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Abstract: The GM (1,1) model, grounded in gray system theory, utilizes first-order cumulative data 

for forecasting. While offering simplicity and efficiency, its applicability is confined to such data. In 

light of the constraints inherent in the conventional gray GM (1,1) prediction model when confronted 

with stochastic data fluctuations, the residual correction methodology was deployed to enhance the 

predictive efficacy of the GM (1,1) model. Subsequently, an augmented model underwent refinement 

through the application of the Markov chain, giving rise to a sophisticated and optimized gray Markov 

chain prediction model. The efficacy of this novel model was substantiated through a case study 

involving the prediction of Macao’s aggregate tourism revenue. A comparative analysis was conducted 

between the outcomes generated by the traditional gray prediction model, those of the refined 

prediction model, and the empirical data pertaining to tourism. This scrutiny validated the proficiency 

and precision of the optimized prediction model. The process of model optimization manifested a 

discernible enhancement in both predictive accuracy and stability, thereby broadening the prospective 

applications of gray prediction models. This endeavor aspired to furnish a scientifically grounded point 

of reference for the advancement of tourism within the Guangdong-Hong Kong-Macao Greater Bay 

Area and, indeed, throughout China. Moreover, it introduced a fresh methodology that held promise 

as a decision-making support mechanism for the developmental trajectory of Macao’s tourism industry. 

Keywords: stochastic fluctuation; residual correction; Markov; gray prediction; Macao 

Mathematics Subject Classification: 62M05, 62M10, 62P20 

 

  



16188 

AIMS Mathematics  Volume 9, Issue 6, 16187–16202. 

1. Introduction 

As the financial prosperity of Chinese citizens undergoes rapid augmentation, the landscape of 

tourism consumption simultaneously evolves in a continuous process of refinement [1–3]. Capitalizing 

on its industry-induced propulsive influence, tourism has emerged as a nascent focal point for China’s 

investment and consumption, assuming a pivotal role as a significant economic growth-supporting 

sector [4–6]. Based on statistical data, it is projected that in the upcoming year of 2023, the tourism 

sector’s contribution to China’s gross domestic product will rise significantly to an impressive 11.04%. 

To elaborate further, domestic tourism within the country is forecasted to reach an astonishing 5.539 

billion visits, accompanied by a total tourism revenue anticipated to exceed 5 trillion yuan. This 

manifests a year-on-year surge of 10.76% and 12.3%, respectively. Of particular note, the inbound 

tourism sector is envisaged to host 141 million travelers, with associated consumption projected to 

reach an impressive 127.1 billion US dollars. This signifies incremental increments of 1.2% and 3.0%, 

correspondingly. Notwithstanding these promising indicators, the trajectory of tourism consumption 

enhancement and the swift evolution of the tourism sector engender a succession of novel scenarios. 

The developmental milieu is characterized by a constant state of flux, perpetually reshaping the 

landscape of tourism. An expanding array of factors increasingly influences its unfolding narrative. 

Forecasting encapsulates the systematic analysis, estimation, and inference of future 

developmental trajectories of phenomena, employing judiciously curated historical data and relevant 

methodologies [7,8]. Forecasting is omnipresent in governmental decision-making, corporate 

governance, industrial safety protocols, and the mitigation of natural disasters, among other spheres. 

The evolution of the tourism sector is similarly intertwined with the discipline of prediction. The 

enhancement of predictive models holds profound implications for the advancement of regional 

economies [9]. It has garnered considerable scholarly attention and yielded discernible outcomes. 

Predominantly employed techniques for prognosticating tourism revenue primarily encompass the 

application of multiple linear regression [10], gray system forecasting model [11], BP neural network 

model [12], and time series forecasting model [13]. For example, Internet search data was introduced 

to predict tourism revenue [14]; based on the gray system theory, a gray model for tourist source 

prediction was constructed [15], and the prediction accuracy was compared with commonly used linear 

models; based on the BP neural network, a BP neural network model of tourism demand was 

established [16]. Tourism foreign exchange revenue and the number of inbound tourists were predicted 

and analyzed. There are also studies that analyze and predict the international tourism source market 

and its foreign exchange revenue based on certain statistical data [17]. The aforementioned inquiries 

and models have generated certain predictive insights regarding foreign exchange income from 

tourism. Nevertheless, there is a pressing imperative for further refinement to augment the precision 

and accuracy of predictions. 

