Research article Special Issues

Optimization study of tourism total revenue prediction model based on the Grey Markov chain: a case study of Macau

  • Received: 21 February 2024 Revised: 22 March 2024 Accepted: 29 March 2024 Published: 08 May 2024
  • MSC : 62M05, 62M10, 62P20

  • The GM (1, 1) model, grounded in gray system theory, utilizes first-order cumulative data for forecasting. While offering simplicity and efficiency, its applicability is confined to such data. In light of the constraints inherent in the conventional gray GM (1, 1) prediction model when confronted with stochastic data fluctuations, the residual correction methodology was deployed to enhance the predictive efficacy of the GM (1, 1) model. Subsequently, an augmented model underwent refinement through the application of the Markov chain, giving rise to a sophisticated and optimized gray Markov chain prediction model. The efficacy of this novel model was substantiated through a case study involving the prediction of Macao's aggregate tourism revenue. A comparative analysis was conducted between the outcomes generated by the traditional gray prediction model, those of the refined prediction model, and the empirical data pertaining to tourism. This scrutiny validated the proficiency and precision of the optimized prediction model. The process of model optimization manifested a discernible enhancement in both predictive accuracy and stability, thereby broadening the prospective applications of gray prediction models. This endeavor aspired to furnish a scientifically grounded point of reference for the advancement of tourism within the Guangdong-Hong Kong-Macao Greater Bay Area and, indeed, throughout China. Moreover, it introduced a fresh methodology that held promise as a decision-making support mechanism for the developmental trajectory of Macao's tourism industry.

    Citation: Xiaolong Chen, Hongfeng Zhang, Cora Un In Wong. Optimization study of tourism total revenue prediction model based on the Grey Markov chain: a case study of Macau[J]. AIMS Mathematics, 2024, 9(6): 16187-16202. doi: 10.3934/math.2024783

    Related Papers:

  • The GM (1, 1) model, grounded in gray system theory, utilizes first-order cumulative data for forecasting. While offering simplicity and efficiency, its applicability is confined to such data. In light of the constraints inherent in the conventional gray GM (1, 1) prediction model when confronted with stochastic data fluctuations, the residual correction methodology was deployed to enhance the predictive efficacy of the GM (1, 1) model. Subsequently, an augmented model underwent refinement through the application of the Markov chain, giving rise to a sophisticated and optimized gray Markov chain prediction model. The efficacy of this novel model was substantiated through a case study involving the prediction of Macao's aggregate tourism revenue. A comparative analysis was conducted between the outcomes generated by the traditional gray prediction model, those of the refined prediction model, and the empirical data pertaining to tourism. This scrutiny validated the proficiency and precision of the optimized prediction model. The process of model optimization manifested a discernible enhancement in both predictive accuracy and stability, thereby broadening the prospective applications of gray prediction models. This endeavor aspired to furnish a scientifically grounded point of reference for the advancement of tourism within the Guangdong-Hong Kong-Macao Greater Bay Area and, indeed, throughout China. Moreover, it introduced a fresh methodology that held promise as a decision-making support mechanism for the developmental trajectory of Macao's tourism industry.



    加载中


    [1] H. He, S. Tuo, K. Lei, A. Gao, Assessing quality tourism development in China: an analysis based on the degree of mismatch and its influencing factors, Environ. Dev. Sustain., 26 (2023), 9525–9552. https://doi.org/10.1007/s10668-023-03107-1 doi: 10.1007/s10668-023-03107-1
    [2] N. Tan, S. Anwar, W. Jiang, Intangible cultural heritage listing and tourism growth in China, J. Tour. Cult. Change, 21 (2023), 188–206. https://doi.org/10.1080/14766825.2022.2068373 doi: 10.1080/14766825.2022.2068373
    [3] Q. Chen, The impact of economic and environmental factors and tourism policies on the sustainability of tourism growth in China: evidence using novel NARDL model, Environ. Sci. Pollut. Res., 30 (2023), 19326–19341. https://doi.org/10.1007/s11356-022-22925-w doi: 10.1007/s11356-022-22925-w
    [4] T. Deng, W. Zhao, Y. Hu, Retirement and household tourism consumption-a case study in China, Tour. Econ., 29 (2023), 1055–1073. https://doi.org/10.1177/1354816622109017 doi: 10.1177/1354816622109017
    [5] D. M. Gonzalez-Perez, J. M. M. Martín, J. M. G. Martínez, A. M. Pachón, Analyzing the real size of the tourism industry on the basis of an assessment of water consumption patterns, J. Bus. Res., 157 (2023), 113601. https://doi.org/10.1016/j.jbusres.2022.113601 doi: 10.1016/j.jbusres.2022.113601
    [6] D. Sanjaya, M. Arief, N. J. Setiadi, P. Heriyati, Research on green tourism intention: a bibliometric analysis, J. Syst. Manage. Sci., 13 (2023), 159–185. https://doi.org/10.33168/JSMS.2023.0610 doi: 10.33168/JSMS.2023.0610
    [7] S. C. Haw, K. Ong, L. J. Chew, K. W. Ng, P. Naveen, E. A. Anaam, Improving the prediction resolution time for customer support ticket system, J. Syst. Manage. Sci., 12 (2022), 1–16. https://doi.org/10.33168/JSMS.2022.0601 doi: 10.33168/JSMS.2022.0601
    [8] O. Al-Jamili, H. Ibrahim, R. Ahmad, An integrated model for predicting the user continuance intention towards utilizing open government data, J. Syst. Manage. Sci., 12 (2022), 295–323. https://doi.org/10.33168/JSMS.2022.0419 doi: 10.33168/JSMS.2022.0419
    [9] W. G. Hiyab, T. H. Hassan, M. A. Hassanin, M. Y. Almakhayitah, The epistemological values of travel & tourism competitiveness index and its predictive powers on tourist arrivals in Africa; pls-sem approach, Geo J. Tour. Geosites, 49 (2023), 1046–1055. https://doi.org/10.30892/gtg.49320-1104 doi: 10.30892/gtg.49320-1104
    [10] M. Khairi, D. Darmawan, The relationship between destination attractiveness, location, tourism facilities, and revisit intentions, J. Mark. Bus. Res., 1 (2021), 39–50. https://doi.org/10.56348/mark.v1i1.32 doi: 10.56348/mark.v1i1.32
    [11] Y. C. Hu, P. Jiang, Fuzzified grey prediction models using neural networks for tourism demand forecasting, Comput. Appl. Math., 39 (2020), 145. https://doi.org/10.1007/s40314-020-01188-6 doi: 10.1007/s40314-020-01188-6
    [12] X. Yang, J. Zhou, D. Wen, An optimized BP neural network model for teaching management evaluation, J. Intell. Fuzzy Syst., 40 (2021), 3215–3221. https://doi.org/10.3233/JIFS-189361 doi: 10.3233/JIFS-189361
    [13] J. W. Bi, H. Li, Z. P. Fan, Tourism demand forecasting with time series imaging: a deep learning model, Ann. Tour. Res., 90 (2021), 103255. https://doi.org/10.1016/j.annals.2021.103255 doi: 10.1016/j.annals.2021.103255
    [14] A. S. Rashad, The power of travel search data in forecasting the tourism demand in Dubai, Forecasting, 4 (2022), 674–684. https://doi.org/10.3390/forecast4030036 doi: 10.3390/forecast4030036
    [15] X. Ma, Tourism demand forecasting based on grey model and BP neural network, Complexity, 2021 (2021), 5528383. https://doi.org/10.1155/2021/5528383 doi: 10.1155/2021/5528383
    [16] L. Wang, B. Wu, Q. Zhu, Y. R. Zeng, Forecasting monthly tourism demand using enhanced backpropagation neural network, Neural Process. Lett., 52 (2020), 2607–2636. https://doi.org/10.1007/s11063-020-10363-z doi: 10.1007/s11063-020-10363-z
    [17] W. Shi, Y. Gong, L. Wang, N. Nikolova, Heterogeneity of inbound tourism driven by exchange rate fluctuations: implications for tourism business recovery and resilience in Australia, Curr. Issues Tour., 26 (2023), 450–467. https://doi.org/10.1080/13683500.2021.2023478 doi: 10.1080/13683500.2021.2023478
    [18] R. Brauer, M. Dymitrow, J. Tribe, The impact of tourism research, Ann. Tour. Res., 77 (2019), 64–78. https://doi.org/10.1016/j.annals.2019.05.006 doi: 10.1016/j.annals.2019.05.006
    [19] S. B. Hojeghan, A. N. Esfangareh, Digital economy and tourism impacts, influences and challenges, Proc. Soc. Behav. Sci., 19 (2011), 308–316. https://doi.org/10.1016/j.sbspro.2011.05.136 doi: 10.1016/j.sbspro.2011.05.136
    [20] M. Li, J. Chen, High-speed rail network in China: the contribution of fast trains to regional tourism and economic development, Tour. Rev., 75 (2020), 414–432. https://doi.org/10.1108/TR-12-2018-0197 doi: 10.1108/TR-12-2018-0197
    [21] V. S. Lin, Y. Yang, G. Li, Where can tourism-led growth and economy-driven tourism growth occur? J. Travel Res., 58 (2019), 760–773. https://doi.org/10.1177/0047287518773919 doi: 10.1177/0047287518773919
    [22] N. Mou, Y. Zheng, T. Makkonen, T. Yang, J. Tang, Y. Song, Tourists' digital footprint: the spatial patterns of tourist flows in Qingdao, China, Tour. Manage., 81 (2020), 104151. https://doi.org/10.1016/j.tourman.2020.104151 doi: 10.1016/j.tourman.2020.104151
    [23] L. Xu, S. Wang, J. Li, L. Tang, Y. Shao, Modelling international tourism flows to China: a panel data analysis with the gravity model, Tour. Econ., 25 (2019), 1047–1069. https://doi.org/10.1177/1354816618816167 doi: 10.1177/1354816618816167
    [24] S. M. Rasoolimanesh, S. M. Noor, F. Schuberth, M. Jaafar, Investigating the effects of tourist engagement on satisfaction and loyalty, Serv. Ind. J., 39 (2019), 559–574. https://doi.org/10.1080/02642069.2019.1570152 doi: 10.1080/02642069.2019.1570152
    [25] Y. C. Hu, Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting, Qual. Quant., 55 (2021), 315–331. https://doi.org/10.1007/s11135-020-01006-5 doi: 10.1007/s11135-020-01006-5
    [26] A. Saayman, J. de Klerk, Forecasting tourist arrivals using multivariate singular spectrum analysis, Tour. Econ., 25 (2019), 330–354. https://doi.org/10.1177/1354816618768318 doi: 10.1177/1354816618768318
    [27] B. Wu, L. Wang, R. Tao, Y. Zeng, Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19, Neural Comput. Appl., 35 (2023), 5437–5463. https://doi.org/10.1007/s00521-022-07967-y doi: 10.1007/s00521-022-07967-y
    [28] Y. C. Hu, P. Jiang, P. C. Lee, Forecasting tourism demand by incorporating neural networks into Grey-Markov models, J. Oper. Res. Soc., 70 (2019), 12–20. https://doi.org/10.1080/01605682.2017.1418150 doi: 10.1080/01605682.2017.1418150
    [29] G. McCartney, The impact of the coronavirus outbreak on Macao. From tourism lockdown to tourism recovery, Curr. Issues Tour., 24 (2021), 2683–2692. https://doi.org/10.1080/13683500.2020.1762549 doi: 10.1080/13683500.2020.1762549
    [30] C. Li, M. K. Ng, Y. Tang, T. Fung, From a 'world factory' to China's Bay Area: a review of the outline of the development plan for the Guangdong-Hong Kong-Macao Greater Bay Area, Plan. Theory Pract., 23 (2022), 310–314. https://doi.org/10.1080/14649357.2021.1958539 doi: 10.1080/14649357.2021.1958539
    [31] H. Weng, J. Kou, Q. Shao, Evaluation of urban comprehensive carrying capacity in the Guangdong-Hong Kong-Macao Greater Bay Area based on regional collaboration, Environ. Sci. Pollut. Res., 27 (2020), 20025–20036. https://doi.org/10.1007/s11356-020-08517-6 doi: 10.1007/s11356-020-08517-6
    [32] X. Ma, J. Tao, Cross‐border environmental governance in the Greater Pearl River Delta (GPRD), Int. J. Environ. Stud., 67 (2010), 127–136. https://doi.org/10.1080/00207231003693282 doi: 10.1080/00207231003693282
    [33] W. Yuhong, L. Jie, Improvement and application of GM (1, 1) model based on multivariable dynamic optimization, J. Syst. Eng. Electron., 31 (2020), 593–601. https://doi.org/10.23919/JSEE.2020.000024 doi: 10.23919/JSEE.2020.000024
    [34] H. Wang, Y. Wang, D. Wu, A new seasonal cycle GM (1, 1) model and its application in railway passenger volume forecasting, Grey Syst. Theory Appl., 12 (2022), 293–317. https://doi.org/10.1108/GS-11-2020-0146 doi: 10.1108/GS-11-2020-0146
    [35] Z. Jia, Z. Zhou, H. Zhang, B. Li, Y. Zhang, Forecast of coal consumption in Gansu Province based on Grey-Markov chain model, Energy, 199 (2020), 117444. https://doi.org/10.1016/j.energy.2020.117444 doi: 10.1016/j.energy.2020.117444
    [36] V. Roy, Convergence diagnostics for Markov chain Monte Carlo, Ann. Rev. Stat. Appl., 7 (2020), 387–412. https://doi.org/10.1146/annurev-statistics-031219-041300 doi: 10.1146/annurev-statistics-031219-041300
    [37] C. Nemeth, P. Fearnhead, Stochastic gradient Markov chain Monte Carlo, J. Amer. Stat. Assoc., 116 (2021), 433–450. https://doi.org/10.1080/01621459.2020.1847120 doi: 10.1080/01621459.2020.1847120
    [38] H. R. Beyer, M. Alcubierre, M. Megevand, Stability study of a model for the Klein-Gordon equation in Kerr space-time II, Rep. Math. Phys., 88 (2021), 115–143. https://doi.org/10.1016/S0034-4877(21)00059-8 doi: 10.1016/S0034-4877(21)00059-8
    [39] L. Wu, X. Guo, Y. Chen, Grey relational entropy calculation and fractional prediction of water and economy in the Beijing-Tianjin-Hebei Region, J. Math., 2021 (2021), 4418260. https://doi.org/10.1155/2021/4418260 doi: 10.1155/2021/4418260
    [40] F. Mukhamedov, A. Al-Rawashdeh, Approximations of non-homogeneous Markov chains on abstract states spaces, Bull. Math. Sci., 11 (2021), 2150002. https://doi.org/10.1142/S1664360721500028 doi: 10.1142/S1664360721500028
    [41] G. Portillo-Ramírez, H. Cruz-Suárez, R. López-Ríos, R. Blancas-Rivera, Markov decision processes approximation with coupled dynamics via Markov deterministic control systems, Open Math., 21 (2023), 20230129. https://doi.org/10.1515/math-2023-0129 doi: 10.1515/math-2023-0129
    [42] T. Lam, L. Williams, A Markov chain on the symmetric group that is Schubert positive? Exp. Math., 21 (2012), 189–192. https://doi.org/10.1080/10586458.2011.579020 doi: 10.1080/10586458.2011.579020
    [43] A. Ruszczyński, Risk-averse dynamic programming for Markov decision processes, Math. Program., 125 (2010), 235–261. https://doi.org/10.1007/s10107-010-0393-3 doi: 10.1007/s10107-010-0393-3
    [44] N. Chen, Analysis of the correlation between cross-border E-commerce and economic growth based on hierarchical multilevel gray evaluation model, J. Math., 2022 (2022), 8455404. https://doi.org/10.1155/2022/8455404 doi: 10.1155/2022/8455404
    [45] I. Ben-Yair, G. B. Shalom, M. Eliasof, E. Treister, Quantized convolutional neural networks through the lens of partial differential equations, Res. Math. Sci., 9 (2022), 58. https://doi.org/10.1007/s40687-022-00354-y doi: 10.1007/s40687-022-00354-y
    [46] J. Xu, K. Liu, Isomorphism problem of China's marine industries: analysis based on the gray correlation theory, J. Interdiscip. Math., 21 (2018), 479–487. https://doi.org/10.1080/09720502.2017.1420577 doi: 10.1080/09720502.2017.1420577
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(822) PDF downloads(58) Cited by(1)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog