Ni, New varying-parameter recursive neural networks for model-free kinematic control of redundant manipulators with limited measurements, IEEE Trans. Instrum. Meas., 71 (2022), 1–14. https://doi.org/10.1109/TIM.2022.3161713 doi: 10.1109/TIM.2022.3161713
    [17] R. Abbassi, H. Jerbi, M. Kchaou, T. E. Simos, S. D. Mourtas, V. N. Katsikis, Towards higher-order zeroing neural networks for calculating quaternion matrix inverse with application to robotic motion tracking, Mathematics, 11 (2023), 2756. https://doi.org/10.3390/math11122756 doi: 10.3390/math11122756
    [18] V. N. Kovalnogov, R. V. Fedorov, I. I. Shepelev, V. V. Sherkunov, T. E. Simos, S. D. Mourtas, et al., A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking, AIMS Math., 8 (2023), 25966–25989. https://doi.org/10.3934/math.20231323 doi: 10.3934/math.20231323
    [19] Y. Zhang, S. S. Ge, Design and analysis of a general recurrent neural network model for time-varying matrix inversion, IEEE Trans. Neur. Net., 16 (2005), 1477–1490. https://doi.org/10.1109/TNN.2005.857946 doi: 10.1109/TNN.2005.857946
    [20] Y. Chai, H. Li, D. Qiao, S. Qin, J. Feng, A neural network for Moore-Penrose inverse of time-varying complex-valued matrices, Int. J. Comput. Intell. Syst., 13 (2020), 663–671. https://doi.org/10.2991/ijcis.d.200527.001 doi: 10.2991/ijcis.d.200527.001
    [21] W. Wu, B. Zheng, Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix, Neurocomputing, 418 (2020), 221–231. https://doi.org/10.1016/j.neucom.2020.08.026 doi: 10.1016/j.neucom.2020.08.026
    [22] W. Jiang, C. L. Lin, V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, T. E. Simos, Zeroing neural network approaches based on direct and indirect methods for solving the Yang-Baxter-like matrix equation, Mathematics, 10 (2022), 1950. https://doi.org/10.3390/math10111950 doi: 10.3390/math10111950
    [23] H. Jerbi, H. Alharbi, M. Omri, L. Ladhar, T. E. Simos, S. D. Mourtas, et al., Towards higher-order zeroing neural network dynamics for solving time-varying algebraic Riccati equations, Mathematics, 10 (2022), 4490. https://doi.org/10.3390/math10234490 doi: 10.3390/math10234490
    [24] V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Karabasević, D. Stanujkić, Zeroing neural network with fuzzy parameter for computing pseudoinverse of arbitrary matrix, IEEE Trans. Fuzzy Syst., 30 (2022), 3426–3435. https://doi.org/10.1109/TFUZZ.2021.3115969 doi: 10.1109/TFUZZ.2021.3115969
    [25] H. Alharbi, H. Jerbi, M. Kchaou, R. Abbassi, T. E. Simos, S. D. Mourtas, et al., Time-varying pseudoinversion based on full-rank decomposition and zeroing neural networks, Mathematics, 11 (2023), 600. https://doi.org/10.3390/math11030600 doi: 10.3390/math11030600
    [26] L. Xiao, Y. Zhang, W. Huang, L. Jia, X. Gao, A dynamic parameter noise-tolerant zeroing neural network for time-varying quaternion matrix equation with applications, IEEE Trans. Neural Networks Learn. Syst., 2022, 1–10. https://doi.org/10.1109/TNNLS.2022.3225309
    [27] S. D. Mourtas, V. N. Katsikis, Exploiting the Black-Litterman framework through error-correction neural networks, Neurocomputing, 498 (2022), 43–58. https://doi.org/10.1016/j.neucom.2022.05.036 doi: 10.1016/j.neucom.2022.05.036
    [28] V. N. Kovalnogov, R. V. Fedorov, D. A. Generalov, A. V. Chukalin, V. N. Katsikis, S. D. Mourtas, et al., Portfolio insurance through error-correction neural networks, Mathematics, 10 (2022), 3335. https://doi.org/10.3390/math10183335 doi: 10.3390/math10183335
    [29] S. D. Mourtas, C. Kasimis, Exploiting mean-variance portfolio optimization problems through zeroing neural networks, Mathematics, 10 (2022), 3079. https://doi.org/10.3390/math10173079 doi: 10.3390/math10173079
    [30] S. Qiao, Y. Wei, X. Zhang, Computing time-varying ML-weighted pseudoinverse by the Zhang neural networks, Numer. Funct. Anal. Optim., 41 (2020), 1672–1693. https://doi.org/10.1080/01630563.2020.1740887 doi: 10.1080/01630563.2020.1740887
    [31] X. Wang, P. S. Stanimirovic, Y. Wei, Complex ZFs for computing time-varying complex outer inverses, Neurocomputing, 275 (2018), 983–1001. https://doi.org/10.1016/j.neucom.2017.09.034 doi: 10.1016/j.neucom.2017.09.034
    [32] W. R. Hamilton, On a new species of imaginary quantities, connected with the theory of quaternions, Proceedings of the Royal Irish Academy (1836–1869), 2 (1840), 424–434.
