The GM (1, 1) model, grounded in gray system theory, utilizes first-order cumulative data for forecasting. While offering simplicity and efficiency, its applicability is confined to such data. In light of the constraints inherent in the conventional gray GM (1, 1) prediction model when confronted with stochastic data fluctuations, the residual correction methodology was deployed to enhance the predictive efficacy of the GM (1, 1) model. Subsequently, an augmented model underwent refinement through the application of the Markov chain, giving rise to a sophisticated and optimized gray Markov chain prediction model. The efficacy of this novel model was substantiated through a case study involving the prediction of Macao's aggregate tourism revenue. A comparative analysis was conducted between the outcomes generated by the traditional gray prediction model, those of the refined prediction model, and the empirical data pertaining to tourism. This scrutiny validated the proficiency and precision of the optimized prediction model. The process of model optimization manifested a discernible enhancement in both predictive accuracy and stability, thereby broadening the prospective applications of gray prediction models. This endeavor aspired to furnish a scientifically grounded point of reference for the advancement of tourism within the Guangdong-Hong Kong-Macao Greater Bay Area and, indeed, throughout China. Moreover, it introduced a fresh methodology that held promise as a decision-making support mechanism for the developmental trajectory of Macao's tourism industry.
Citation: Xiaolong Chen, Hongfeng Zhang, Cora Un In Wong. Optimization study of tourism total revenue prediction model based on the Grey Markov chain: a case study of Macau[J]. AIMS Mathematics, 2024, 9(6): 16187-16202. doi: 10.3934/math.2024783
[1] | Shuai Li, Tianqing An, Weichun Bu . Existence results for Schrödinger type double phase variable exponent problems with convection term in $ \mathbb R^{N} $. AIMS Mathematics, 2024, 9(4): 8610-8629. doi: 10.3934/math.2024417 |
[2] | Wei Ma, Qiongfen Zhang . Existence of solutions for Kirchhoff-double phase anisotropic variational problems with variable exponents. AIMS Mathematics, 2024, 9(9): 23384-23409. doi: 10.3934/math.20241137 |
[3] | Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400 |
[4] | Li Wang, Jun Wang, Daoguo Zhou . Concentration of solutions for double-phase problems with a general nonlinearity. AIMS Mathematics, 2023, 8(6): 13593-13622. doi: 10.3934/math.2023690 |
[5] | Ramzi Alsaedi . Infinitely many solutions for a class of fractional Robin problems with variable exponents. AIMS Mathematics, 2021, 6(9): 9277-9289. doi: 10.3934/math.2021539 |
[6] | Batirkhan Turmetov, Valery Karachik . On solvability of some inverse problems for a nonlocal fourth-order parabolic equation with multiple involution. AIMS Mathematics, 2024, 9(3): 6832-6849. doi: 10.3934/math.2024333 |
[7] | Ufuk Sevim, Leyla Goren-Sumer . Consensus of double integrator multiagent systems under nonuniform sampling and changing topology. AIMS Mathematics, 2023, 8(7): 16175-16190. doi: 10.3934/math.2023827 |
[8] | Yanfeng Li, Haicheng Liu . A multiplicity result for double phase problem in the whole space. AIMS Mathematics, 2022, 7(9): 17475-17485. doi: 10.3934/math.2022963 |
[9] | Najla Alghamdi, Abdeljabbar Ghanmi . Multiple solutions for a singular fractional Kirchhoff problem with variable exponents. AIMS Mathematics, 2025, 10(1): 826-838. doi: 10.3934/math.2025039 |
[10] | Wafa M. Shammakh, Raghad D. Alqarni, Hadeel Z. Alzumi, Abdeljabbar Ghanmi . Multiplicityof solution for a singular problem involving the $ \varphi $-Hilfer derivative and variable exponents. AIMS Mathematics, 2025, 10(3): 4524-4539. doi: 10.3934/math.2025209 |
The GM (1, 1) model, grounded in gray system theory, utilizes first-order cumulative data for forecasting. While offering simplicity and efficiency, its applicability is confined to such data. In light of the constraints inherent in the conventional gray GM (1, 1) prediction model when confronted with stochastic data fluctuations, the residual correction methodology was deployed to enhance the predictive efficacy of the GM (1, 1) model. Subsequently, an augmented model underwent refinement through the application of the Markov chain, giving rise to a sophisticated and optimized gray Markov chain prediction model. The efficacy of this novel model was substantiated through a case study involving the prediction of Macao's aggregate tourism revenue. A comparative analysis was conducted between the outcomes generated by the traditional gray prediction model, those of the refined prediction model, and the empirical data pertaining to tourism. This scrutiny validated the proficiency and precision of the optimized prediction model. The process of model optimization manifested a discernible enhancement in both predictive accuracy and stability, thereby broadening the prospective applications of gray prediction models. This endeavor aspired to furnish a scientifically grounded point of reference for the advancement of tourism within the Guangdong-Hong Kong-Macao Greater Bay Area and, indeed, throughout China. Moreover, it introduced a fresh methodology that held promise as a decision-making support mechanism for the developmental trajectory of Macao's tourism industry.
An expedient feature of the $ p $-Laplacian eigenvalue problem is that the eigenfunctions may be multiplied by constant factors (in other words, the fact that if $ u $ is an eigenfunction, so is $ ku $). Unfortunately, the $ p(x) $-Laplacian eigenvalue problem does not possess this expedient property. It is important to stress that the loss of the property under consideration is not only a consequence of the dependence on $ x $, but it can also occur in presence of unbalanced growth. For example, the double phase operator (that does not depend on $ x $)
$ \begin{equation} {\rm div}\left(\left|\nabla u\right|^{p-2}\nabla u+\mu(x)\left|\nabla u\right|^{q-2}\nabla u\right), \end{equation} $ | (1.1) |
loses this property. In this paper we are interested in considering that the operator has both peculiarities: It depends on $ x $ and it is unbalanced.
Let $ \Omega \subset \mathbb{R}^{N} (N\geq2) $ be a bounded domain with Lipschitz boundary $ \partial\Omega $. This article studies an eigenvalue problem coming from the minimization of the Rayleigh quotient:
$ \begin{equation} \frac{||\nabla u||_{\mathcal{H}_{n}}}{||u||_{\mathcal{H}_{n}}}, \end{equation} $ | (1.2) |
among all $ u\in W_{0}^{1, \mathcal{H}_{n}}(\Omega), u\not \equiv0 $. These functions belong to an appropriate Musielak-Orlicz Sobolev space with variable exponents; see its definition in section two. The function $ a:\bar{\Omega}\rightarrow [0, +\infty) $ is a $ C^{1} $ differentiable function.
Put
$ \begin{align} &K_{n}(u): = ||\nabla u||_{\mathcal{H}_{n}}, \; k_{n}(u): = ||u||_{\mathcal{H}_{n}}, \\ & S_{n}(u): = \frac{\int_{\Omega}\left[p_{n}(x)\left|\frac{\nabla u}{K_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{\nabla u}{K_{n}(u)}\right|^{q_{n}(x)-2}\right]dx}{\int_{\Omega}\left[p_{n}(x)\left|\frac{u}{k_{n}(u)}\right|^{p_{n}(x)-2} +q_{n}(x)a(x)\left|\frac{u}{k_{n}(u)}\right|^{q_{n}(x)-2}\right]dx}, \\ &\mathcal{H}_{n}: = t^{p_{n}(x)}+a(x)t^{q_{n}(x)} \end{align} $ | (1.3) |
and define the first eigenvalue as
$ \begin{equation} \lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))} = \inf\limits_{u\in W_{0}^{1, \mathcal{H}_{n}}(\Omega)\backslash \{0\}} \frac{||\nabla u||_{\mathcal{H}_{n}}}{||u||_{\mathcal{H}_{n}}}. \end{equation} $ | (1.4) |
By a similar proof of Proposition 3.1 in [1], we can show that the following equation
$ \begin{align} &-{\rm div}\left[\left(p_{n}(x)\left|\frac{\nabla u}{K_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{\nabla u}{K_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{\nabla u}{K_{n}(u)}\right]\\ = &\lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} S_{n}(u) \frac{u}{k_{n}(u)} \left(p_{n}(x)\left|\frac{u}{k_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{u}{k_{n}(u)}\right|^{q_{n}(x)-2}\right), u\in W_{0}^{1, \mathcal{H}_{n}}(\Omega) \end{align} $ | (1.5) |
is the Euler-Lagrange equation corresponding to the minimization of the Rayleigh quotient (1.2), where $ \lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} = \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $.
Here, we impose the following hypotheses on the variable exponents $ p_{n}(x) $ and $ q_{n}(x) $.
(H1): Assume that $ p_{n}(x) $ and $ q_{n}(x) $ are two sequences of $ C^{1} $ functions in $ \overline{\Omega} $, $ q_{n}(\cdot) > p_{n}(\cdot) $ for every $ n\geq1 $ and
$ \begin{equation} p_{n}(x), q_{n}(x)\rightarrow +\infty, \text{uniformly for all} \, x\in\Omega, \end{equation} $ | (1.6) |
$ \begin{equation} \frac{\nabla p_{n}(x)}{p_{n}(x)}\rightarrow \xi_{1}(x), \; \text{uniformly for all}\; x\in\Omega, \end{equation} $ | (1.7) |
$ \begin{equation} \frac{\nabla q_{n}(x)}{q_{n}(x)}\rightarrow \xi_{2}(x), \; \text{uniformly for all}\; x\in\Omega. \end{equation} $ | (1.8) |
(H2): The following two quotients are bounded, namely,
$ \begin{equation} \limsup\limits_{n\rightarrow +\infty}\frac{p^{+}_{n}}{p^{-}_{n}}\leq k_{1}, \; \limsup\limits_{n\rightarrow +\infty}\frac{q^{+}_{n}}{q^{-}_{n}}\leq k_{2}, \end{equation} $ | (1.9) |
where for a function $ g $ we denote
$ \begin{equation*} g^{-} = \min\limits_{x\in\overline{\Omega}} g(x), \; g^{+} = \max\limits_{x\in\overline{\Omega}} g(x). \end{equation*} $ |
(H3): We also assume that
$ \begin{equation} p^{-}_{n} > 1, q^{-}_{n} > 1, \frac{q^{+}_{n}}{p^{-}_{n}} < 1+\frac{1}{N}, \end{equation} $ | (1.10) |
then we can find a positive and continuous function $ \theta\, (0 < \theta < +\infty) $, such that
$ \begin{equation} \lim\limits_{n\rightarrow \infty}\frac{q_{n}(x)}{p_{n}(x)} = \theta(x) \end{equation} $ | (1.11) |
uniformly for all $ x\in \Omega $.
The differential operator in (1.5) is the double-phase operator with variable exponents, which can be given by
$ \begin{equation} {\rm div}\left(\left|\nabla u\right|^{p_{n}(x)-2}\nabla u+\mu(x)\left|\nabla u\right|^{q_{n}(x)-2}\nabla u\right). \end{equation} $ | (1.12) |
This operator is the classical double phase operator (1.1) when $ p_{n}(x) $ and $ q_{n}(x) $ are constants. Moreover, special cases of (1.12), studied extensively in the literature, occur when $ \inf_{\overline{\Omega}}\mu > 0 $ (the weighted $ (q(x), p(x)) $-Laplacian) or when $ \mu\equiv0 $ (the $ p(x) $-Laplacian).
The energy functional related to the double-phase operator (1.12) is given by
$ \begin{equation} \int_{\Omega}|\nabla u|^{p_{n}(x)}+\mu(x)|\nabla u|^{q_{n}(x)}dx, \end{equation} $ | (1.13) |
whose integrand switches two different elliptic behaviors. The integral functional (1.13) was first introduced by Zhikov [2,3,4,5], who obtained that the energy density changed its ellipticity and growth properties according to the point in order to provide models for strongly anisotropic materials. Moreover, double phase differential operators (1.12) and corresponding energy functionals (1.13) have several physical applications. We refer to the works of [6] on transonic flows, [7] on quantum physics and [8] on reaction diffusion systems. Finally, we mention a recent paper that is very close to our topic. For related works dealing with the double phase eigenvalue problems, we refer to the works of Colasuonno-Squassina [9], who proved the existence and properties of related variational eigenvalues. By using the Rayleigh quotient of two norms of Musielak-Orlicz space, the author of this paper has defined the eigenvalue, which has the same properties as the $ p $-Laplace operator. Recently, Liu-Papageorgiou has considered an eigenvalue problem for the Dirichlet $ (p, q(\cdot))- $Laplacian by using the Nehari method (see [10]), a nonlinear eigenvalue problem for the Dirichlet $ (p, q)- $Laplacian with a sign-changing Carathéodory reaction (see [11]) and a nonlinear eigenvalue problem driven by the anisotropic $ (p(\cdot), q(\cdot))- $Laplacian (see [12]). Motivated by [9], Yu[13] discuss the asymptotic behavior of an eigenvalue for the double phase operator. However, to the author's knowledge, the eigenvalue problem for variable exponents double phase operator has remained open. Our article fits into this general field of investigation.
Assume that $ \delta:\Omega\rightarrow [0, \infty) $ is the distance function, which is given by
$ \delta(x): = {\rm dist}(x, \partial\Omega) = \inf\limits_{y\in\partial\Omega}|x-y|. $ |
This function is a Lipschitz continuous function. For all $ x\in\Omega $, we get $ |\nabla \delta| = 1 $. Define
$ \begin{equation} \Lambda_{\infty}: = \inf\limits_{\varphi\in W_{0}^{1, \infty}(\Omega)\setminus\{0\}}\frac{\|\nabla\varphi\|_{L^{\infty}(\Omega)}}{\|\varphi\|_{L^{\infty}(\Omega)}}. \end{equation} $ | (1.14) |
It is known from the paper [1] that
$ \begin{equation} \Lambda_{\infty} = \frac{\|\nabla\delta\|_{L^{\infty}(\Omega)}}{\|\delta\|_{L^{\infty}(\Omega)}} = \frac{1}{\max\nolimits_{x\in\Omega}\{{\rm dist}(x, \partial\Omega)\}}. \end{equation} $ | (1.15) |
Define
$ \begin{align*} \triangle_{\infty}u_{\infty}: = \sum\limits_{i, j = 1}^{N}(u_{\infty})_{x_{i}}(u_{\infty})_{x_{j}}(u_{\infty})_{x_{i}x_{j}}, \\ k_{\infty}(u): = ||u||_{L^{\infty}(\Omega)} = {\rm{ess}}\sup\limits_{x\in\Omega}|u|, \;\;\;\; \end{align*} $ | (1.16) |
$ \begin{equation} K_{\infty}(u): = ||\nabla u||_{L^{\infty}(\Omega)} = {\rm{ess}}\sup\limits_{x\in\Omega}|\nabla u|, \end{equation} $ | (1.17) |
and
$ \begin{equation*} k_{\infty}(u_{\infty}): = ||u_{\infty}||_{L^{\infty}(\Omega)} = {\rm{ess}}\sup\limits_{x\in\Omega}|u_{\infty}|. \end{equation*} $ |
The following are the main results of this paper.
Theorem 1.1. Let $ u\in C(\Omega) $ be a weak solution of problem (1.5), then it is also a viscosity solution of the problem (3.2).
Theorem 1.2. Let hypotheses (H1)–(H3) be satisfied, $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ and $ \Lambda_{\infty} $ be defined by (1.4) and (1.14), respectively. In addition, assume that $ u_{n} $ normalized by $ \|u_{n}\|_{\mathcal{H}_{n}} = 1 $ is the positive first eigenfunction, then,
(1)
$ \begin{equation} \lim\limits_{n\rightarrow \infty}\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))} = \Lambda_{\infty}; \end{equation} $ | (1.18) |
(2) there exists a nonnegative function $ u_{\infty} $ such that $ u_{\infty}\in C^{\alpha}(\Omega)\setminus\{0\} $ and $ ||u_{\infty}||_{L^{\infty}(\Omega)} = 1; $
(3) we can extract a subsequence, which is still denoted by $ u_{n} $, such that
$ \begin{equation} u_{n}\rightarrow u_{\infty}, \end{equation} $ | (1.19) |
in the space $ C^{\alpha}(\Omega) $, where $ \alpha \, (0 < \alpha < 1) $ is a constant;
(4) we can obtain that the function $ u_{\infty}(x) $ is a nontrivial viscosity solution of the problem
$ \begin{equation} \left\{ \begin{array}{ll} \min\bigg\{-\Lambda_{\infty}u_{\infty}+|\nabla u_{\infty}|, -\Lambda_{\infty}(u_{\infty})^{\theta(x_{0})}+|\nabla u_{\infty}|, \\ -\triangle_{\infty}u_{\infty} -[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{2}(x_{0})\bigg\} = 0, & { x\in\Omega }, \\ \qquad\qquad\qquad\qquad u_{\infty} = 0, & { x\in\partial \Omega }. \end{array} \right. \end{equation} $ | (1.20) |
To the best of our knowledge, this is the first work dealing with the double phase eigenvalue problem (1.5). The rest of this paper is organized as follows. In section two, we collect some notations and facts about the Musielak-Orlicz space $ L^{\mathcal{H}}(\Omega) $ and $ W_{0}^{1, \mathcal{H}}(\Omega) $, which will be used in this paper. Section three and section four are devoted to prove Theorems 1.1 and 1.2, respectively.
In this section, we recall some known results about the Musielak-Orlicz spaces $ L^{\mathcal{H}}(\Omega) $ and $ W_{0}^{1, \mathcal{H}}(\Omega) $. For more detail, please see references [9,14,15,16,17].
We follow the notation of [9]. Let $ N(\Omega) $ denote the set of all generalized $ N $-functions. Let us introduce the nonlinear function $ \mathcal{H}:\Omega\times[0, +\infty)\rightarrow [0, +\infty) $ defined as
$ \begin{equation*} \mathcal{H}(x, t): = t^{p(x)}+a(x)t^{q(x)}, \quad {\rm for\; all\;} (x, t)\in \Omega\times[0, +\infty), \end{equation*} $ |
with $ 1 < p(x) < q(x) $ and $ 0\leq a(\cdot)\in L^{1}(\Omega) $. It is clear that $ \mathcal{H}\in N(\Omega) $ is a locally integrable and generalized $ N $-function. In addition, it fulfills the $ \Delta_{2} $ condition, namely,
$ \begin{equation*} \mathcal{H}(x, 2t)\leq2^{q^{+}}\mathcal{H}(x, t). \end{equation*} $ |
Therefore, in correspondence to $ \mathcal{H} $, we define the Musielak-Orlicz space $ L^{\mathcal{H}}(\Omega) $ as
$ \begin{equation*} L^{\mathcal{H}}(\Omega): = \{u:\Omega\rightarrow \mathbb{R}\; {\rm measurable}:\rho_{\mathcal{H}}(u) < +\infty\}, \end{equation*} $ |
which can be equipped with the norm
$ \begin{equation*} \|u\|_{\mathcal{H}}: = \inf\{\gamma > 0:\rho_{\mathcal{H}}(u/\gamma)\leq1\}, \end{equation*} $ |
where
$ \begin{equation*} \rho_{\mathcal{H}}(u): = \int_{\Omega}\mathcal{H}(x, |u|)dx, \end{equation*} $ |
which is called $ \mathcal{H} $-modular.
Similarly, we can define the Musielak-Orlicz Sobolev spaces. The space $ W^{1, \mathcal{H}}(\Omega) $ is given by
$ W^{1, \mathcal{H}}(\Omega) = \left\{u \in L^{\mathcal{H}}(\Omega)\, {\rm such \, that}\, |\nabla u| \in L^{\mathcal{H}}(\Omega)\right\}, $ |
with the norm
$ \begin{equation*} \|u\|_{1, \mathcal{H}}: = \|u\|_{\mathcal{H}}+\|\nabla u\|_{\mathcal{H}}. \end{equation*} $ |
We denote by $ W_{0}^{1, \mathcal{H}}(\Omega) $ the completion of $ C_{0}^{\infty}(\Omega) $ in $ W^{1, \mathcal{H}}(\Omega) $. With these norms, the spaces $ L^{\mathcal{H}}(\Omega) $, $ W^{1, \mathcal{H}}(\Omega) $ and $ W_{0}^{1, \mathcal{H}}(\Omega) $ are separable, reflexive and uniformly convex Banach spaces.
From Proposition 2.16 (ⅱ) in [18], if
$ \frac{q^{+}}{p^{-}} < 1+\frac{1}{N}, $ |
then the following Poincar$ \acute{e} $-type inequality
$ \begin{equation*} \|u\|_{\mathcal{H}}\leq C\|\nabla u\|_{\mathcal{H}} \end{equation*} $ |
holds for all $ u\in W_{0}^{1, \mathcal{H}}(\Omega) $, where $ C $ is a positive constant independent of $ u $. Therefore, in this paper, we equip $ W_{0}^{1, \mathcal{H}}(\Omega) $ with the equivalent norm $ \|\nabla u\|_{\mathcal{H}} $ for all $ u\in W_{0}^{1, \mathcal{H}}(\Omega) $.
Proposition 2.1. [18] If $ u\in L^{\mathcal{H}}(\Omega) $ and $ \rho_{\mathcal{H}}(u) $ is the $ \mathcal{H} $-modular, then the following properties hold.
(1) $ If\: u\neq0 $, then $ \|u\|_{\mathcal{H}} = \lambda $ if, and only if, $ \varrho_{\mathcal{H}}(\frac{u}{\lambda}) = 1; $
(2) $ \|u\|_{\mathcal{H}} < 1 \ ( = 1; > 1) $ if, and only if, $ \varrho_{\mathcal{H}}(u) < 1 \ ( = 1; > 1); $
(3) If $ \|u\|_{\mathcal{H}} \leq 1 $, then $ \|u\|_{\mathcal{H}}^{q^{+}} \leq \rho_{\mathcal{H}}(u)\leq \|u\|_{\mathcal{H}}^{p^{-}}; $
(4) If $ \|u\|_{\mathcal{H}} \geq 1 $, then $ \|u\|_{\mathcal{H}}^{p^{-}} \leq \rho_{\mathcal{H}}(u)\leq \|u\|_{\mathcal{H}}^{q^{+}}; $
(5) $ \|u\|_{\mathcal{H}}\rightarrow 0 $ if, and only if, $ \rho_{\mathcal{H}}(u)\rightarrow 0; $
(6) $ \|u\|_{\mathcal{H}}\rightarrow 0 $ if, and only if, $ \rho_{\mathcal{H}}(u)\rightarrow 0. $
Given $ u\in C(\Omega)\bigcap W^{1, \mathcal{H}_{n}}_{0}(\Omega) $ and $ \phi\in C^{2}(\Omega) $. Define
$ \begin{align*} \triangle_{p_{n}(x)}\phi &: = {\rm div}(|\nabla \phi|^{p_{n}(x)-2}\nabla\phi)\\ & = |\nabla \phi|^{p_{n}(x)-4}\{|\nabla \phi|^{2}\triangle \phi+(p_{n}(x)-2)\triangle_{\infty}\phi+|\nabla \phi|^{2}{\rm ln}(|\nabla \phi|)\nabla\phi\cdot\nabla p_{n}\}, \end{align*} $ |
$ \begin{align*} \triangle_{q_{n}(x)}\phi &: = {\rm div}(|\nabla \phi|^{q_{n}(x)-2}\nabla\phi)\\ & = |\nabla \phi|^{q_{n}(x)-4}\{|\nabla \phi|^{2}\triangle \phi+(q_{n}(x)-2)\triangle_{\infty}\phi+|\nabla \phi|^{2}{\rm ln}(|\nabla \phi|)\nabla\phi\cdot\nabla q_{n}\}, \end{align*} $ |
and
$ \begin{equation*} \triangle_{\infty}\phi: = \sum\limits_{i, j = 1}^{N}\frac{\partial\phi}{\partial x_{i}}\frac{\partial\phi}{\partial x_{j}}\frac{\partial^{2}\phi}{\partial x_{i}\partial x_{j}}, \end{equation*} $ |
where $ \triangle_{\infty}\phi $ is the $ \infty $-Laplacian.
Here, we are now in a position to give the following definition of weak solutions to problem (1.5).
Definition 3.1. We call $ u\in W^{1, \mathcal{H}_{n}}_{0}(\Omega)\backslash\{0\} $ a weak solution of problem (1.5) if
$ \begin{align} &\int_{\Omega}\left(p_{n}(x)\left|\frac{\nabla u}{K(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{\nabla u}{K(u)}\right|^{q_{n}(x)-2}\right)\frac{\nabla u\cdot\nabla v}{K(u)} dx \\ = &\lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} S(u) \int_{\Omega}\left(p_{n}(x)\left|\frac{u}{k(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{u}{k(u)}\right|^{q_{n}(x)-2}\right)\frac{uv}{k(u)}dx \end{align} $ | (3.1) |
is satisfied for all test functions $ v \in W^{1, \mathcal{H}_{n}}_{0}(\Omega) $. If $ u\neq 0 $, we say that $ \lambda_{(p_{n}(\cdot), q_{n}(\cdot))} $ is an eigenvalue of (1.5) and that $ u $ is an eigenfunction corresponding to $ \lambda_{(p_{n}(\cdot), q_{n}(\cdot))} $.
In (1.5), we replace $ u $ by $ \phi $ and keep $ S_{n} $, $ K_{n} $ and $ k_{n} $ unchanged, then
$ \begin{align*} \left\{ \begin{array}{ll} -p_{n}(x)(K(u))^{1-p_{n}(x)}\triangle_{p_{n}(x)}\phi-q_{n}(x)a(x)(K(u))^{1-q_{n}(x)}\triangle_{q_{n}(x)}\phi\\ -q_{n}(x)(K(u))^{1-q_{n}(x)}|\nabla \phi(x)|^{q_{n}(x)-2}\nabla\phi(x)\cdot\nabla a(x) \\ -(K(u))^{1-p_{n}(x)}|\nabla \phi|^{p_{n}(x)-2}\nabla\phi(x)\cdot\nabla p_{n}(x)\\ -a(x)(K(u))^{1-q_{n}(x)}|\nabla \phi(x)|^{q_{n}(x)-2}\nabla\phi(x)\cdot\nabla q_{n}(x)\\ +p_{n}(x)(K(u))^{1-p_{n}(x)}{\rm ln}(K(u))|\nabla \phi(x)|^{p_{n}(x)-2}\nabla\phi(x)\cdot\nabla p_{n}(x)\\ +q_{n}(x)a(x)(K(u))^{1-q_{n}(x)}{\rm ln}(K(u))|\nabla \phi(x)|^{q_{n}(x)-2}\nabla\phi(x)\cdot\nabla q_{n}(x)\\ -\lambda_{(p_{n}(\cdot), q_{n}(\cdot))}S(u)(p_{n}(x)(k(u))^{1-p_{n}(x)}|\phi|^{p_{n}(x)-2}\phi\\ +q_{n}(x)a(x)(k(u))^{1-q_{n}(x)}|\phi(x)|^{q_{n}(x)-2}\phi(x)) = 0, & { x\in\Omega }, \\ \qquad\qquad\qquad\qquad\qquad\qquad\phi = 0, & { x\in\partial \Omega }. \end{array} \right. \end{align*} $ |
We first recall the definition of viscosity solutions. Assume we are given a continuous function
$ \begin{equation*} F: \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^N \times \mathcal{S}(N) \rightarrow \mathbb{R}, \end{equation*} $ |
where $ \mathcal{S}(N) $ denotes the set of $ N \times N $ symmetric matrices.
Consider the problem
$ \begin{equation} F(x, u, \nabla u, D^{2}u) = 0, \end{equation} $ | (3.2) |
where
$ \begin{align} F(x, u, \nabla u, D^{2}u) = & -p_{n}(x)(K(u))^{1-p_{n}(x)}\{|\nabla u|^{p_{n}(x)-4}[|\nabla u|^{2}\triangle u\\ &+(p_{n}(x)-2)\triangle_{\infty}u +|\nabla u|^{2}{\rm ln}(|\nabla u|)\nabla u\cdot\nabla p_{n}(x)]\}\\ &-q_{n}(x)a(x)(K(u))^{1-q_{n}(x)}\{|\nabla u|^{q_{n}(x)-4}[|\nabla u|^{2}\triangle u\\ &+(q_{n}(x)-2)\triangle_{\infty}u +|\nabla u|^{2}{\rm ln}(|\nabla u|)\nabla u\cdot\nabla q_{n}(x)]\}\\ &-q_{n}(x)(K(u))^{1-q_{n}(x)}|\nabla u|^{q_{n}(x)-2}\nabla u\cdot\nabla a(x) -(K(u))^{1-p_{n}(x)}|\nabla u|^{p_{n}(x)-2}\nabla u\cdot\nabla p_{n}(x)\\ &-a(x)(K(u))^{1-q_{n}(x)}|\nabla u|^{q_{n}(x)-2}\nabla u\cdot\nabla q_{n}(x)\\ &+p_{n}(x)(K(u))^{1-p_{n}(x)}{\rm ln}(K(u))|\nabla u|^{p_{n}(x)-2}\nabla u\cdot\nabla p_{n}(x)\\ &+q_{n}(x)a(x)(K(u))^{1-q_{n}(x)}{\rm ln}(K(u))|\nabla u|^{q_{n}(x)-2}\nabla u\cdot\nabla q_{n}(x)\\ &-\lambda_{(p_{n}(\cdot), q_{n}(\cdot))}S(u)(p_{n}(x)(k(u))^{1-p_{n}(x)}|u|^{p_{n}(x)-2}u\\ &+q_{n}(x)a(x)(k(u))^{1-q_{n}(x)}|u|^{q_{n}(x)-2}u). \end{align} $ | (3.3) |
Definition 3.2. Assume that $ x_{0}\in \Omega $, $ u\in C(\Omega) $, $ \psi\in C^{2}(\Omega) $ and $ \varphi\in C^{2}(\Omega) $.
(1) Let $ u(x_{0}) = \psi(x_{0}) $ and suppose that $ u-\psi $ attains its strict maximum value at $ x_{0} $. If
$ \begin{equation*} F(x_{0}, \psi(x_{0}), \nabla \psi(x_{0}), D^{2}\psi(x_{0}))\leq0 \end{equation*} $ |
for all of such $ x_{0} $, then the function $ u $ is said to be a viscosity subsolution of Eq (3.2).
(2) Let $ u(x_{0}) = \varphi(x_{0}) $ and suppose that $ u-\varphi $ attains its strict minimum value at $ x_{0} $. If
$ \begin{equation*} F(x_{0}, \varphi(x_{0}), \nabla \varphi(x_{0}), D^{2}\varphi(x_{0}))\geq0 \end{equation*} $ |
for all of such $ x_{0} $, then the function $ u $ is said to be a viscosity supersolution of Eq (3.2).
(3) If $ u $ is both a subsolution and a supersolution of the problem (3.2), then $ u $ is a viscosity solution of the problem (3.2).
Proof of Theorem 1.1. Claim: $ u $ is a viscosity supersolution of (3.2).
Let $ x_{0}\in \Omega $ and $ \varphi\in C^{2}(\Omega) $. Assume that $ u(x_{0}) = \varphi(x_{0}) $ and the function $ u-\varphi $ obtains its strict minimum value at the point $ x_{0} $. Our goal is to show that
$ \begin{equation} F(x_{0}, u(x_{0}), \nabla \varphi(x_{0}), D^{2}\varphi(x_{0}))\geq0. \end{equation} $ | (3.4) |
If
$ \begin{equation*} F(x_{0}, u(x_{0}), \nabla \varphi(x_{0}), D^{2}\varphi(x_{0})) < 0, \end{equation*} $ |
then by continuity there exists a positive constant $ r $ such that $ B(x_{0}, 2r)\subset\Omega $, $ u > \varphi $ in this ball, except for the point $ x_{0} $ and
$ \begin{equation*} F(x, u(x), \nabla \varphi(x), D^{2}\varphi(x)) < 0, \end{equation*} $ |
for all $ x\in B(x_{0}, 2r) $. Thus, if $ x\in B(x_{0}, r) $, we have
$ \begin{equation} \begin{array}{ll} - \text{div} \left[\left(p_{n}(x)\left|\frac{\nabla \varphi(x)}{K_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{\nabla \varphi(x)}{K_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{\nabla \varphi(x)}{K_{n}(u)}\right]\nonumber\\ -\lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} S_{n}(u) \left(p_{n}(x)\left|\frac{u(x)}{k_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{u(x)}{k_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{u(x)}{k_{n}(u)} < 0. \end{array} \end{equation} $ |
If $ x\in \partial B(x_{0}, r) $, the minimum value of the function $ u-\varphi $ is defined as $ m $. Let $ \Phi(x): = \varphi(x)+\frac{m}{2} $. Note that $ m > 0 $ and the above inequality still holds if the function $ \varphi(x) $ is replaced by $ \Phi(x) $, namely,
$ \begin{equation} \begin{array}{ll} - \text{div} \left[\left(p_{n}(x)\left|\frac{\nabla \Phi(x)}{K_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{\nabla \Phi(x)}{K_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{\nabla \Phi(x)}{K_{n}(u)}\right]\\ -\lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} S_{n}(u) \left(p_{n}(x)\left|\frac{u(x)}{k_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{u(x)}{k_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{u(x)}{k_{n}(u)} < 0. \end{array} \end{equation} $ | (3.5) |
Define $ \eta(x): = (\Phi-u)^{+}\geq0 $, then if $ x\in \partial B(x_{0}, r) $, we have $ \eta(x)\equiv0 $.
Let
$ \Omega_{1} = \{x|x\in B(x_{0}, r)\, \text{and}\: \Phi(x) > u(x)\}. $ |
We multiply (3.5) by the function $ \eta(x) $ and integrate over $ B(x_{0}, r) $, then the inequality
$ \begin{align} &\int_{\Omega_{1}}\left(p_{n}(x)\left|\frac{\nabla \Phi}{K_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{\nabla \Phi}{K_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{\nabla \Phi}{K_{n}(u)}\cdot\nabla(\Phi-u)dx\\ &-\int_{\Omega_{1}}\lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} S_{n}(u) \left(p_{n}(x)\left|\frac{u}{k_{n}(u)}\right|^{p_{n}(x)-2} +q_{n}(x)a(x)\left|\frac{u}{k_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{u}{k_{n}(u)}(\Phi-u)dx < 0 \end{align} $ | (3.6) |
is true.
If we define
$ \begin{equation*} \eta_{1}(x) = \left\{ \begin{array}{ll} (\Phi-u)^{+}, & { x\in B(x_{0}, r) }, \\ 0, & { x\in \Omega \setminus B(x_{0}, r) }, \end{array} \right. \end{equation*} $ |
and use $ \eta_{1}(x) $ as a test function in (3.1), then we get
$ \begin{align} &\int_{\Omega_{1}}\left(p_{n}(x)\left|\frac{\nabla u}{K_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{\nabla u}{K_{n}(u)}\right|^{q_{n}(x)-2}\right)\frac{\nabla u}{K_{n}(u)} \cdot\nabla(\Phi-u)dx\\ &-\int_{\Omega_{1}}\lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} S_{n}(u) \left(p_{n}(x)\left|\frac{u}{k_{n}(u)}\right|^{p_{n}(x)-2}+q_{n}(x)a(x)\left|\frac{u}{k_{n}(u)}\right|^{q_{n}(x)-2}\right) \frac{u}{k_{n}(u)}(\Phi-u)dx = 0. \end{align} $ | (3.7) |
Subtracting (3.7) from (3.6), we arrive at
$ \begin{align} &\int_{\Omega_{1}}p_{n}(x)\left(\left|\frac{\nabla \Phi}{K_{n}(u)}\right|^{p_{n}(x)-2}\frac{\nabla \Phi}{K_{n}(u)}-\left|\frac{\nabla u}{K_{n}(u)}\right|^{p_{n}(x)-2}\frac{\nabla u}{K_{n}(u)}\right)\cdot\nabla(\Phi-u)dx\\ &+\int_{\Omega_{1}}q_{n}(x)a(x)\left(\left|\frac{\nabla \Phi}{K_{n}(u)}\right|^{q_{n}(x)-2}\frac{\nabla \Phi}{K_{n}(u)}-\left|\frac{\nabla u}{K_{n}(u)}\right|^{q_{n}(x)-2}\frac{\nabla u}{K_{n}(u)}\right) \nabla(\Phi-u)dx < 0. \end{align} $ | (3.8) |
The first integral is nonnegative due to the elementary inequality
$ \begin{equation} \langle|a|^{p-2}a-|b|^{p-2}b, a-b\rangle\geq0, \end{equation} $ | (3.9) |
which holds for all $ p > 1 $. Here, we take $ p = p_{n}(x) $. We get a contradiction. Hence, (3.4) holds. Similarly, we conclude that $ u $ is a viscosity subsolution of (3.2) and we omit the details.
Let $ n\in N $ be large enough such that $ p_{n}\geq r > N $, which results in $ W_{0}^{1, \mathcal{H}_{n}}(\Omega)\hookrightarrow W_{0}^{1, r}(\Omega) $ (see Proposition 2.16 (1) of Blanco, Gasiński, Harjulehto and Winkert [18]). It follows that $ u_{n} $ are continuous functions. The reason is that the space $ W_{0}^{1, r}(\Omega)\hookrightarrow\hookrightarrow C^{\alpha}(\Omega) $, $ 0 < \alpha < 1 $. Moreover, it is known (see [9]) that for each $ n\in \mathbb{N} $ fixed, we have $ u_{n} > 0 $.
In order to prove Theorem 1.2, we only need to prove the following conclusions.
Lemma 4.1. Let $ h:\overline{\Omega}\rightarrow (1, \infty) $ be a given continuous function, then
$ \begin{equation} ||\nabla v|^{s}|^{\frac{1}{s}}_{\frac{p(x)}{s}}\leq ||\nabla v||_{\mathcal{H}}, \end{equation} $ | (4.1) |
for all $ v \in W_{0}^{1, \mathcal{H}}(\Omega) $ and $ s\in (1, p^{-}) $.
Proof. Since $ \left\|\frac{\nabla v}{||\nabla v||_{\mathcal{H}}}\right\|_{\mathcal{H}} = 1 $, it follows from Proposition 2.1 that
$ \begin{equation} \int_{\Omega}\left[\left(\frac{|\nabla v|}{||\nabla v||_{\mathcal{H}}}\right)^{p(x)}+a(x)\left(\frac{|\nabla v|}{||\nabla v||_{\mathcal{H}}}\right)^{q(x)}\right]dx = 1. \end{equation} $ | (4.2) |
Thus,
$ \begin{equation} \int_{\Omega}\left[\left(\frac{|\nabla v|}{||\nabla v||_{\mathcal{H}}}\right)^{s}\right]^{\frac{p(x)}{s}}\frac{dx}{\frac{p(x)}{s}}\leq1. \end{equation} $ | (4.3) |
Invoking Proposition 2.1 again, we conclude that
$ \begin{equation*} \left|\left(\frac{|\nabla v|}{||\nabla v||_{\mathcal{H}}}\right)^{s}\right|_{\frac{p(x)}{s}}\leq1, \end{equation*} $ |
which implies (4.1).
Lemma 4.2. If $ u\in L^{\infty}(\Omega) $, then we have
$ \begin{equation} \lim\limits_{n\rightarrow \infty}k_{n}(u) = k_{\infty}(u). \end{equation} $ | (4.4) |
Proof. Step1: To show that the following inequality holds,
$ \begin{equation} \limsup\limits_{n\rightarrow \infty}k_{n}(u)\leq k_{\infty}(u). \end{equation} $ | (4.5) |
If $ k_{n}(u)\leq k_{\infty}(u) $, the above inequality is true. Thus, we can assume that $ k_{n}(u) > k_{\infty}(u) $, and since $ q_{n}(x) > p_{n}(x) > 1 $, we have
$ \begin{align*} 1& = \left(\int_{\Omega}\left|\frac{u}{k_{n}(u)}\right|^{p_{n}(x)}+a(x)\left|\frac{u}{k_{n}(u)}\right|^{q_{n}(x)}dx\right)^{\frac{1}{p^{-}_{n}}}\nonumber\\ &\leq\left[\int_{\Omega}\left(\frac{k_{\infty}(u)}{k_{n}(u)}\right)^{p_{n}(x)}+a(x)\left(\frac{k_{\infty}(u)}{k_{n}(u)}\right)^{q_{n}(x)}dx\right]^{\frac{1}{p^{-}_{n}}}\nonumber\\ &\leq\left[\int_{\Omega}\left(\frac{k_{\infty}(u)}{k_{n}(u)}\right)^{p^{-}_{n}}+a(x)\left(\frac{k_{\infty}(u)}{k_{n}(u)}\right)^{p^{-}_{n}}dx\right]^{\frac{1}{p^{-}_{n}}}\nonumber\\ & = \frac{k_{\infty}(u)}{k_{n}(u)}\left(|\Omega|+\int_{\Omega}a(x)dx\right)^{\frac{1}{p^{-}_{n}}}, \end{align*} $ |
which implies (4.5) holds.
Step2: To show that the following inequality holds,
$ \begin{equation} \liminf\limits_{n\rightarrow \infty}k_{n}(u)\geq k_{\infty}(u). \end{equation} $ | (4.6) |
Case1: $ k_{\infty}(u) = 0 $. It is easy to find that (4.6) holds.
Case2: $ k_{\infty}(u) > 0 $. Given $ \varepsilon > 0 $, there exists a nonempty set $ \Omega_{\varepsilon}\subset\Omega $ such that, for all $ x\in \Omega_{\varepsilon} $, $ |u| > k_{\infty}(u)-\varepsilon $. Ignoring those indices $ n $ that $ k_{n}(u)\geq k_{\infty}(u)-\varepsilon $, we have
$ \begin{align*} 1& = \left(\int_{\Omega}\left|\frac{u}{k_{n}(u)}\right|^{p_{n}(x)}+a(x)\left|\frac{u}{k_{n}(u)}\right|^{q_{n}(x)}dx\right)^{\frac{1}{p^{-}_{n}}}\nonumber\\ &\geq\left(\int_{\Omega_{\varepsilon}}\left|\frac{u}{k_{n}(u)}\right|^{p_{n}(x)} +a(x)\left|\frac{u}{k_{n}(u)}\right|^{q_{n}(x)}dx\right)^{\frac{1}{p^{-}_{n}}}\nonumber\\ &\geq\left(\int_{\Omega_{\varepsilon}}\left|\frac{k_{\infty}(u)-\varepsilon}{k_{n}(u)}\right|^{p_{n}(x)} +a(x)\left|\frac{k_{\infty}(u)-\varepsilon}{k_{n}(u)}\right|^{q_{n}(x)}dx\right)^{\frac{1}{p^{-}_{n}}}\nonumber\\ &\geq\left(\int_{\Omega_{\varepsilon}}\left|\frac{k_{\infty}(u)-\varepsilon}{k_{n}(u)}\right|^{p^{-}_{n}} +a(x)\left|\frac{k_{\infty}(u)-\varepsilon}{k_{n}(u)}\right|^{p^{-}_{n}}dx\right)^{\frac{1}{p^{-}_{n}}}\nonumber\\ & = \frac{k_{\infty}(u)-\varepsilon}{k_{n}(u)}\left(|\Omega_{\varepsilon}|+\int_{\Omega_{\varepsilon}}a(x)dx\right)^{\frac{1}{p^{-}_{n}}}, \end{align*} $ |
which gives
$ \begin{equation*} \liminf\limits_{n\rightarrow \infty}k_{n}(u)\geq k_{\infty}(u)-\varepsilon. \end{equation*} $ |
The arbitrariness of $ \varepsilon $ implies that (4.6) is true. Consequently, (4.4) holds.
Remark 4.1. If $ |\nabla u|\in L^{\infty}(\Omega) $, we can argue as Lemma 4.2 to obtain that
$ \begin{equation} \lim\limits_{n\rightarrow \infty}K_{n}(u) = K_{\infty}(u). \end{equation} $ | (4.7) |
Lemma 4.3. If the assumptions of Theorem 1.2 hold, then
(1) (1.18) holds;
(2) there exists a nonnegative function $ u_{\infty} $ such that $ u_{\infty}\in C^{\alpha}(\Omega)\setminus\{0\} $ and $ ||u_{\infty}||_{L^{\infty}(\Omega)} = 1; $
(3) we can extract a subsequence, which is still denoted by $ u_{n} $, such that
$ \begin{equation*} u_{n}\rightarrow u_{\infty} \end{equation*} $ |
in the space $ C^{\alpha}(\Omega) $, where $ \alpha \, (0 < \alpha < 1) $ is a constant.
Proof. Assume for simplicity that the following inequality holds
$ \begin{equation*} \int_{\Omega}dx = 1. \end{equation*} $ |
Step 1: To show that,
$ \begin{equation} \limsup\limits_{n\rightarrow \infty}\lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))}\leq\Lambda_{\infty}. \end{equation} $ | (4.8) |
Inserting $ u(x) = \delta(x) $ into (1.4) gives
$ \begin{equation*} \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))}\leq \frac{||\nabla \delta||_{\mathcal{H}_{n}}}{||\delta||_{\mathcal{H}_{n}}}. \end{equation*} $ |
Note that by Lemma 4.2 and Remark 4.1, we have
$ \begin{equation*} \limsup\limits_{n\rightarrow \infty}\lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))}\leq\frac{\|\nabla\delta\|_{L^{\infty}(\Omega)}}{\|\delta\|_{L^{\infty}(\Omega)}} = \Lambda_{\infty}. \end{equation*} $ |
Step 2: We now claim that $ u_{\infty}\in W_{0}^{1, \infty}(\Omega) $.
Since (4.8) holds, for all $ n\in N $ sufficiently large, we can assume that $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))}\leq\Lambda_{\infty}+1 $. Thus, we have
$ \begin{equation*} \Lambda_{\infty}+1\geq\lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} = \frac{||\nabla u_{n}||_{\mathcal{H}_{n}}}{|| u_{n}||_{\mathcal{H}_{n}}} = ||\nabla u_{n}||_{\mathcal{H}_{n}}. \end{equation*} $ |
Note that the sequence $ \{||\nabla u_{n}||_{\mathcal{H}_{n}}\} $ is bounded.
Let $ r\in[1, \infty) $ be arbitrary. We can find an integer $ n_{r} $, for all $ n\geq n_{r} $, such that $ p_{n}(\cdot)\geq r $ and
$ \begin{equation*} W_{0}^{1, \mathcal{H}_{n}}(\Omega)\hookrightarrow W_{0}^{1, r}(\Omega)\hookrightarrow\hookrightarrow L^{r}(\Omega). \end{equation*} $ |
Hence, the sequence $ \{u_{n}\} $ is bounded in the reflexive Banach space $ W_{0}^{1, r}(\Omega) $. We can find a subsequence, still defined by $ \{u_{n}\} $, and a function $ u_{\infty}\in W_{0}^{1, r}(\Omega) $, such that $ \nabla u_{n}\rightharpoonup\nabla u_{\infty} $ in $ W_{0}^{1, r}(\Omega) $ and $ u_{n}\rightarrow u_{\infty} $ in $ L^{r}(\Omega) $.
Define
$ s_{n}(x): = \frac{p_{n}(x)}{p_{n}(x)-r}, x\in \Omega, $ |
and it follows that
$ s_{n}^{+} = \frac{p_{n}^{-}}{p_{n}^{-}-r}, s_{n}^{-} = \frac{p_{n}^{+}}{p_{n}^{+}-r} $ |
and
$ \begin{equation} |1|_{s_{n}(x)}\leq\max\{|\Omega|^{\frac{1}{s_{n}^{+}}}, |\Omega|^{\frac{1}{s_{n}^{-}}}\}. \end{equation} $ | (4.9) |
Using Hölder's inequality and the above inequality, we have
$ \begin{align} \left(\int_{\Omega}|\nabla u_{n}|^{r}dx\right)^{\frac{1}{r}} &\leq \left(\frac{1}{s_{n}^{-}}+\frac{r}{p_{n}^{-}}\right)|1|^{\frac{1}{r}}_{s_{n}(x)}||\nabla u_{n}|^{r}|^{\frac{1}{r}}_{\frac{p_{n}(x)}{r}}\\ &\leq \left(\frac{1}{s_{n}^{-}}+\frac{r}{p_{n}^{-}}\right)\max\{|\Omega|^{\frac{1}{s_{n}^{+}}}, |\Omega|^{\frac{1}{s_{n}^{-}}}\}^{\frac{1}{r}}||\nabla u_{n}|^{r}|^{\frac{1}{r}}_{\frac{p_{n}(x)}{r}}. \end{align} $ | (4.10) |
Thus, (4.1) and (4.10) ensure that
$ \begin{equation} \|\nabla u_{n}\|_{L^{r}(\Omega)}\leq 2(1+|\Omega|)||\nabla u_{n}||_{\mathcal{H}_{n}}\leq 2(1+|\Omega|)\Lambda_{\infty}+1. \end{equation} $ | (4.11) |
We choose an arbitrary positive real number $ r_{1} $ such that $ B(x, r_{1})\subset\Omega $, where the point $ x\in\Omega $ is a Lebesgue point such that $ |\nabla u_{\infty}|\in L^{1}(\Omega) $, then we find that
$ \begin{align} \frac{1}{|B(x, r_{1})|}\int_{B(x, r_{1})}|\nabla u_{\infty}(y)|dy &\leq\liminf\limits_{n\rightarrow \infty}\frac{1}{|B(x, r_{1})|}\int_{B(x, r_{1})}|\nabla u_{n}(y)|dy\\ &\leq\liminf\limits_{n\rightarrow \infty}|B(x, r_{1})|^{-\frac{1}{r}}||\nabla u_{n}||_{L^{r}(\Omega)}\\ &\leq|B(x, r)|^{-\frac{1}{r}}2(1+|\Omega|)(\Lambda_{\infty}+1). \end{align} $ | (4.12) |
Passing to the limit as $ r\rightarrow +\infty $ in the above inequality, gives
$ \begin{equation*} \frac{1}{|B(x, r_{1})|}\int_{B(x, r_{1})}|\nabla u_{\infty}(y)|dy\leq2(1+|\Omega|)(\Lambda_{\infty}+1). \end{equation*} $ |
Letting $ r_{1}\rightarrow0^{+} $ in the above inequality, gives
$ \begin{equation*} |\nabla u_{\infty}(x)|\leq 2(1+|\Omega|)(\Lambda_{\infty}+1), \end{equation*} $ |
for a.e. $ x\in\Omega $, which implies that $ \nabla u_{\infty}\in L^{\infty}(\Omega) $, as claimed.
Step 3: We want to prove that $ u_{n}\rightarrow u_{\infty} $ in $ C^{\alpha}(\Omega) $ ($ 0 < \alpha < 1 $) and $ \|u_{\infty}\|_{L^{\infty}(\Omega)} = 1 $.
Keeping in mind that $ r\in[1, \infty) $ is an arbitrary constant, we can assume that $ r > N $. Therefore, this combined with the fact that $ W^{1, r}_{0}(\Omega)\hookrightarrow\hookrightarrow C^{\alpha}(\Omega)\, (0 < \alpha < 1) $ implies that there exists a nonnegative function $ u_{\infty}\in C^{\alpha}(\Omega)\setminus\{0\} $, such that $ u_{n}\rightarrow u_{\infty} $ in $ C^{\alpha}(\Omega) $ and $ u_{n} $ converges uniformly to $ u_{\infty} $ in $ \Omega $. Given $ \varepsilon\in(0, 1) $, we can find a constant $ N_{\varepsilon}\in \mathbb{N} $ such that
$ \begin{equation} |u_{n}(x)-u_{\infty}(x)| < \varepsilon, \end{equation} $ | (4.13) |
for all $ x\in\Omega, n\geq N_{\varepsilon} $. It follows that
$ \begin{align} [\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{p^{-}_{n}}} & = \left[\int_{\Omega}|u_{n}-u_{\infty}|^{p_{n}(x)}+a(x)|u_{n}-u_{\infty}|^{q_{n}(x)}dx\right]^{\frac{1}{p^{-}_{n}}}\\ &\leq\left[\int_{\Omega}\varepsilon^{p_{n}(x)}+a(x)\varepsilon^{q_{n}(x)}dx\right]^{\frac{1}{p^{-}_{n}}}\\ &\leq\varepsilon\left[\int_{\Omega}(1+a(x))dx\right]^{\frac{1}{p^{-}_{n}}}\\ &\leq\left[\int_{\Omega}(1+a(x))dx\right]^{\frac{1}{p^{-}_{n}}} \end{align} $ | (4.14) |
and
$ \begin{align} [\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{q^{+}_{n}}} &\leq\varepsilon^{\frac{p^{-}_{n}}{q^{+}_{n}}}\left[\int_{\Omega}(1+a(x))dx\right]^{\frac{1}{q^{+}_{n}}}\\ &\leq\left[\int_{\Omega}(1+a(x))dx\right]^{\frac{1}{q^{+}_{n}}}, \end{align} $ | (4.15) |
for all $ n\geq N_{\varepsilon} $. Letting $ n\rightarrow \infty $ in (4.14) and (4.15) yields
$ \begin{equation} \lim\limits_{n\rightarrow \infty}[\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{p^{-}_{n}}} = \lim\limits_{n\rightarrow \infty}[\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{q^{+}_{n}}} = 0. \end{equation} $ | (4.16) |
Thus, the inequality
$ \begin{align*} |||u_{n}||_{\mathcal{H}_{n}}-\|u_{\infty}\|_{L^{\infty}(\Omega)}| &\leq|||u_{n}||_{\mathcal{H}_{n}}-||u_{\infty}||_{\mathcal{H}_{n}}|+|||u_{\infty}||_{\mathcal{H}_{n}} -\|u_{\infty}\|_{L^{\infty}(\Omega)}|\nonumber\\ &\leq||u_{n}-u_{\infty}||_{\mathcal{H}_{n}}+|||u_{\infty}||_{\mathcal{H}_{n}} -\|u_{\infty}\|_{L^{\infty}(\Omega)}|\nonumber\\ &\leq\left\{[\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{p^{-}_{n}}} +[\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{q^{+}_{n}}}\right\} +|||u_{\infty}||_{\mathcal{H}_{n}}-\|u_{\infty}\|_{L^{\infty}(\Omega)}|.\nonumber\\ &\leq\left\{[\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{p^{-}_{n}}} +[\rho_{\mathcal{H}_{n}}(u_{n}-u_{\infty})]^{\frac{1}{q^{+}_{n}}}\right\} +|k_{n}(u_{\infty})-\|u_{\infty}\|_{L^{\infty}(\Omega)}| \end{align*} $ |
holds. In view of Lemma 4.2 and (4.16), we can get
$ \begin{equation} \|u_{\infty}\|_{L^{\infty}(\Omega)} = \lim\limits_{n\rightarrow \infty}||u_{n}||_{\mathcal{H}_{n}} = 1. \end{equation} $ | (4.17) |
Step 4: To show that $ \liminf_{n\rightarrow \infty}\lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))}\geq\Lambda_{\infty} $.
Since $ \nabla u_{n}\rightharpoonup\nabla u_{\infty} $ in $ W_{0}^{1, r}(\Omega) $, $ ||u_{n}||_{\mathcal{H}_{n}} = 1 $ and the inequality (4.11) holds, we have
$ \begin{align*} \|\nabla u_{\infty}\|_{L^{r}(\Omega)} \leq\liminf\limits_{n\rightarrow \infty}\|\nabla u_{n}\|_{L^{r}(\Omega)} \leq\liminf\limits_{n\rightarrow \infty}\|\nabla u_{n}\|_{\mathcal{H}_{n}} = \liminf\limits_{n\rightarrow \infty}\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}. \end{align*} $ |
Letting $ r\rightarrow \infty $ and using Proposition 7 in [19] and equality (4.17), we get
$ \begin{equation} \Lambda_{\infty}\leq\frac{\|\nabla u_{\infty}\|_{L^{\infty}(\Omega)}}{\|u_{\infty}\|_{L^{\infty}(\Omega)}}\leq\liminf\limits_{n\rightarrow \infty}\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}. \end{equation} $ | (4.18) |
Thus, (4.8) and (4.18) imply that (1.18) holds. The proof is complete.
Remark 4.2. We can again argue with Step 3 to obtain
$ \begin{equation} \|\nabla u_{\infty}\|_{L^{\infty}(\Omega)} = \lim\limits_{n\rightarrow \infty}||\nabla u_{n}||_{\mathcal{H}_{n}}. \end{equation} $ | (4.19) |
The function $ u_{\infty}(x) $ also has the following property.
Lemma 4.4. If the assumptions of Theorem 1.2 hold, we can deduce that $ u_{\infty}(x) $ is a nontrivial viscosity solution of the problem (1.20).
Proof. For the first part we only need to show that $ u_{\infty} $ is a viscosity subsolution of (1.20). Let $ x_{0}\in \Omega $ and $ \psi\in C^{2}(\Omega) $. Assume that $ u_{\infty}-\psi $ attains its strict maximum value of zero at $ x_{0} $, namely, $ u_{\infty}(x_{0})-\psi(x_{0}) = 0 $.
Claim: We want to show that
$ \begin{align} &\max\bigg\{\Lambda_{\infty}\psi(x_{0})-|\nabla \psi(x_{0})|, (\psi(x_{0}))^{\theta(x_{0})}K_{\infty}(u_{\infty})-|\nabla \psi(x_{0})|, \\ &\triangle_{\infty}\psi(x_{0})+[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{2}(x_{0})\bigg\}\leq0. \end{align} $ | (4.20) |
By Lemma 4.3, we know that the convergence of $ u_{n} $ to $ u_{\infty} $ in $ \Omega $ is uniform. Therefore, there exists a sequence $ \{x_{n}\}\subset \Omega $ such that $ x_{n}\rightarrow x_{0} $ (as $ n\rightarrow \infty $), $ u_{n}(x_{n}) = \psi(x_{n}) $ and $ u_{n}-\psi $ attains its strict maximum value at $ x_{n} $.
Employing Theorem 1.1, it turns out that for any $ n\in \mathbb{N} $ large enough, $ u_{n} $ are continuous viscosity solutions of (1.5) with $ \lambda_{(p_{n}(\cdot), \, q_{n}(\cdot))} = \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $. Thus, we have
$ \begin{align} &-p_{n}(x_{n})(K_{n}(u_{n}))^{1-p_{n}(x_{n})}|\nabla \psi(x_{n})|^{p_{n}(x_{n})-4}\{|\nabla \psi(x_{n})|^{2}\triangle \psi(x_{n})+(p_{n}(x_{n})-2)\triangle_{\infty}\psi(x_{n})\\ &+[{\rm ln}(|\nabla \psi(x_{n})|)-{\rm ln}(K_{n}(u_{n}))]|\nabla \psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\nabla p_{n}(x_{n})\}\\ &-q_{n}(x_{n})a(x_{n})(K_{n}(u_{n}))^{1-q_{n}(x_{n})}|\nabla \psi(x_{n})|^{q_{n}(x_{n})-4}\{|\nabla \psi(x_{n})|^{2}\triangle \psi(x_{n})+(q_{n}(x_{n})-2)\triangle_{\infty}\psi(x_{n})\\ &+[{\rm ln}(|\nabla \psi(x_{n})|)-{\rm ln}(K_{n}(u_{n}))]|\nabla \psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\nabla q_{n}(x_{n})\}\\ &-q_{n}(x_{n})(K_{n}(u_{n}))^{1-q_{n}(x_{n})}|\nabla \psi(x_{n})|^{q_{n}(x_{n})-2}\nabla \psi(x_{n})\cdot\nabla a(x_{n}) \\ &-(K_{n}(u_{n}))^{1-p_{n}(x_{n})}|\nabla \psi(x_{n})|^{p_{n}(x_{n})-2}\nabla\psi(x_{n})\cdot\nabla p_{n}(x_{n})\\ &-a(x_{n})(K_{n}(u_{n}))^{1-q_{n}(x_{n})}|\nabla \psi(x_{n})|^{q_{n}(x_{n})-2}\nabla\psi(x_{n})\cdot\nabla q_{n}(x_{n})\\ &-\lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))}S_{n}(u_{n})p_{n}(x_{n})(k_{n}(u_{n}))^{1-p_{n}(x_{n})}|\psi(x_{n})|^{p_{n}(x_{n})-2}\psi(x_{n})\\ &-\lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))}S_{n}(u_{n})q_{n}(x_{n})a(x_{n})(k_{n}(u_{n}))^{1-q_{n}(x_{n})}|\psi(x_{n})|^{q_{n}(x_{n})-2}\psi(x_{n})\geq0. \end{align} $ | (4.21) |
Case 1: $ \psi(x_{0}) = u_{\infty}(x_{0}) > 0 $.
Continuing (4.21), for $ n\in \mathbb{N} $ sufficiently large, we have $ |\nabla \psi(x_{n})| > 0 $. Let us assume the assertion is not true, then by (4.21) and continuity, we have $ \psi(x_{0})\leq0 $. This leads to a contradiction.
Dividing both sides of (4.21) by
$ p_{n}(x_{n})(p_{n}(x_{n})-2)(K_{n}(u_{n}))^{1-p_{n}(x_{n})}|\nabla \psi(x_{n})|^{p_{n}(x_{n})-4}, $ |
we see that the following inequality holds
$ \begin{align} &\quad-\frac{|\nabla \psi(x_{n})|^{2}\triangle \psi(x_{n})}{p_{n}(x_{n})-2}-\triangle_{\infty}\psi(x_{n})-[{\rm ln}(|\nabla \psi(x_{n})|)-{\rm ln}(K_{n}(u_{n}))]|\nabla \psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\frac{\nabla p_{n}(x_{n})}{p_{n}(x_{n})-2}\\ &\quad-\frac{q_{n}(x_{n})}{p_{n}(x_{n})}\bigg|\frac{\nabla \psi(x_{n})}{K_{n}(u_{n})}\bigg|^{q_{n}(x_{n})-p_{n}(x_{n})} \bigg\{a(x_{n})\frac{|\nabla \psi(x_{n})|^{2}\triangle \psi(x_{n})}{p_{n}(x_{n})-2}+a(x_{n})\bigg(\frac{q_{n}(x_{n})-2}{p_{n}(x_{n})-2}\bigg)\triangle_{\infty}\psi(x_{n})\\ &\quad+\frac{|\nabla \psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\nabla a(x_{n})}{p_{n}(x_{n})-2}+a(x_{n})\frac{|\nabla \psi(x_{n})|^{2}}{p_{n}(x_{n})-2}\nabla \psi(x_{n})\cdot\frac{\nabla q_{n}(x_{n})}{q_{n}(x_{n})}\\ &\quad+a(x_{n})[{\rm ln}(|\nabla \psi(x_{n})|)-{\rm ln}(K_{n}(u_{n}))]|\nabla \psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\frac{\nabla q_{n}(x_{n})}{p_{n}(x_{n})-2}\bigg\}-\frac{|\nabla \psi(x_{n})|^{2}}{p_{n}(x_{n})}\frac{\nabla \psi(x_{n})\cdot\nabla p_{n}(x_{n})}{p_{n}(x_{n})-2}\\ &\geq\bigg(\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}\bigg)^{3}S_{n}(u_{n})\bigg|\frac{\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}\psi(x_{n})}{\nabla \psi(x_{n})}\bigg|^{p_{n}(x_{n})-4}\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{p_{n}(x_{n})-2}\\ &\quad+\bigg(\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}\bigg)^{3}S_{n}(u_{n})\frac{q_{n}(x_{n})}{p_{n}(x_{n})}a(x_{n})\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{p_{n}(x_{n})-2} \bigg[\bigg(\frac{|\psi(x_{n})|}{k_{n}(u_{n})}\bigg)^{(q_{n}(x_{n})-4)/(p_{n}(x_{n})-4)}\frac{K_{n}(u_{n})}{|\nabla \psi(x_{n})|}\bigg]^{p_{n}(x_{n})-4}\\ &\geq0. \end{align} $ | (4.22) |
Now, letting $ n\rightarrow \infty $, we deduce that
$ \begin{align*} &-\frac{|\nabla \psi(x_{n})|^{2}\triangle \psi(x_{n})}{p_{n}(x_{n})-2}-\triangle_{\infty}\psi(x_{n})\rightarrow -\triangle_{\infty}\psi(x_{0}), \nonumber\\ &-[{\rm ln}(|\nabla \psi(x_{n})|)-{\rm ln}(K_{n}(u_{n}))]|\nabla \psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\frac{\nabla p_{n}(x_{n})}{p_{n}(x_{n})-2}\nonumber\\ \rightarrow &-[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{1}(x_{0}), \nonumber\\ &-\frac{q_{n}(x_{n})}{p_{n}(x_{n})}\bigg\{a(x_{n})\frac{|\nabla \psi(x_{n})|^{2}\triangle \psi(x_{n})}{p_{n}(x_{n})-2}+a(x_{n})\bigg(\frac{q_{n}(x_{n})-2}{p_{n}(x_{n})-2}\bigg)\triangle_{\infty}\psi(x_{n}) +\frac{|\psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\nabla a(x_{n})}{p_{n}(x_{n})-2}\nonumber\\ &+a(x_{n})[{\rm ln}(|\nabla \psi(x_{n})|)-{\rm ln}(K_{n}(u_{n}))]|\nabla \psi(x_{n})|^{2}\nabla \psi(x_{n})\cdot\frac{\nabla q_{n}(x_{n})}{p_{n}(x_{n})-2}\nonumber\\ &+a(x_{n})\frac{|\nabla \psi(x_{n})|^{2}}{p_{n}(x_{n})-2}\nabla \psi(x_{n})\cdot\frac{\nabla q_{n}(x_{n})}{q_{n}(x_{n})}\bigg\}\nonumber\\ \rightarrow &-\theta^{2}(x_{0})a(x_{0})\left\{\triangle_{\infty}\psi(x_{0}) +[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{2}(x_{0})\right\}, \nonumber\\ &-\frac{|\nabla \psi(x_{n})|^{2}}{p_{n}(x_{n})}\frac{\nabla \psi(x_{n})\cdot\nabla p_{n}(x_{n})}{p_{n}(x_{n})-2}\rightarrow 0.\nonumber \end{align*} $ |
Taking the lower limit in inequality (4.22) and employing the limits above, we have
$ \begin{align} &-\bigg|\frac{\nabla \psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\limits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}\theta^{2}(x_{0})a(x_{0})\\ &\cdot\left\{\triangle_{\infty}\psi(x_{0})+[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{2}(x_{0})\right\}\\ &-\left\{\triangle_{\infty}\psi(x_{0})+[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{1}(x_{0})\right\}\\ = &-\bigg(\bigg|\frac{\nabla \psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\limits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}\theta^{2}(x_{0})a(x_{0})+1\bigg)\triangle_{\infty}\psi(x_{0})\\ &-[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0}) \left(\xi_{1}(x_{0})+\theta^{2}(x_{0})a(x_{0})\bigg|\frac{\nabla \psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\limits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}\xi_{2}(x_{0})\right)\\ \geq&(\Lambda_{\infty})^{3}\liminf\limits_{n\rightarrow \infty}S_{n}(u_{n})\bigg|\frac{\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}\psi(x_{n})}{\nabla \psi(x_{n})}\bigg|^{p_{n}(x_{n})-4}\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{p_{n}(x_{n})-2}\\ &+(\Lambda_{\infty})^{3}\theta (x_{0})a(x_{0}) \liminf\limits_{n\rightarrow \infty}S_{n}(u_{n})\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{p_{n}(x_{n})-2} \bigg[\bigg(\frac{|\psi(x_{n})|}{k_{n}(u_{n})}\bigg)^{(q_{n}(x_{n})-4)/(p_{n}(x_{n})-4)}\frac{K_{n}(u_{n})}{|\nabla \psi(x_{n})|}\bigg]^{p_{n}(x_{n})-4}\\ \geq&0. \end{align} $ | (4.23) |
Note that by (4.17), (4.19) and $ u_{\infty}(x_{0}) = \psi(x_{0}) > 0 $, we have
$ \begin{align} \bigg|\frac{\nabla\psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))} & = \bigg|\frac{\nabla \psi(x_{0})}{\Lambda_{\infty}k_{\infty}(u_{\infty})}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}\\ &\leq\bigg|\frac{\nabla \psi(x_{0})}{\Lambda_{\infty}u_{\infty}(x_{0})}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}\\ & = \bigg|\frac{\nabla \psi(x_{0})}{\Lambda_{\infty}\psi(x_{0})}\bigg|^{\lim\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))} \end{align} $ | (4.24) |
and
$ \begin{align} \bigg|\frac{\nabla\psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))} & = \bigg|\frac{\nabla \psi(x_{0})}{\Lambda_{\infty}(k_{\infty}(u_{\infty}))^{\theta(x_{0})}}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}\\ &\leq\bigg|\frac{\nabla \psi(x_{0})}{\Lambda_{\infty}(u_{\infty}(x_{0}))^{\theta(x_{0})}}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}\\ & = \bigg|\frac{\nabla \psi(x_{0})}{\Lambda_{\infty}(\psi(x_{0}))^{\theta(x_{0})}}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))}. \end{align} $ | (4.25) |
Claim:
$ \begin{equation} \Lambda_{\infty}\psi(x_{0})-|\nabla \psi(x_{0})|\leq0. \end{equation} $ | (4.26) |
Assume that $ \Lambda_{\infty}\psi(x_{0}) > |\nabla \psi(x_{0})| $, then (4.24) and (1.11) imply
$ \begin{equation} \bigg|\frac{\nabla\psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))} = 0 \end{equation} $ | (4.27) |
and
$ \begin{equation} \lim\limits_{n\rightarrow \infty}\left|\frac{\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}\psi(x_{n})}{\nabla \psi(x_{n})}\right|^{(p_{n}(x_{n})-4)\setminus(q_{n}(x_{n})-4)} = \bigg(\frac{ \Lambda_{\infty}\psi(x_{0})}{|\nabla \psi(x_{0})|}\bigg)^{\frac{1}{\theta(x_{0})}} > 1. \end{equation} $ | (4.28) |
Thus, choosing $ \varepsilon > 0 $ small enough, we have
$ \begin{equation} \left|\frac{\lambda^{1}_{(p_{n}(\cdot), q_{n}(\cdot))}\psi(x_{n})}{\nabla \psi(x_{n})}\right|^{(p_{n}(x_{n})-4)\setminus(q_{n}(x_{n})-4)}\geq1+\varepsilon, \end{equation} $ | (4.29) |
for all $ n\in \mathbb{N} $ sufficiently large. By (4.29), we get
$ \begin{align} &\liminf\limits_{n\rightarrow \infty}\left|\frac{\lambda^{1}_{(p_{n}, q_{n})}\psi(x_{n})}{\nabla \psi(x_{n})}\right|^{p_{n}(x_{n})-4}\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{p_{n}(x_{n})-2}\\ = &\liminf\limits_{n\rightarrow \infty}\frac{\left(\left|\frac{\lambda^{1}_{(p_{n}, q_{n})}\psi(x_{n})}{\nabla \psi(x_{n})}\right|^{(p_{n}(x_{n})-4)\setminus(q_{n}(x_{n})-4)}\right)^{q_{n}(x_{n})-4}}{q_{n}(x_{n})-4}\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{\frac{p_{n}(x_{n})-2}{q_{n}(x_{n})-4}}\\ \geq& R\psi(x_{0})^{3}\lim\limits_{n\rightarrow \infty}\frac{(1+\varepsilon)^{q_{n}(x_{n})-4}}{q_{n}(x_{n})-4}\\ = &+\infty. \end{align} $ | (4.30) |
From (4.23), (4.27) and (4.30), we see that
$ \begin{equation} -\left\{\triangle_{\infty}\psi(x_{0})+[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{1}(x_{0})\right\}\geq+\infty, \end{equation} $ | (4.31) |
which is a contradiction. Hence, (4.26) holds.
Claim:
$ \begin{equation} (\psi(x_{0}))^{\theta(x_{0})}K_{\infty}(u_{\infty})-|\nabla \psi(x_{0})|\leq0. \end{equation} $ | (4.32) |
Suppose that the above inequality is not true, then we have
$ \begin{align*} &\quad\lim\limits_{n\rightarrow \infty}\bigg[\bigg(\frac{\psi(x_{n})}{k_{n}(u_{n})}\bigg)^{(q_{n}(x_{n})-4)/(p_{n}(x_{n})-4)}\frac{K_{n}(u_{n})}{|\nabla \psi(x_{n})|}\bigg]^{(p_{n}(x_{n})-4)/(q_{n}(x_{n})-4)}\nonumber\\ & = \lim\limits_{n\rightarrow \infty}\bigg[(\psi(x_{n}))^{(q_{n}(x_{n})-4)/(p_{n}(x_{n})-4)}\frac{K_{n}(u_{n})}{|\nabla \psi(x_{n})|}\bigg]^{(p_{n}(x_{n})-4)/(q_{n}(x_{n})-4)}\nonumber\\ & = \bigg[(\psi(x_{0}))^{\theta(x_{0})}\frac{K_{\infty}(u_{\infty})}{|\nabla \psi(x_{0})|}\bigg]^{\frac{1}{\theta(x_{0})}} > 1. \end{align*} $ |
Thus, choosing $ \varepsilon_{1} > 0 $ small enough, we have
$ \begin{equation} \bigg[\bigg(\frac{\psi(x_{n})}{k_{n}(u_{n})}\bigg)^{(q_{n}(x_{n})-4)/(p_{n}(x_{n})-4)}\frac{K_{n}(u_{n})}{|\nabla \psi(x_{n})|}\bigg]^{(p_{n}(x_{n})-4)/(q_{n}(x_{n})-4)}\geq1+\varepsilon_{1}, \end{equation} $ | (4.33) |
for all $ n\in \mathbb{N} $ sufficiently large. We are led to
$ \begin{align} &\quad\liminf\limits_{n\rightarrow \infty}\bigg[\bigg(\frac{|\psi(x_{n})|}{k_{n}(u_{n})}\bigg)^{(q_{n}(x_{n})-4)/(p_{n}(x_{n})-4)}\frac{K_{n}(u_{n})}{|\nabla \psi(x_{n})|}\bigg]^{p_{n}(x_{n})-4}\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{p_{n}(x_{n})-2}\\ &\geq \liminf\limits_{n\rightarrow \infty}\frac{(1+\varepsilon_{1})^{q_{n}(x_{n})-4}}{q_{n}(x_{n})-4}\frac{|\psi(x_{n})|^{2}\psi(x_{n})}{\frac{p_{n}(x_{n})-2}{q_{n}(x_{n})-4}}\\ & = \theta(x_{0})\psi(x_{0})^{3}\lim\limits_{n\rightarrow \infty}\frac{(1+\varepsilon_{1})^{q_{n}(x_{n})-4}}{q_{n}(x_{n})-4}\\ & = +\infty. \end{align} $ | (4.34) |
In view of $ (\psi(x_{0}))^{\theta(x_{0})}K_{\infty}(u_{\infty})-|\nabla \psi(x_{0})| > 0 $ and (4.25),
$ \begin{equation*} \bigg|\frac{\nabla\psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))} = 0. \end{equation*} $ |
Therefore, this fact along with (4.23) shows that (4.31) holds. This is a contradiction. Thus we deduce that (4.32) holds.
Claim:
$ \begin{equation} \triangle_{\infty}\psi(x_{0})+[{\rm ln}(|\nabla \psi(x_{0})|)-{\rm ln}(K_{\infty}(u_{\infty}))]|\nabla \psi(x_{0})|^{2}\nabla \psi(x_{0})\cdot\xi_{2}(x_{0})\leq0. \end{equation} $ | (4.35) |
Taking (4.24) and (4.26) into account, we have
$ \begin{equation} \bigg|\frac{\nabla\psi(x_{0})}{K_{\infty}(u_{\infty})}\bigg|^{\liminf\nolimits_{n\rightarrow \infty}(q_{n}(x_{n})-p_{n}(x_{n}))} = +\infty. \end{equation} $ | (4.36) |
At the same time, by (4.25) and (4.32), we also deduce that (4.36) holds. If we assume that inequality (4.35) does not hold, then by (4.23) and (4.36), there is a contradiction. Thus, we deduce that (4.35) holds.
Case 2: $ \psi(x_{0}) = u_{\infty}(x_{0}) = 0 $.
Note that if $ |\nabla \psi(x_{0})| = 0 $ (in this case, we have $ \triangle_{\infty}\psi(x_{0}) $ = 0), the inequality (4.20) trivially holds. Hence, let us assume that $ |\nabla \psi(x_{0})| > 0 $, then $ |\nabla \psi(x_{n})| > 0 $ for $ n\in \mathbb{N} $ large enough. We can use very similar arguments as Case 1 to conclude that (4.20) holds. The same argument can be used in order to show that $ u_{\infty} $ is a viscosity supersolution of (1.20).
By Lemmas 4.3 and 4.4, it follows that Theorem 1.2 holds.
Remark 4.3. In the particular case where $ p_{n}(x) = np(x) $ and $ q_{n}(x) = nq(x) $, Theorems 1.1 and 1.2 are also true.
In this paper, we studied a double-phase eigenvalue problem with large variable exponents. As we know, for $ p $-Laplace operator eigenvalue problems, there is an important feature that if $ u $ is an eigenfunction, so is $ ku $, where $ k $ is an arbitrary constant. However, the double-phase operator with variable exponents looses this property. To overcome the above mentioned shortcoming, we defined the eigenvalue by using the Rayleigh quotient of two norms of Musielak-Orlicz space. Moreover, in the particular case where $ p_{n}(\cdot) = p_{n} $ and $ q_{n}(\cdot) = q_{n} $, Theorems 1.1 and 1.2 are also true (see [13]).
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the National Natural Science Foundation of China (No.12001196) and the Natural Science Foundation of Henan (No. 232300421143).
The authors declare that they have no competing interests.
[1] |
H. He, S. Tuo, K. Lei, A. Gao, Assessing quality tourism development in China: an analysis based on the degree of mismatch and its influencing factors, Environ. Dev. Sustain., 26 (2023), 9525–9552. https://doi.org/10.1007/s10668-023-03107-1 doi: 10.1007/s10668-023-03107-1
![]() |
[2] |
N. Tan, S. Anwar, W. Jiang, Intangible cultural heritage listing and tourism growth in China, J. Tour. Cult. Change, 21 (2023), 188–206. https://doi.org/10.1080/14766825.2022.2068373 doi: 10.1080/14766825.2022.2068373
![]() |
[3] |
Q. Chen, The impact of economic and environmental factors and tourism policies on the sustainability of tourism growth in China: evidence using novel NARDL model, Environ. Sci. Pollut. Res., 30 (2023), 19326–19341. https://doi.org/10.1007/s11356-022-22925-w doi: 10.1007/s11356-022-22925-w
![]() |
[4] |
T. Deng, W. Zhao, Y. Hu, Retirement and household tourism consumption-a case study in China, Tour. Econ., 29 (2023), 1055–1073. https://doi.org/10.1177/1354816622109017 doi: 10.1177/1354816622109017
![]() |
[5] |
D. M. Gonzalez-Perez, J. M. M. Martín, J. M. G. Martínez, A. M. Pachón, Analyzing the real size of the tourism industry on the basis of an assessment of water consumption patterns, J. Bus. Res., 157 (2023), 113601. https://doi.org/10.1016/j.jbusres.2022.113601 doi: 10.1016/j.jbusres.2022.113601
![]() |
[6] |
D. Sanjaya, M. Arief, N. J. Setiadi, P. Heriyati, Research on green tourism intention: a bibliometric analysis, J. Syst. Manage. Sci., 13 (2023), 159–185. https://doi.org/10.33168/JSMS.2023.0610 doi: 10.33168/JSMS.2023.0610
![]() |
[7] |
S. C. Haw, K. Ong, L. J. Chew, K. W. Ng, P. Naveen, E. A. Anaam, Improving the prediction resolution time for customer support ticket system, J. Syst. Manage. Sci., 12 (2022), 1–16. https://doi.org/10.33168/JSMS.2022.0601 doi: 10.33168/JSMS.2022.0601
![]() |
[8] |
O. Al-Jamili, H. Ibrahim, R. Ahmad, An integrated model for predicting the user continuance intention towards utilizing open government data, J. Syst. Manage. Sci., 12 (2022), 295–323. https://doi.org/10.33168/JSMS.2022.0419 doi: 10.33168/JSMS.2022.0419
![]() |
[9] |
W. G. Hiyab, T. H. Hassan, M. A. Hassanin, M. Y. Almakhayitah, The epistemological values of travel & tourism competitiveness index and its predictive powers on tourist arrivals in Africa; pls-sem approach, Geo J. Tour. Geosites, 49 (2023), 1046–1055. https://doi.org/10.30892/gtg.49320-1104 doi: 10.30892/gtg.49320-1104
![]() |
[10] |
M. Khairi, D. Darmawan, The relationship between destination attractiveness, location, tourism facilities, and revisit intentions, J. Mark. Bus. Res., 1 (2021), 39–50. https://doi.org/10.56348/mark.v1i1.32 doi: 10.56348/mark.v1i1.32
![]() |
[11] |
Y. C. Hu, P. Jiang, Fuzzified grey prediction models using neural networks for tourism demand forecasting, Comput. Appl. Math., 39 (2020), 145. https://doi.org/10.1007/s40314-020-01188-6 doi: 10.1007/s40314-020-01188-6
![]() |
[12] |
X. Yang, J. Zhou, D. Wen, An optimized BP neural network model for teaching management evaluation, J. Intell. Fuzzy Syst., 40 (2021), 3215–3221. https://doi.org/10.3233/JIFS-189361 doi: 10.3233/JIFS-189361
![]() |
[13] |
J. W. Bi, H. Li, Z. P. Fan, Tourism demand forecasting with time series imaging: a deep learning model, Ann. Tour. Res., 90 (2021), 103255. https://doi.org/10.1016/j.annals.2021.103255 doi: 10.1016/j.annals.2021.103255
![]() |
[14] |
A. S. Rashad, The power of travel search data in forecasting the tourism demand in Dubai, Forecasting, 4 (2022), 674–684. https://doi.org/10.3390/forecast4030036 doi: 10.3390/forecast4030036
![]() |
[15] |
X. Ma, Tourism demand forecasting based on grey model and BP neural network, Complexity, 2021 (2021), 5528383. https://doi.org/10.1155/2021/5528383 doi: 10.1155/2021/5528383
![]() |
[16] |
L. Wang, B. Wu, Q. Zhu, Y. R. Zeng, Forecasting monthly tourism demand using enhanced backpropagation neural network, Neural Process. Lett., 52 (2020), 2607–2636. https://doi.org/10.1007/s11063-020-10363-z doi: 10.1007/s11063-020-10363-z
![]() |
[17] |
W. Shi, Y. Gong, L. Wang, N. Nikolova, Heterogeneity of inbound tourism driven by exchange rate fluctuations: implications for tourism business recovery and resilience in Australia, Curr. Issues Tour., 26 (2023), 450–467. https://doi.org/10.1080/13683500.2021.2023478 doi: 10.1080/13683500.2021.2023478
![]() |
[18] |
R. Brauer, M. Dymitrow, J. Tribe, The impact of tourism research, Ann. Tour. Res., 77 (2019), 64–78. https://doi.org/10.1016/j.annals.2019.05.006 doi: 10.1016/j.annals.2019.05.006
![]() |
[19] |
S. B. Hojeghan, A. N. Esfangareh, Digital economy and tourism impacts, influences and challenges, Proc. Soc. Behav. Sci., 19 (2011), 308–316. https://doi.org/10.1016/j.sbspro.2011.05.136 doi: 10.1016/j.sbspro.2011.05.136
![]() |
[20] |
M. Li, J. Chen, High-speed rail network in China: the contribution of fast trains to regional tourism and economic development, Tour. Rev., 75 (2020), 414–432. https://doi.org/10.1108/TR-12-2018-0197 doi: 10.1108/TR-12-2018-0197
![]() |
[21] |
V. S. Lin, Y. Yang, G. Li, Where can tourism-led growth and economy-driven tourism growth occur? J. Travel Res., 58 (2019), 760–773. https://doi.org/10.1177/0047287518773919 doi: 10.1177/0047287518773919
![]() |
[22] |
N. Mou, Y. Zheng, T. Makkonen, T. Yang, J. Tang, Y. Song, Tourists' digital footprint: the spatial patterns of tourist flows in Qingdao, China, Tour. Manage., 81 (2020), 104151. https://doi.org/10.1016/j.tourman.2020.104151 doi: 10.1016/j.tourman.2020.104151
![]() |
[23] |
L. Xu, S. Wang, J. Li, L. Tang, Y. Shao, Modelling international tourism flows to China: a panel data analysis with the gravity model, Tour. Econ., 25 (2019), 1047–1069. https://doi.org/10.1177/1354816618816167 doi: 10.1177/1354816618816167
![]() |
[24] |
S. M. Rasoolimanesh, S. M. Noor, F. Schuberth, M. Jaafar, Investigating the effects of tourist engagement on satisfaction and loyalty, Serv. Ind. J., 39 (2019), 559–574. https://doi.org/10.1080/02642069.2019.1570152 doi: 10.1080/02642069.2019.1570152
![]() |
[25] |
Y. C. Hu, Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting, Qual. Quant., 55 (2021), 315–331. https://doi.org/10.1007/s11135-020-01006-5 doi: 10.1007/s11135-020-01006-5
![]() |
[26] |
A. Saayman, J. de Klerk, Forecasting tourist arrivals using multivariate singular spectrum analysis, Tour. Econ., 25 (2019), 330–354. https://doi.org/10.1177/1354816618768318 doi: 10.1177/1354816618768318
![]() |
[27] |
B. Wu, L. Wang, R. Tao, Y. Zeng, Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19, Neural Comput. Appl., 35 (2023), 5437–5463. https://doi.org/10.1007/s00521-022-07967-y doi: 10.1007/s00521-022-07967-y
![]() |
[28] |
Y. C. Hu, P. Jiang, P. C. Lee, Forecasting tourism demand by incorporating neural networks into Grey-Markov models, J. Oper. Res. Soc., 70 (2019), 12–20. https://doi.org/10.1080/01605682.2017.1418150 doi: 10.1080/01605682.2017.1418150
![]() |
[29] |
G. McCartney, The impact of the coronavirus outbreak on Macao. From tourism lockdown to tourism recovery, Curr. Issues Tour., 24 (2021), 2683–2692. https://doi.org/10.1080/13683500.2020.1762549 doi: 10.1080/13683500.2020.1762549
![]() |
[30] |
C. Li, M. K. Ng, Y. Tang, T. Fung, From a 'world factory' to China's Bay Area: a review of the outline of the development plan for the Guangdong-Hong Kong-Macao Greater Bay Area, Plan. Theory Pract., 23 (2022), 310–314. https://doi.org/10.1080/14649357.2021.1958539 doi: 10.1080/14649357.2021.1958539
![]() |
[31] |
H. Weng, J. Kou, Q. Shao, Evaluation of urban comprehensive carrying capacity in the Guangdong-Hong Kong-Macao Greater Bay Area based on regional collaboration, Environ. Sci. Pollut. Res., 27 (2020), 20025–20036. https://doi.org/10.1007/s11356-020-08517-6 doi: 10.1007/s11356-020-08517-6
![]() |
[32] |
X. Ma, J. Tao, Cross‐border environmental governance in the Greater Pearl River Delta (GPRD), Int. J. Environ. Stud., 67 (2010), 127–136. https://doi.org/10.1080/00207231003693282 doi: 10.1080/00207231003693282
![]() |
[33] |
W. Yuhong, L. Jie, Improvement and application of GM (1, 1) model based on multivariable dynamic optimization, J. Syst. Eng. Electron., 31 (2020), 593–601. https://doi.org/10.23919/JSEE.2020.000024 doi: 10.23919/JSEE.2020.000024
![]() |
[34] |
H. Wang, Y. Wang, D. Wu, A new seasonal cycle GM (1, 1) model and its application in railway passenger volume forecasting, Grey Syst. Theory Appl., 12 (2022), 293–317. https://doi.org/10.1108/GS-11-2020-0146 doi: 10.1108/GS-11-2020-0146
![]() |
[35] |
Z. Jia, Z. Zhou, H. Zhang, B. Li, Y. Zhang, Forecast of coal consumption in Gansu Province based on Grey-Markov chain model, Energy, 199 (2020), 117444. https://doi.org/10.1016/j.energy.2020.117444 doi: 10.1016/j.energy.2020.117444
![]() |
[36] |
V. Roy, Convergence diagnostics for Markov chain Monte Carlo, Ann. Rev. Stat. Appl., 7 (2020), 387–412. https://doi.org/10.1146/annurev-statistics-031219-041300 doi: 10.1146/annurev-statistics-031219-041300
![]() |
[37] |
C. Nemeth, P. Fearnhead, Stochastic gradient Markov chain Monte Carlo, J. Amer. Stat. Assoc., 116 (2021), 433–450. https://doi.org/10.1080/01621459.2020.1847120 doi: 10.1080/01621459.2020.1847120
![]() |
[38] |
H. R. Beyer, M. Alcubierre, M. Megevand, Stability study of a model for the Klein-Gordon equation in Kerr space-time II, Rep. Math. Phys., 88 (2021), 115–143. https://doi.org/10.1016/S0034-4877(21)00059-8 doi: 10.1016/S0034-4877(21)00059-8
![]() |
[39] |
L. Wu, X. Guo, Y. Chen, Grey relational entropy calculation and fractional prediction of water and economy in the Beijing-Tianjin-Hebei Region, J. Math., 2021 (2021), 4418260. https://doi.org/10.1155/2021/4418260 doi: 10.1155/2021/4418260
![]() |
[40] |
F. Mukhamedov, A. Al-Rawashdeh, Approximations of non-homogeneous Markov chains on abstract states spaces, Bull. Math. Sci., 11 (2021), 2150002. https://doi.org/10.1142/S1664360721500028 doi: 10.1142/S1664360721500028
![]() |
[41] |
G. Portillo-Ramírez, H. Cruz-Suárez, R. López-Ríos, R. Blancas-Rivera, Markov decision processes approximation with coupled dynamics via Markov deterministic control systems, Open Math., 21 (2023), 20230129. https://doi.org/10.1515/math-2023-0129 doi: 10.1515/math-2023-0129
![]() |
[42] |
T. Lam, L. Williams, A Markov chain on the symmetric group that is Schubert positive? Exp. Math., 21 (2012), 189–192. https://doi.org/10.1080/10586458.2011.579020 doi: 10.1080/10586458.2011.579020
![]() |
[43] |
A. Ruszczyński, Risk-averse dynamic programming for Markov decision processes, Math. Program., 125 (2010), 235–261. https://doi.org/10.1007/s10107-010-0393-3 doi: 10.1007/s10107-010-0393-3
![]() |
[44] |
N. Chen, Analysis of the correlation between cross-border E-commerce and economic growth based on hierarchical multilevel gray evaluation model, J. Math., 2022 (2022), 8455404. https://doi.org/10.1155/2022/8455404 doi: 10.1155/2022/8455404
![]() |
[45] |
I. Ben-Yair, G. B. Shalom, M. Eliasof, E. Treister, Quantized convolutional neural networks through the lens of partial differential equations, Res. Math. Sci., 9 (2022), 58. https://doi.org/10.1007/s40687-022-00354-y doi: 10.1007/s40687-022-00354-y
![]() |
[46] |
J. Xu, K. Liu, Isomorphism problem of China's marine industries: analysis based on the gray correlation theory, J. Interdiscip. Math., 21 (2018), 479–487. https://doi.org/10.1080/09720502.2017.1420577 doi: 10.1080/09720502.2017.1420577
![]() |