In this paper, the chemotaxis-Stokes system with slow $ p $-Laplacian diffusion and logistic source as follows
$ \begin{equation*} \left\{ \begin{aligned} &n_t+u\cdot\nabla n = \nabla\cdot(|\nabla n|^{p-2}\nabla n)-\nabla\cdot(n\nabla c)+\mu n(1-n), &x\in\Omega, t>0, \\ &c_t+u\cdot\nabla c = \Delta c-cn, & x\in\Omega, t>0, \\ &u_t+\nabla P = \Delta u+n\nabla\Phi, & x\in\Omega, t>0, \\ &\nabla\cdot u = 0, &\; x\in\Omega, t>0\; \end{aligned} \right. \end{equation*} $
was considered in a bounded domain $ \Omega\subset\mathbb{R}^3 $ with smooth boundary under homogeneous Neumann-Neumann-Dirichlet boundary conditions. Subject to the effect of logistic source, we proved the system exists a global bounded weak solution for any $ p > 2 $.
Citation: Xindan Zhou, Zhongping Li. Global bounded solution of a 3D chemotaxis-Stokes system with slow $ p $-Laplacian diffusion and logistic source[J]. AIMS Mathematics, 2024, 9(6): 16168-16186. doi: 10.3934/math.2024782
In this paper, the chemotaxis-Stokes system with slow $ p $-Laplacian diffusion and logistic source as follows
$ \begin{equation*} \left\{ \begin{aligned} &n_t+u\cdot\nabla n = \nabla\cdot(|\nabla n|^{p-2}\nabla n)-\nabla\cdot(n\nabla c)+\mu n(1-n), &x\in\Omega, t>0, \\ &c_t+u\cdot\nabla c = \Delta c-cn, & x\in\Omega, t>0, \\ &u_t+\nabla P = \Delta u+n\nabla\Phi, & x\in\Omega, t>0, \\ &\nabla\cdot u = 0, &\; x\in\Omega, t>0\; \end{aligned} \right. \end{equation*} $
was considered in a bounded domain $ \Omega\subset\mathbb{R}^3 $ with smooth boundary under homogeneous Neumann-Neumann-Dirichlet boundary conditions. Subject to the effect of logistic source, we proved the system exists a global bounded weak solution for any $ p > 2 $.
[1] | K. Baghaei, A. Khelghati, Boundedness of classical solutions for a chemotaxis model with consumption of chemoattractant, C.R. Acad. Sci. Paris, 355 (2017), 633–639. https://doi.org/10.1016/j.crma.2017.04.009 doi: 10.1016/j.crma.2017.04.009 |
[2] | V. Calvez, J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pure. Appl., 86 (2006), 155–175. https://doi.org/10.1016/j.matpur.2006.04.002 doi: 10.1016/j.matpur.2006.04.002 |
[3] | H. Cheng, Z. Li, Global bounded weak solution for a 3D chemotaxis-Stokes system with slow p-Laplacian diffusion and rotation, Nonlinear Anal.-Real, 76 (2024), 103996. https://doi.org/10.1016/j.nonrwa.2023.103996 doi: 10.1016/j.nonrwa.2023.103996 |
[4] | R. Duan, A. Lorz, P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Commun. Part. Diff. Eq., 35 (2010), 1635–1673. https://doi.org/10.1080/03605302.2010.497199 doi: 10.1080/03605302.2010.497199 |
[5] | R. Duan, Z. Xiang, A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion, Int. Math. Res. Notices, 35 (2014), 1833–1852. https://doi.org/10.1093/imrn/rns270 doi: 10.1093/imrn/rns270 |
[6] | J. Han, C Liu, Global existence for a two-species chemotaxis-Navier-Stokes system with p-Laplacian, Electron. Res. Arch., 29 (2021), 3509–3533. https://doi.org/10.3934/era.2021050 doi: 10.3934/era.2021050 |
[7] | C. Jin, Global solvability and boundedness to a coupled chemotaxis-fluid model with arbitrary porous medium diffusion, J. Differ. Equations, 265 (2018), 332–353. https://doi.org/10.1016/j.jde.2018.02.031 doi: 10.1016/j.jde.2018.02.031 |
[8] | C. Jin, Global bounded weak solutions and asymptotic behavior to a chemotaxis-Stokes model with non-Newtonian filtration slow diffusion, J. Differ. Equations, 287 (2021), 148–184. https://doi.org/10.1016/j.jde.2021.03.049 doi: 10.1016/j.jde.2021.03.049 |
[9] | Y. Ke, J. Li, Y. Wang, Analysis of reaction-diffusion models with the taxis mechanism, Singapore: Springer Nature, 2022. http://dx.doi.org/10.1007/978-981-19-3763-7 |
[10] | E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[11] | R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305 (2005), 566–588. https://doi.org/10.1016/j.jmaa.2004.12.009 doi: 10.1016/j.jmaa.2004.12.009 |
[12] | E. Lankeit, J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal.-Real, 46 (2019), 421–445. https://doi.org/10.1016/j.nonrwa.2018.09.012 doi: 10.1016/j.nonrwa.2018.09.012 |
[13] | J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Mod. Meth. Appl. S., 26 (2016), 2071–2109. https://doi.org/10.1142/S021820251640008X doi: 10.1142/S021820251640008X |
[14] | J. Lankeit, Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Cont. Dyn.-S, 37 (2017), 6099–6121. https://doi.org/10.3934/dcds.2017262 doi: 10.3934/dcds.2017262 |
[15] | F. Li, Y. Li, Global existence and boundedness of weak solutions to a chemotaxis Stokes system with rotational flux term, Z. Angew. Math. Phys., 70 (2019), 102. https://doi.org/10.1007/s00033-019-1147-6 doi: 10.1007/s00033-019-1147-6 |
[16] | J. Liu, Boundedness in a three-dimensional chemotaxis-Stokes system modeling coral fertilization with arbitrarily slow p-Laplace diffusion, Math. Nachr., 11 (2021), 2200–2208. https://doi.org/10.1002/mana.202100103 doi: 10.1002/mana.202100103 |
[17] | A. Lorz, Coupled chemotaxis fluid model, Math. Mod. Meth. Appl. S., 20 (2010), 987–1004. https://doi.org/10.1142/S0218202510004507 doi: 10.1142/S0218202510004507 |
[18] | W. Tao, Y. Li, Boundedness of weak solutions of a chemotaxis-Stokes system with slow p-Laplacian diffusion, J. Differ. Equations, 268 (2019), 6872–6919. https://doi.org/10.1016/j.jde.2019.11.078 doi: 10.1016/j.jde.2019.11.078 |
[19] | W. Tao, Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow p-Laplacian diffusion, Nonlinear Anal.-Real, 45 (2019), 26–52. https://doi.org/10.1016/j.nonrwa.2018.06.005 doi: 10.1016/j.nonrwa.2018.06.005 |
[20] | Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521–529. https://doi.org/10.1016/j.jmaa.2011.02.041 doi: 10.1016/j.jmaa.2011.02.041 |
[21] | Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019 |
[22] | Y. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equations, 252 (2012), 2520–2543. https://doi.org/10.1016/j.jde.2011.07.010 doi: 10.1016/j.jde.2011.07.010 |
[23] | I. Tuval, L. Cisneros, C. Dombrowski, C. Wolgemuth, J. Kessler, R. Goldstein, Bacterial swimming and oxygen transport near contact lines, P. Natl. Acad. Sci. USA, 102 (2005), 2277–2282. https://doi.org/10.1073/pnas.0406724102 doi: 10.1073/pnas.0406724102 |
[24] | W. Wang, Global boundedness of weak solutions for a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and rotation, J. Differ. Equations, 268 (2020), 7047–7091. https://doi.org/10.1016/j.jde.2019.11.072 doi: 10.1016/j.jde.2019.11.072 |
[25] | Y. Wang, X. Li, Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity, Z. Angew. Math. Phys., 68 (2017), 29. https://doi.org/10.1007/s00033-017-0773-0 doi: 10.1007/s00033-017-0773-0 |
[26] | Y. Wang, M. Winkler, Z. Xiang, Immediate regularization of measure-type population densities in a two-dimensional chemotaxis system with signal consumption, Sci. China Math., 64 (2021), 725–746. https://doi.org/10.1007/s11425-020-1708-0 doi: 10.1007/s11425-020-1708-0 |
[27] | M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. Partial Dif., 54 (2015), 3789–3828. https://doi.org/10.1007/s00526-015-0922-2 doi: 10.1007/s00526-015-0922-2 |
[28] | M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equations, 264 (2018), 6109–6151. https://doi.org/10.1016/j.jde.2018.01.027 doi: 10.1016/j.jde.2018.01.027 |
[29] | M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Commun. Part. Diff. Eq., 37 (2012), 319–351. https://doi.org/10.1080/03605302.2011.591865 doi: 10.1080/03605302.2011.591865 |
[30] | Y. Yang, C. Jin, Global well-posedness to a chemotaxis-Stokes system, Nonlinear Anal.-Real, 62 (2021), 103374. https://doi.org/10.1016/j.nonrwa.2021.103374 doi: 10.1016/j.nonrwa.2021.103374 |
[31] | Q. Zhang, Y. Li, Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant, J. Math. Phys., 56 (2015), 081506. https://doi.org/10.1063/1.4929658 doi: 10.1063/1.4929658 |
[32] | M. Zhuang, W. Wang, S. Zheng, Global weak solutions for a 3D chemotaxis-Stokes system with slow p-Laplacian diffusion and rotation, Nonlinear Anal.-Real, 56 (2020), 103163. https://doi.org/10.1016/j.nonrwa.2020.103163 doi: 10.1016/j.nonrwa.2020.103163 |