    [33] A. Szynal-Liana, I. Włoch, Generalized commutative quaternions of the Fibonacci type, Bol. Soc. Mat. Mex., 28 (2022), 1. https://doi.org/10.1007/s40590-021-00386-4 doi: 10.1007/s40590-021-00386-4
    [34] D. Pavllo, C. Feichtenhofer, M. Auli, D. Grangier, Modeling human motion with quaternion-based neural networks, Int. J. Comput. Vis., 128 (2020), 855–872. https://doi.org/10.1007/s11263-019-01245-6 doi: 10.1007/s11263-019-01245-6
    [35] S. Giardino, Quaternionic quantum mechanics in real Hilbert space, J. Geom. Phys., 158 (2020), 103956. https://doi.org/10.1016/j.geomphys.2020.103956 doi: 10.1016/j.geomphys.2020.103956
    [36] A. M. S. Goodyear, P. Singla, D. B. Spencer, Analytical state transition matrix for dual-quaternions for spacecraft pose estimation, AAS/AIAA Astrodynamics Specialist Conference, 2019, Univelt Inc., 2020,393–411.
    [37] M. E. Kansu, Quaternionic representation of electromagnetism for material media, Int. J. Geom. Meth. Mod. Phys., 16 (2019), 1950105. https://doi.org/10.1142/S0219887819501056 doi: 10.1142/S0219887819501056
    [38] E. Özgür, Y. Mezouar, Kinematic modeling and control of a robot arm using unit dual quaternions, Rob. Auton. Syst., 77 (2016), 66–73. https://doi.org/10.1016/j.robot.2015.12.005 doi: 10.1016/j.robot.2015.12.005
    [39] S. Stepień, P. Superczyńska, Modified infinite-time state-dependent Riccati equation method for nonlinear affine systems: quadrotor control, Appl. Sci., 11 (2021), 10714. https://doi.org/10.3390/app112210714 doi: 10.3390/app112210714
    [40] M. Joldeş, J. M. Muller, Algorithms for manipulating quaternions in floating-point arithmetic, 2020 IEEE 27th Symposium on Computer Arithmetic (ARITH), 2020, 48–55. https://doi.org/10.1109/ARITH48897.2020.00016
    [41] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21–57. https://doi.org/10.1016/0024-3795(95)00543-9 doi: 10.1016/0024-3795(95)00543-9
    [42] J. Dai, P. Tan, X. Yang, L. Xiao, L. Jia, Y. He, A fuzzy adaptive zeroing neural network with superior finite-time convergence for solving time-variant linear matrix equations, Knowl.-Based Syst., 242 (2022), 108405. https://doi.org/10.1016/j.knosys.2022.108405 doi: 10.1016/j.knosys.2022.108405
    [43] P. S. Stanimirović, S. Srivastava, D. K. Gupta, From Zhang Neural Network to scaled hyperpower iterations, J. Comput. Appl. Math., 331 (2018), 133–155. https://doi.org/10.1016/j.cam.2017.09.048 doi: 10.1016/j.cam.2017.09.048
    [44] A. K. Gupta, Numerical methods using MATLAB, CA: Apress Berkeley, 2014. https://doi.org/10.1007/978-1-4842-0154-1
    [45] V. N. Kovalnogov, R. V. Fedorov, D. A. Demidov, M. A. Malyoshina, T. E. Simos, V. N. Katsikis, et al., Zeroing neural networks for computing quaternion linear matrix equation with application to color restoration of images, AIMS Math., 8 (2023), 14321–14339. https://doi.org/10.3934/math.2023733 doi: 10.3934/math.2023733
    [46] H. Su, R. Luo, M. Huang, J. Fu, Robust fixed time control of a class of chaotic systems with bounded uncertainties and disturbances, Int. J. Control Autom. Syst., 20 (2022), 813–822. https://doi.org/10.1007/s12555-020-0782-1 doi: 10.1007/s12555-020-0782-1
    [47] J. Singer, Y. Wang, H. H. Bau, Controlling a chaotic system, Phys. Rev. Lett., 66 (1991), 1123. https://doi.org/10.1103/PhysRevLett.66.1123
    [48] W. He, T. Luo, Y. Tang, W. Du, Y. Tian, F. Qian, Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 3334–3345. https://doi.org/10.1109/TNNLS.2019.2943548
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1078) PDF downloads(83) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog