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Abstract: The present study investigates the fractional Dullin-Gottwald-Holm equation by using the
Riccati-Bernoulli sub-optimal differential equation method with the Bäcklund transformation. By
employing a well-established criterion, the present study reveals novel cusp soliton solutions that
resemble peakons and offers valuable insights into their dynamic behaviors and mysterious
phenomena. The solution family encompasses various analytical solutions, such as peakons, periodic,
and kink-wave solutions. Furthermore, the impact of both the time- and space-fractional parameters
on all derived solutions’ profiles is examined. This investigation’s significance lies in its contribution
to understanding intricate dynamics inside physical systems, offering valuable insights into various
domains like fluid mechanics and nonlinear phenomena across different physical models. The
computational technique’s straightforward, effective, and concise nature is demonstrated through
introduction of some graphical representations in two- and three-dimensional plots generated by
adjusting the related parameters. The findings underscore the versatility of this methodology and
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demonstrate its applicability as a tool to solve more complicated nonlinear problems as well as its
ability to explain many mysterious phenomena.

Keywords: fractional Dullin-Gottwald-Holm equation; Bäcklund transformation; Riccati-Bernoulli
sub-optimal differential equation method; traveling wave solutions

1. Introduction

In recent times, academics have been increasingly interested in finding analytical solutions to some
nonlinear partial differential equations that describe and model various physical and engineering
problems, including fluid dynamics, plasma astrophysics, ocean engineering, and nonlinear
optics [1–6]. These equations function as mathematical representations that encapsulate the
complexities of intricate physical occurrences. These models have broad applications in various
nonlinear scientific fields such as fluid mechanics, biology, chemistry, physics, plasmas, and optical
fibers. Their applicability highlights their relevance in explaining and forecasting the behavior of
complex systems across various scientific fields. To better understand the dynamics of these
real-world components, methods for solving fractional nonlinear partial differential equations (PDEs)
must be investigated [7–11]. This exploration is necessary to study and understand the complex
behaviors inherent in the systems above. Solutions to nonlinear fractional PDEs (FPDEs) are of
academic interest because of the increased detail and generality they provide, as they outperform
traditional solutions in terms of descriptive power. In addition to improving our understanding and
predictive capabilities in these vital areas of nonlinear physics, this study has implications for a wide
range of real-world applications because it clarifies nonlinear aspects. Researchers in the field of
nonlinear physics have significantly contributed to our knowledge of complex processes in various
other scientific fields [12–16].

The investigation of analytical solutions for FPDEs is intrinsically tricky, and it has led to the
creation of many mathematical strategies to address this complex issue. Because analytical solutions
can offer a comprehensive understanding of fundamental physical processes and show the precise
behavior of the modeled system beyond what can be achieved by using numerical approaches,
analysts are particularly drawn to them. Consequently, pursuing analytical solutions for FPDEs is
recognized as a crucial and continuously developing field of study [17–19]. Various mathematical
techniques have been employed in scholarly literature to solve different types of FPDEs efficiently
and analytically [20–24]. This demonstrates the extensive scope of research in this field. Numerous
strategies have been employed, showing the diversity of approaches that researchers in this discipline
have chosen [25–27]. Among the approaches under consideration, several techniques [28–36] have
emerged as noteworthy contributors. Every approach has unique benefits, broadening the toolkit of
techniques that can be used to solve FPDEs and improving our understanding of these complex
mathematical models [37, 38].

Furthermore, integrated into the structure of the suggested methodology, the Riccati-Bernoulli
sub-optimal differential equation (ODE) method [39–41] is a powerful tool. It is well known for its
adept management of complex algebraic calculations and ability to derive solutions for a wide range
of phenomena that occur in applications such as biology, chemistry, physics, fluid mechanics, and
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optical fibers. This methodology has significant potential for use in several scientific and engineering
fields. Its application in the fields of biological systems, industrial operations, and environmental
flows can facilitate a deep understanding of the complexities of fluid behavior, thereby improving
optimization and forecasting methods. The FPDEs are transformed into an algebraic system by using
the Bäcklund transformation and the Riccati-Bernoulli equation, simplifying the extraction of
important information from the intricate dynamics present in these systems. This method greatly
enhances our understanding of the underlying physical mechanisms. The methodology is particularly
noteworthy because it guarantees the derivation of finite solutions, thereby validating the precision
and effectiveness of solutions for the equations under examination. A critical feature of this approach
is its potential to produce a wide range of single-wave solutions, increasing its adaptability and
usefulness.

Moreover, the current study was designed to utilize an analytical approach to clarify the complex
dynamics of the Dullin-Gottwald-Holm (DGH) equation [42]. This study also looks at how linear
dispersion parameters change the shape of traveling waves that are connected to the DGH equation and
the isospectral features of soliton solutions. It should be mentioned here that the DGH equation was
derived from asymptotic expansions applied directly to the Hamiltonian driving Euler equations, and
it was first developed as a model for unidirectional shallow water waves over a flat bottom

Ft + λFx + 3FFx − µ
2 (Fxxt + FFxxx + 2FxFxx) + χFxxx = 0. (1.1)

The DGH equation is linked to two distinct soliton equations that govern water waves and can be
integrated independently. The DGH equation (1.1) specifically can be reduced to the well-known
Korteweg-de Vries (KdV) equation for (µ = 0) and (χ , 0): Ft + λFx + 3FFx + χFxxx = 0. In contrast,
the DGH equation (1.1) can be reduced to the Camassa-Holm (CH) equation for (µ = 1) and (χ = 0):
Ft + λFx + 3FFx − (Fxxt + FFxxx + 2FxFxx) = 0. This two-way connection shows how the DGH
equation can be used to describe different wave events and how it can be used to combine the
dynamics given by the KdV and CH equations in certain parameter situations. Numerous studies have
been carried out to clarify the DGH equation of integer order. Dullin et al. [43] revealed another
integrable instance in the DGH formula. A thorough treatment of the Cauchy problem related to the
DGH equation was conducted in a different study [44]. Tang and Yang [45] extended the peakon
equations by introducing an integral constant and using the dynamical systems bifurcation approach.
Chen et al. [46] used the Darboux transformation technique to produce numerous soliton solutions.
Zhang et al. [47] focused on peakons and periodic cusp wave solutions for a generalized CH equation
by using the bifurcation theory of planar dynamical systems. Liu [48] explored questions about the
creation of singularities and the existence of global solutions. Under the condition that µ2 < 0, Dullin
et al. [49] showed that there are three different kinds of limited waves for the DGH equation. These
different studies contribute to the development of a more thorough knowledge of the complex
dynamics of the DGH equation for various parameter values. Regarding tasks that involve obtaining a
precise description of complex nonlinear systems in a variety of scientific fields, such as fluid
dynamics and oceanography, nonlinear dynamics and soliton theory, mathematical physics, numerical
simulations, computational mathematics, and engineering, the fractional DGH equation is considered
to be an essential tool to describe systems that display complex structures and subtle nonlinearities.
The fractional DGH equation has the following mathematical expression:

(Dα
t (F)) + λDβ

x(F) + 3FDβ
x(F)
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−µ2
(
Dα

t (D2β
x (F)) + FD3β

x (F) + 2Dβ
x(F)D2β

x (F)
)

+ χD3β
x (F) = 0, (1.2)

with 0 < α, β,≤ 1, where α and β indicate the time- and space-fractional parameters, respectively.
The height of the free surface over a flat bottom is represented by the function F(x, t), and the

coefficient (χ) indicates the linear dispersive parameter and the linear wave speed for undisturbed
water at rest at spatial infinity is represented by (λ = 2ω =

√
gh). Here, (g) indicates the gravitational

constant, (h) denotes the mean fluid depth, and (ω) represents the essential shallow water speed for
undisturbed water at rest at spatial infinity. The Greek symbol (µ2) represents square length scales.
The operator representing the order α derivatives adheres to the definition provided in [50]:

Dα
θq(θ) = lim

m→0

q(m(θ)1−α − q(θ))
m

, 0 < α ≤ 1. (1.3)

This inquiry utilizes the following characteristics of this derivative:{
Dα
θ ( j1η(θ) ± j2m(θ)) = j1Dα

θ (η(θ)) ± j2Dα
θ (m(θ)),

Dα
θχ

[
ξτ(θ)

]
= χ′ξ(ξ(θ))D

α
θ ξ(θ).

(1.4)

Hence, the primary motivation and goal of this investigation is to use the Riccati-Bernoulli sub-
ODE method with the help of the Bäcklund transformation in order to analyze and solve the fractional
DGH equation, as this method has not been used before to analyze this equation. We study how
linear dispersion factors affect the shape of traveling waves in the DGH equation and look into the
isospectral properties of soliton solutions. Through these analyses, our research advances knowledge
by revealing new perspectives on the fundamental mechanisms underlying complicated occurrences,
thus positioning itself as a ground-breaking undertaking in the scientific debate.

A meticulous and systematic approach has been adopted to structure the manuscript. A detailed
exposition of the methods employed in Section 2 serves to elucidate the intricacy of the approach.
Section 3 meticulously outlines the process of problem execution by using the described methodology.
Section 4 offers a comprehensive discussion and synthesis of the results. Finally, Section 5 provides a
succinct summary of the study’s definitive findings and their broad implications.

2. Methodology

The FPDE described herein warrants consideration:

P1

(
f ,Dα

t ( f ),Dβ
ζ1

( f ),D2β
ζ2

( f ), f Dβ
ζ1

( f ), . . .
)

= 0, 0 < α, β,≤ 1. (2.1)

The polynomial P1 is a function of f (ζ1, ζ2, ζ3, ......, t). This polynomial includes the fractional
order derivatives as well as the nonlinear terms. The fundamental phases of this approach are then
comprehensively addressed. The subsequent wave transformations are our recommendations for
investigating potential solutions for Eq (1.2):

F(x, t) = eiψ f (ψ), (2.2)

with
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ψ(x, t) =

(
xβ

β

)
− κ

(
tα

α

)
. (2.3)

The function ψ ≡ ψ (x, t) represents the transformation of propagating waves. The non-zero
constant (κ) gives the traveling wave dynamics distinctive properties. Equation (1.2) undergoes a
change that results in the construction of a nonlinear optimal differential equation; as a result, a
modified mathematical expression is assumed. This modification represents an intrinsic change in the
equation’s structure, going from its original form to a nonlinear form. This change brings new
dynamics and behaviors; hence, a better mathematical model is required

P2
(
f , f ′(ψ), f ′′(ψ), f f ′(ψ), . . .

)
= 0. (2.4)

Consider the formal solution for Eq (2.4)

f (ψ) =

N∑
i=−N

biϕ(ψ)i. (2.5)

Under the restriction that both bN , 0 and b−N , 0 simultaneously, the bi constants must be
determined. Concurrently, the function is generated via the following Bäcklund transformation

ϕ(ψ) =
−τB + Aφ(ψ)

A + Bφ(ψ)
. (2.6)

With the requirement that B , 0, let (τ), (A), and (B) be constants. Furthermore, suppose that φ(ψ)
is a function that has the following definition:

dφ
dψ

= τ + φ(ψ)2. (2.7)

It is commonly acknowledged that the following formulas indicate the solutions to Eq (2.7) [51]:

(i) If τ < 0, then φ(ψ) = −
√
−τ tanh(

√
−τψ), or φ(ψ) = −

√
−τ coth(

√
−τψ). (2.8)

(ii) If τ > 0, then φ(ψ) =
√
τ tan(

√
τψ), or φ(ψ) = −

√
τ cot(

√
τψ). (2.9)

(iii) If τ = 0, then φ(ψ) =
−1
ψ
. (2.10)

Under the framework of Eq (2.5), the positive integer (N) can be determined by using homogeneous
balancing principles, which entail finding an equilibrium between the highest-order derivatives and the
highest nonlinearity in Eq (2.4). Here, the f (ψ) degree can be expressed more precisely as D[ f (ψ)] =

N. Therefore, this enables us to perform the following computation of the degree of linked expressions:

D
[
dk f
dψk

]
= N + k & D

[
f J dk f

dψk

]s

= NJ + s(k + N). (2.11)

Algebraic equations are established by combining Eq (2.4) with Eqs (2.5) and (2.7), grouping terms
with the same powers of f (ψ), and then equating them to zero. Applying Maple software to deduce
the pertinent values for various parameters will result in an efficient resolution of this system. Thus,
this makes it easier to compute the soliton wave-propagating solutions to Eq (1.2) with accuracy by
performing computational analysis.
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3. Execution of the problem

By employing the methodology outlined in Section 2, we systematically resolve the fractional
DGH equation (1.2), focusing on obtaining solutions that include a single wave. Equation (2.3),
which characterizes the wave transformation, is employed to streamline our investigation within the
framework of the fractional DGH equation. Subsequently, we give the resulting equation i.e, an
inferred nonlinear ODE, which describes the nonlinear dynamics after this transformation. This new
formula is a concise formulation of the original FPDE and marks a significant step forward in
comprehending the underlying dynamics in the fractional DGH framework

− κ f ′ + λ f ′ + 3
(
f ′ f

)
− µ2 [

−κ f ′′′ + f ′′′ f + 2 f ′ f ′′
]
+ χ f ′′′ = 0, (3.1)

which is equivalent to

f ′ (λ − κ) + 3 f f ′ + µ2κ f ′′′ − µ2 f f ′′′ − 2µ2 f ′ f ′′ + χ f ′′′ = 0. (3.2)

Integrating Eq (3.2) once over ψ, with zero constantss of integration, we obtain

f (λ − κ) +
3
2

f 2 + µ2κ f ′′ − µ2 f f ′′ +
µ2

2
(
f ′
)2
− µ2 (

f ′
)2

+ χ f ′′ = 0. (3.3)

Re-arranging Eq (3.3), we get(
µ2 f − κµ2 − χ

)
f ′′ +

1
2
µ2 (

f ′
)2
− (λ − κ) f −

3
2

f 2 = 0. (3.4)

Finding the point of homogeneous equilibrium (N = 2) entails striking a harmonious balance
between the highest nonlinearity and the highest-order derivatives in the given equation:
2N = N + 2 7−→ N = 2. Now incorporate the substitution from Eq (2.5) along with Eqs (2.6) and (2.7)
into Eq (3.4). We systematically gather coefficients for φi(ψ), resulting in an algebraic system of
equations with a zero value. With the help of Maple’s computing capacity, we can solve this system of
algebraic equations and obtain the following solutions. This approach guarantees an organized and
effective extraction of solutions, providing insightful information about the interactions between
variables within the given mathematical framework

b0 = −1
2
λ µ2+χ

µ2 , b1 =
√

2
√
−λ

(
λ µ2 + χ

)
, τ = 1

2µ2 , κ = −1
4
λ µ2+3 χ

µ2 , (3.5)

The other parameters are as follows: b−1 = b−2 = b2 = 0 and B = B. Accordingly, the value of ψ given
in Eq (2.3) is given by

ψ =
xβ

β
+

1
4

(
λ µ2 + 3 χ

)
tα

µ2α
. (3.6)

Solution Set 1: For τ < 0, the following solutions for Eq (1.2) are obtained

F1(x, t) = −
1
2

(
λ µ2 + χ

)
eiψ

µ2 +
√

2
√
−λ

(
λ µ2 + χ

)
eiψ

[
−1

2
B
µ2 −

1
2 A

√
− 2
µ2 tanh

(
1
2

√
− 2
µ2 ψ

)]
[
A − 1

2 B
√
− 2
µ2 tanh

(
1
2

√
−2 µ−2ψ

)] , (3.7)
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or

F2(x, t) = −
1
2

(
λ µ2 + χ

)
eiψ

µ2 +
√

2
√
−λ

(
λ µ2 + χ

)
eiψ

[
−1

2
B
µ2 −

1
2 A

√
− 2
µ2 coth

(
1
2

√
− 2
µ2ψ

)]
[
A − 1

2 B
√
− 2
µ2 coth

(
1
2

√
− 2
µ2ψ

)] . (3.8)

Solution Set 2: For τ > 0, the following solutions for Eq (1.2) are obtained

F3(x, t) = −
1
2

(
λ µ2 + χ

)
eiψ

µ2 +
√

2
√
−λ

(
λ µ2 + χ

)
eiψ

[
−1

2
B
µ2 + 1

2 A
√

2
µ2 tan

(
1
2

√
2
µ2ψ

)]
[
A + 1

2 B
√

2
µ2 tan

(
1
2

√
2
µ2ψ

)] (3.9)

or

F4(x, t) = −
1
2

(
λ µ2 + χ

)
eiψ

µ2 +
√

2
√
−λ

(
λ µ2 + χ

)
eiψ

[
−1

2
B
µ2 −

1
2 A

√
2
µ2 cot

(
1
2

√
2
µ2ψ

)]
[
A − 1

2 B
√

2
µ2 cot

(
1
2

√
2
µ2ψ

)] . (3.10)

Solution Set 3: For τ = 0, the following solutions for Eq (1.2) are obtained

F5(x, t) = −
1
2

(
λ µ2 + χ

)
eiψ

µ2 +
√

2
√
−λ

(
λ µ2 + χ

)
eiψ

(
−1

2
B
µ2 −

A
ψ

)
(
A − B

ψ

) . (3.11)

4. Results and discussion

This study offers a useful instrument for researchers interested in exploring the intriguing
applications of the fractional DGH equation, as it is a mathematical model that characterizes the
propagation of waves in shallow water. The Riccati-Bernoulli sub-ODE method was used in this
study to look at wave structure solutions for the nonlinear fractional DGH problem. By exploring
their underlying nonlinear physics, this research offers valuable insights into the behavior of complex
systems and illuminates phenomena that have remained incompletely understood thus far.
Figures 1–10 visually represent some derived solutions, utilizing 3D and 2D graphics to emphasize
the parameter choices for the fractional DGH model. Furthermore, utilizing 2D plots facilitates the
modeling and deptiction of analytical physical phenomena.

We analyzed all of the derived solutions graphically, as shown in Figures 1–10, by using some
random values for the associated parameters and coefficients of the equation. The absolute value of
the solution given by Eq (3.7) was examined as elucidated in Figures 1 and 2, which was evaluated
against the space- and time-fractional parameters β and α, respectively. As shown in Figure 1,
increasing the space-fractional parameter turns the shock wave into a quasi-peakon wave. The impact
of the time-fractional parameter on the characteristics of the quasi-peakon wave is illustrated in
Figure 2. Furthermore, an investigation was conducted to examine the impact of space- and time
fractional parameters β and α on the profile of the solution given by Eq (3.8), as depicted in Figures 3
and 4, respectively. Based on the data presented in Figure 3, it can be observed that for α = 1, when
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the space-fractional parameter β is altered, the solution’s form remains consistent with the shock
wave’s shape. However, as β increases, the shock wave amplitude decreases. Figure 4 further
illustrates the impact of the time-fractional parameter α on the visual representation of the solution
given by Eq (3.8), which exhibits characteristics akin to a peakon waveform. The solutions given by
Eqs(3.9) and (3.10) for the case that τ > 0 are also examined, as depicted in Figures 5–8. Figures 5
and 6 display the shock-like solution given by Eq (3.9) against both the space- and time-fractional
parameters β and α, respectively. Additionally, we analyzed the influence of both the space- and
time-fractional parameters β and α on the characteristics of the solution given by Eq (3.10), as
depicted in Figures 7 and 8, correspondingly. Ultimately, we conducted a graphical analysis of the
quasi-peakon wave solution given by Eq (3.11) and examined the impact of both the space- and
time-fractional parameters β and α on its behavior, as depicted in Figures 9 and 10, respectively.

-6 -4 -2 2 4 6

x
d

1

2

3

4

5

6

|F1|

β=1

β=0.5

β=0.2

Figure 1. The solution |F1(x, t)| is plotted against the space-fractional parameter β: (a) 3D
graphic for the solution given by Eq ( 3.7) at β = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.7) at β = 0.5, (c) 3D graphic for the solution given by Eq ( 3.7) at β = 1, (d)
2D graphic for the solution given by Eq ( 3.7) at different values of β. Here, α = 1, λ = 5,
µ =
√
−2, χ = 2, A = 1, and B = 1.
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-6 -4 -2 2 4 6

x
d

1
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3

4

5

6

|F1|

α=1

α=0.4

α=0.2

Figure 2. The solution |F1(x, t)| is plotted against the time-fractional parameter α: (a) 3D
graphic for the solution given by Eq ( 3.7) at α = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.7) at α = 0.4, (c) 3D graphic for the solution given by Eq ( 3.7) at α = 1, (d)
2D graphic for the solution given by Eq ( 3.7) at different values of α. Here, β = 1, λ = 5,
µ =
√
−2, χ = 2, A = 1, and B = 1.
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x
d

1
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6

|F2|

β=0.3

β=0.2

β=0.1

Figure 3. The solution |F2(x, t)| is plotted against the space-fractional parameter β: (a) 3D
graphic for the solution given by Eq ( 3.8) at β = 0.1, (b) 3D graphic for the solution given
by Eq ( 3.8) at β = 0.2, (c) 3D graphic for the solution given by Eq ( 3.8) at β = 0.3, (d)
2D graphic for the solution given by Eq ( 3.8) at different values of β. Here, α = 1, λ = 5,
µ =
√
−2, χ = 2, A = 0.1, and B = 10.
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|F2|

α=1

α=0.4

α=0.2

Figure 4. The solution |F2(x, t)| is plotted against the time-fractional parameter α: (a) 3D
graphic for the solution given by Eq ( 3.8) at α = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.8) at α = 0.4, (c) 3D graphic for the solution given by Eq ( 3.8) at α = 1, (d)
2D graphic for the solution given by Eq ( 3.8) at different values of α. Here, β = 1, λ = 5,
µ =
√
−2, χ = 2, A = 0.1, and B = 10.
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x
d

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|F3|

β=0.7

β=0.4

β=0.2

Figure 5. The solution |F3(x, t)| is plotted against the space-fractional parameter β: (a) 3D
graphic for the solution given by Eq ( 3.9) at β = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.9) at β = 0.4, (c) 3D graphic for the solution given by Eq ( 3.9) at β = 0.7, (d)
2D graphic for the solution given by Eq ( 3.9) at different values of β. Here, α = 1, λ = 2,
µ = 10, χ = 2, A = 1 , and B = 1.
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d
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1.5
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|F3|

α=0.7

α=0.4

α=0.2

Figure 6. The solution |F3(x, t)| is plotted against the time-fractional parameter α: (a) 3D
graphic for the solution given by Eq ( 3.9) at α = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.9) at α = 0.4, (c) 3D graphic for the solution given by Eq ( 3.9) at α = 0.7, (d)
2D graphic for the solution given by Eq ( 3.9) at different values of α. Here, β = 1, λ = 2,
µ = 10, χ = 2, A = 1 , and B = 1.
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|F4|

β=0.7

β=0.4

β=0.2

Figure 7. The solution |F4(x, t)| is plotted against the space-fractional parameter β: (a) 3D
graphic for the solution given by Eq ( 3.10) at β = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.10) at β = 0.4, (c) 3D graphic for the solution given by Eq ( 3.10) at β = 0.7, (d)
2D graphic for the solution given by Eq ( 3.10) at different values of β. Here, α = 1, λ = 2,
µ = 10, χ = 2, A = 0.1, and B = 10.
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α=0.7
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α=0.2

Figure 8. The solution |F4(x, t)| is plotted against the time-fractional parameter α: (a) 3D
graphic for the solution given by Eq ( 3.10) at α = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.10) at α = 0.4, (c) 3D graphic for the solution given by Eq ( 3.10) at α = 0.7, (d)
2D graphic for the solution given by Eq ( 3.10) at different values of α. Here, β = 1, λ = 2,
µ = 10, χ = 2, A = 0.1, and B = 10.
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Figure 9. The solution |F5(x, t)| is plotted against the space-fractional parameter β: (a) 3D
graphic for the solution given by Eq ( 3.11) at β = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.11) at β = 0.4, (c) 3D graphic for the solution given by Eq ( 3.11) at β = 0.7, (d)
2D graphic for the solution given by Eq ( 3.11) at different values of β. Here, α = 1, λ = −2,
µ = −2, χ = 10, A = 0.1, and B = 10.
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Figure 10. The solution |F5(x, t)| is plotted against the time-fractional parameter α: (a) 3D
graphic for the solution given by Eq ( 3.11) at α = 0.2, (b) 3D graphic for the solution given
by Eq ( 3.11) at α = 0.4, (c) 3D graphic for the solution given by Eq ( 3.11) at α = 0.7, (d)
2D graphic for the solution given by Eq ( 3.11) at different values of α. Here, β = 1, λ = −2,
µ = −2, χ = 10, A = 0.1, and B = 10.

5. Conclusion

The fractional DGH equation has been analytically solved by using the Riccati-Bernoulli
sub-optimal differential equation method together with the Bäcklund transformation. We correctly
obtained several travelling wave solutions in the form of hyperbolic, periodic, and rational solutions
by applying the given norm; yielding a hierarchy of traveling wave solutions, including the
quasi-peakon wave, shock-like wave, compacton-like wave, and other periodic waves. The resultant
solutions were subjected to numerical analysis, wherein some random values were assigned to the
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related coefficients and parameters. The effects of both space- and time-fractional parameters on the
properties and behavior of all derived solutions was also examined. It has been found that the
behavior of the derived solutions is significantly influenced by changing the values of both the space-
and time-fractional parameters. By altering these parameters we found that, they not only affect the
amplitude and width of the waves described by these solutions they also impact the transition between
the waves. This finding represents a crucial outcome of our research. The obtained results
demonstrate that the employed techniques are a direct and effective strategy for addressing highly
complicated and strong nonlinear evolution/wave equations. They yield a substantial number of
analytical solutions, which can help many researchers interpret their distinct results.

It is essential to acknowledge that the numerical analysis of the acquired results and the graphical
representation of the derived solutions were conducted by using Wolfram MATHEMATICA 13.2.

Future work: The results indicate that the current technique offers many analytical solutions,
allowing researchers to utilize this approach to simulate various physical and engineering problems.
Thus, this approach is expected to efficiently examine and simulate a range of evolution/wave
equations that describe various nonlinear phenomena in different plasma models. One example of its
use is the analysis of the space-time fractional KdV-type equations [52, 53] and the space-time
fractional Kawahara-type equations [54–56], which allows for an examination of the impact of
fractional parameters on the generated solutions’ profiles. Therefore, it is possible to study the effects
of fractional coefficients on the behavior of the nonlinear structures described by these families of
KdV-type and Kawahara-type equations, such as solitary waves, shock waves, cnoidal waves, and
periodic waves. Furthermore, this method can be applied to examine nonlinear Schrödinger-type
equations to investigate the impact of fractional parameters on the characteristics of
envelope-modulated waves, such as bright and dark envelope solitons, rogue waves, and breathers,
and modulated cnoidal waves [57, 58]. Therefore, this method is expected to have promising,
effective, and fertile results in that can help to explain many mysterious nonlinear phenomena that
arise and propagate in various plasma models.
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