In summary, drawing upon the research efforts delineated by the aforementioned scholars and 

integrating insights gleaned from the unique stochastic fluctuations evident in historical tourism data, 

a nuanced enhancement is proposed. Grounded in the traditional gray GM (1,1) prediction model, this 

enhancement aspires to fortify the stability and precision inherent in the predictive framework. To 

accomplish this, an expansion of the predictive dataset is envisaged, coupled with a meticulous 

rectification of the residual sequence within the GM (1,1) model prediction process. A further layer of 

refinement is introduced through the application of the Markov chain, whereupon the residual 

sequence undergoes additional correction. This iterative process aims to optimize both the accuracy 

and stability of the prediction model. Substantiation of this optimization unfolds through meticulous 

example verification, attesting to the model’s efficacy in navigating the intricate dynamics of tourism 
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prediction. Ultimately, utilizing the Macao tourism market as a paradigmatic exemplar, we juxtapose 

the prognostications generated by the traditional gray prediction model with those produced by the 

enhanced predictive model. This comparative analysis encompasses empirical data pertaining to 

tourism, thereby validating the efficacy and precision inherent in the optimized predictive framework. 

The objective is to provide a refined scientific reference that aims to enrich the intricate development 

of tourism within the expansive fabric of the Guangdong-Hong Kong-Macao Greater Bay Area, and 

across the broader expanse of China. 

2. Literature review 

In the domain of regional analysis, an exploration of tourism income is conducted through a 

panoramic lens, encompassing perspectives that range from the national level to specific provinces, 

individual cities, or distinctive scenic locales. The taxonomy of tourism income, meticulously 

dissected by scholarly luminaries, delves into the categories of international (inbound) revenue, 

domestic tourism income, and cumulative earnings derived from tourism. Within the scholarly 

discourse, the trajectory of investigation traverses the multifaceted terrain of factors influencing 

tourism revenue, temporal and spatial variations, and the methodologies that encompass prediction 

and statistical analyses. 

2.1. Research on factors affecting tourism income 

Through the prism of regression analysis and allied methodologies, esteemed scholars posit that 

the tapestry of tourism income intricately weaves itself with the developmental tapestry of 

transportation, the accommodation industry, the culinary domain, and the broader commodity economy. 

Delving into the realm of the gray correlation analysis, research contends that the predominant 

determinant influencing tourism income resides in the per capita disposable income of urban residents’ 

households [18]. Furthermore, within the related survey domains and drawing upon tourism-related 

data amassed from numerous provinces across China, the predominant determinants of tourism income 

are posited to lie within the economic sphere, with household income level serving as a pivotal 

metric [19]. Furthermore, a plethora of scholarly works have delved into the determinants shaping 

tourism income within specific regions, employing the sophisticated methodology of gray relational 

analysis. Through the utilization of the partial least squares (PLS) regression analysis model and other 

advanced techniques, it has been discerned that the robustness of transportation infrastructure exerts a 

pivotal influence on tourism income. Notably, heightened transportation convenience is identified as 

a catalyst for the augmentation of local tourism revenue [20]. Clearly, due to the subtle variations in 

research subjects, geographical contexts, and methodological frameworks, disparate conclusions 

emerge regarding the factors influencing the intricate fabric of tourism income. 

2.2. Research on spatial and temporal differences in tourism economy based on tourism income 

Certain erudite scholars have embarked upon an investigation into the spatiotemporal differentials 

inherent in the tourism economy, focusing exclusively on the realm of international tourism revenue. 

Employing the nuanced frameworks of gravity models and two-dimensional combination matrices, 

these scholars have meticulously delved into the spatial dispositions of China’s tourism resources, their 

geographic locations, and the concomitant international tourism revenue [21]. Certain pertinent 

scholars have employed methodological tools such as standard deviation, coefficient of variation, and 
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relative development rate to meticulously scrutinize the intricate spatiotemporal differentials within 

the domain of international tourism revenue across the provincial-level administrative regions in 

mainland China. Through the construction of a spatial effect model specifically tailored to the contours 

of China’s inbound tourism, a discerning revelation has surfaced: There are marked and steadfast 

regional variances, coupled with spatial agglomeration, in the panorama of international tourism 

revenue among diverse provinces and cities within the nation [22]. Related investigations also reveal 

that, based on the dynamics encapsulated within the change index delineating the ratio of regional 

international tourism revenue to the Chinese average, discernible differentials in regional competition 

pertaining to international tourism revenue emerge across mainland China [23]. 

The aforementioned literature delves into the intricacies of spatiotemporal disparities within the 

realm of tourism revenue and economic dynamics. It predominantly traverses the temporal spectrum, 

elucidating the dynamic shifts in scale, structure, and regional variations of tourism revenue. This 

comprehensive exploration seeks to discern alterations and patterns within the tourism economy during 

both off-peak and peak seasons. The narrative extends further, proposing strategic interventions for the 

advancement of the tourism economy, encompassing considerations of developmental trajectories, 

regional collaborations, and more. In the spatial dimension, the inquiry spans the entirety of the nation 

or specific regions, utilizing tourism revenue and associated data to scrutinize variances in regional 

tourism economic development, spatial dislocations, and other phenomena. Causative factors, 

including resource endowment, geographical location, transportation infrastructure, and 

developmental influences, contribute to the pervasive spatiotemporal variations in tourism revenue and 

economy. While existing literature predominantly employs quantitative methodologies to analyze and 

compare spatiotemporal disparities in regional tourism revenue, a noticeable gap exists in discussions 

concerning the theoretical underpinnings for the coordinated and balanced development of regional 

tourism economies. Few studies engage in a comprehensive quantitative examination of the root causes 

behind these spatiotemporal differences, and some neglect to elaborate on the theoretical implications 

of their quantitative analyses. Moreover, the practical applicability of these insights is often obscured, 

diminishing their operational efficacy 

2.3. Research on tourism revenue forecast analysis 

The discussion pertaining to tourism income and its myriad influencing factors has increasingly 

become a focal point of scholarly investigation, producing a continuum of novel research findings. In 

the realm of tourism revenue prediction, a plethora of regression models and artificial neural network 

architectures have been meticulously crafted. Deliberations within this domain demand meticulous 

consideration of the numerous factors that influence tourism revenue, including the discerning 

selection of explanatory variables and a thorough assessment of data availability and relevance. 

Notably, the establishment of a time series model is not an omnipresent prerequisite in such inquiries. 

In the pursuit of advanced methodologies for forecasting tourism revenue, the calibration of predictive 

efficacy is often measured through error rates, embracing metrics such as mean absolute error and root 

mean square error. A noteworthy example lies in research employing the partial least squares method 

and the gray correlation method, wherein the congruence of the correlation rankings between multiple 

influencing factors and tourism revenue remains consistently aligned under both methodologies [24]. 

Certain learned scholars, exploring the temporal dimension, have undertaken projections of regional 

tourism income for the forthcoming five years using gray prediction models. Furthermore, they have 

conducted a penetrating analysis of the major factors influencing tourism income through the 

methodological prism of principal component analysis, yielding notable results [25]. Certain scholars 
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have employed sophisticated statistical tools such as SPSS and EVIEWS software, harnessing the 

potency of multiple linear regression methods for the meticulous curation of cross-sectional data. 

These studies have revealed that pivotal determinants of tourism income encompass the influx of 

tourists, the abundance of dining establishments, pricing dynamics of scenic spot tickets, and the 

expanse of urban green spaces. Furthermore, these scholars have adeptly leveraged these insights to 

prognosticate future trajectories of tourism income through nuanced analysis [26,27]. Furthermore, 

there are relevant studies that propose the integration of neural networks with the Grey-Markov model 

to forecast tourism demand. Grounded in a comprehensive collection of tourism revenue data from 

recent years, these studies illustrate the ability to extrapolate projections for the upcoming years. 

Concurrently, a comparative analysis of the primary factors influencing tourism revenue is conducted, 

elucidating the complex correlation between each factor and the overarching indicators of tourism 

revenue [28]. 

3. Materials and methods 

3.1. Data collection 

The Macau Special Administrative Region, abbreviated as Macau, graces the southeastern fringes 

of mainland China, nestled on the western shores of the Pearl River Delta. It shares proximate borders 

with Guangdong Province, situated 42 nautical miles from Hong Kong, 145 kilometers distant from 

Guangzhou, and in close adjacency to the cities of Zhuhai and Zhongshan [29]. The Macau region 

encompasses the Macau Peninsula and two peripheral islands, namely Taipa and Coloane, constituting 

a collective expanse covering 30 square kilometers. Connectivity between the Macau Peninsula and 

Taipa is facilitated by three meticulously designed Macau-Taipa Bridges. The topography is 

predominantly undulating, with reclaimed land occupying the flat expanses. Situated within the 

subtropical monsoon domain, the climatic milieu is characterized by warmth, humidity, and copious 

rainfall. The strategic vision outlined in the 2019 “Outline Development Plan for the Guangdong-Hong 

Kong-Macao Greater Bay Area” aspires for Macau to evolve into a globally renowned tourist 

destination. This commitment underscores dedication to fostering high-quality development and 

facilitating seamless regional integration within the tourism industry [30,31]. This facilitates the 

fluidity of tourism elements within the interstices of internal cities, catalyzing the profound maturation 

of the networked attributes inherent in the Bay Area urban agglomeration. This evolution unfolds into 

a multi-faceted and comprehensive new paradigm. 

The “Outline of the Reform and Development Plan for the Pearl River Delta Region (2008–2020)” 

envisions the transformation of Macao into a globally distinguished hub for tourism and leisure, 

seamlessly integrated into the broader urban tourism fabric of Guangdong, Hong Kong, and Macao [32]. 

In a concerted effort, Guangdong, Hong Kong, and Macao ardently propel the journey of tourism 

integration, orchestrating multifaceted route operations under the banner of “one-journey multi-station.” 

This endeavor seeks to seamlessly amalgamate the exceptional tourism and cultural wealth strewn 

across the landscapes of Guangdong, Hong Kong, and Macao, thereby birthing and championing top-

tier tourism itineraries, both domestically and globally. 

3.2. Data source 

The total tourism revenue indicator data mainly comes from the “Macao Statistical Yearbook” 

from 2009 to 2020. Please also refer to the relevant information on the website of the Macau Statistics 
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and Census Bureau, the Macau Tourism Bureau and the Macau Environmental Protection Bureau. 

3.3. Statistical methods 

3.3.1. GM (1,1) model theory 

When employing grey theory for predictive modeling, the most frequently utilized model is the 

grey GM (1,1) model. Its principle involves initially accumulating the original sequence, followed by 

processing the accumulated sequence with a first-order exponential equation to derive a differential 

equation. Subsequently, the least squares method is employed to obtain the parameters of the 

differential equation. Upon conducting first-order accumulation to formulate a prediction model, the 

GM (1,1) model of the original data column is ultimately derived through the first-order accumulation 

(see [33,34]). The steps are as follows: 

(1) First-order accumulation 

Let the original sequence X0, 

 0 0 0 0

1 2, , , .nX X X X=         (1) 

Perform first-order accumulation on X0 to get X1, 

 1 1 1 1

1 2, , , ,nX X X X=         (2) 

where the value of 1

kX  is: 

1 0

1

, 1, 2, , .
k

k i

i

X X k n
=

=     =        (3) 

(2) Establish a gray prediction model 

The least squares method is used to establish a GM (1,1) gray prediction model, and the result is: 

1 0

1 1
ˆ ( ) ,ak

k

b b
X X e

a a

−

+ = −  +        (4) 

where k=1,2,…,n. 

(3) Get the predicted value 

Restore the original sequence and get the predicted value: 

0 1 1

1 1 .ˆ ˆ ˆ
k k kX X X+ += −          (5) 

3.3.2. Residual correction 

The above GM (1,1) prediction results are not stable enough and the accuracy is not high enough. 

The residuals generated by the model need to be further corrected [35]. The specific process is as 

follows: 

(1) Calculate the residual sequence 

The residual sequence is calculated by the formula, represented by E
0 

k : 

0 0 0 ,ˆ
k k kE X X= −           (6) 
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where k=1,2,…,n. 

Then the normalized residual sequence is obtained, represented by E
1 

k : 

1 0 0 0ˆ| | | |,k k k kE E X X= = −         (7) 

where k=1,2,…,n. 

(2) Calculate the modified residual sequence 

Fit the normalized residual sequence through initial conditions and background values: 

1

1

0 1

1

ˆ ( ) ,

ˆ ( ) ( ) ,1

ak

k

ak

k

a a
E m E

b b

a
E e m E

b

−

+

− −

+

= −  +

=





−  − 


       (8) 

where k=1,2,…,n. 

In the formula, m is the value of the leading term calculated using the optimal squares method of 

the normalized residual sequence. After fitting, the residual correction sequence is obtained: 

0 0ˆ ) .ˆ(k kE I K E=            (9) 

Among them, when E
0 

k >0, I(K)=1; when E
0 

k <0, I(K)=-1. 

(3) Get the predicted value 

The prediction equation is obtained using the residual correction sequence: 

1 1 1

1 1
ˆ ˆ ˆ ,k k kX X E+ += +          (10) 

where k=1,2,…,n. 

3.3.3. Gray Markov chain prediction model 

Based on the aforementioned residual correction sequence and in conjunction with Markov chain 

theory, an optimized prediction model of the Grey Markov chain is formulated to further enhance the 

stability and accuracy of predictions [36,37]. The specific steps are as follows: 

(1) Divide the residual state 

According to the residual size in the formula, it is divided into m states, each state is represented 

by Si, among them: Si∈[Li, Hi]. Li and Hi represent the upper and lower boundaries of the i-th state: 

min (max min ),

min (max ),

i i i

i k k k

i i i

i k k k

L E E E

H E E E

= + −

= + −





       (11) 

where k=1,2,…,n; i=1,2,…,m. 

(2) Construct a state transition probability matrix 

The residual sequence E is divided into m states. To construct a turntable transition probability 

matrix, the matrix elements are represented by j

iP . The calculation process is as follows: 

.
j

j i
i

i

M
P

M
=           (12) 

Among them, j

iM  is the number of transitions from state Ei to state Ej in one step, and Mi is the 
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number of data at the beginning of the turntable. After obtaining the values of the state transition matrix 

elements, generate a one-step transition probability matrix P: 

1 1 1

11 12 1

1 1 1

21 22 2

1 1 1

1 2

.

m

m

m m mm

P P P

P P P
P

P P P

  
 

  
=

              
 
   

         (13) 

(3) Get the predicted value 

According to the state transition matrix, the predicted value is obtained: 

0 0

1

1

ˆ ˆ ( ) .
m

t t i i

i

E E u t v+

=

= +          (14) 

Among them, ui(t) represents the probability of transforming from the previous state to the next 

stage in the gray residual sequence, and the parameter t is the transition time. vi represents the midpoint 

of the interval. 

4. Example verification 

The retrospective decade of Macao’s tourism revenue serves as the corpus for our analysis, with 

data meticulously sourced from the esteemed Macao Statistics and Census Bureau. Utilizing Macao's 

comprehensive tourism revenue data as our illustrative exemplar, we undertake a modeling endeavor 

that leverages the historical revenue dataset spanning the last ten years. The pristine historical data is 

elegantly presented in Table 1. 

Table 1. Input data of Macao’s total tourism revenue from 2010 to 2019 (unit: US$ million). 

Years Total tourism revenue 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

4833 

5674 

30126 

51632 

43412 

31620 

31155 

36595 

2018 41478 

2019 41166 

Based on the empirical data presented in Table 1, both the conventional GM (1,1) prediction 

model and the residual-corrected grey prediction model were employed to forecast Macao’s total 

tourism revenue post-2011. The ensuing predictions, residual analyses, and comparisons with actual 

revenue are delineated in Table 2. 
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Table 2. Predicted values and residuals of the two prediction models. 

Years 

GM (1,1) model Prediction model after correction of residual values 
Actual 

value 
Predictive value Residual Fluctuation 

range 

Predictive value Residual Fluctuation 

range 

2011 5674.23 0.23 0.7356 5674.91 0.91 0.92 5674 

2012 30119.44 -6.56 -7.6397 30119.77 -6.23 -6.87 30126 

2013 51638.63 6.63 7.8362 51638.88 6.88 8.92 51632 

2014 43416.26 4.26 6.1156 43416.77 4.77 5.79 43412 

2015 31625.38 5.38 7.0388 31625.81 5.81 5.93 31620 

2016 31161.89 6.89 7.6397 31162.29 7.29 10.65 31155 

2017 36592.44 -2.56 3.5851 36591.07 -3.93 -3.66 36595 

2018 41474.24 -3.76 1.3376 41475.29 -2.71 -0.75 41478 

As discerned from Table 2, the prediction outcomes following residual optimization surpass those 

of the conventional GM (1,1) prediction model in accuracy, exhibiting diminished residuals and 

reduced fluctuation amplitude values [38,39]. The prediction results of the two prediction models for 

Macao’s total tourism revenue in 2019 are 41116.538 billion yuan and 4116847 million yuan 

respectively, while the total tourism revenue value of Macao in 2019 is 4116.6 billion yuan. It can be 

seen that with the increase of data, the fluctuation value of the prediction results is basically a 

decreasing trend, but when the fluctuation range changes, the residual-corrected prediction model has 

higher accuracy and stability than the prediction results of the original GM (1,1) prediction model. 

Next, the Markov modified gray prediction model is used to further predict Macao’s total tourism 

revenue [40,41]. The process is as follows. 

4.1. Divide the residual state 

According to the residual values in Table 2, the number of residual states is divided into 3, which 

represent the three states of trend slowdown, normal growth and rapid growth. S1, S2 and S3 are used 

respectively, and their intervals are: 

S1∈[-6.23,0.91], 

S2∈[0.91,4.77], 

S3∈[4.77,7.29]. 

4.2. Construct a state transition matrix 

Based on the residual-corrected data elucidated in Table 2 and further informed by the residual 

state division, the residuals therein are categorized into three distinct states. This categorization is 

meticulously detailed in Table 3. 
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Table 3. Macao’s total tourism revenue forecast and residual status division. 

Years Predictive value Residual Status division 

2011 5674.42 0.42 S1 

2012 300119.12 -6.88 S1 

2013 51638.73 6.73 S3 

2014 43416.13 4.13 S2 

2015 31625.66 5.66 S3 

2016 31161.87 6.87 S3 

2017 36592.47 -2.53 S1 

2018 41474.28 -3.72 S1 

Compute the state transition matrix and integrate it with the state division presented in Table 3 to 

derive the state transition matrix P for Macao’s total tourism revenue: 

0

0.5 0.5 0 .

1 0 0

P

          
 

=       
 
              

         (15) 

4.3. Get the predicted value 

Combined with the state transition matrix, the predicted value is obtained. The prediction results 

are shown in Table 4. 

Table 4. Gray Markov model prediction results. 

Years Predictive value Actual value 

2011 5674.16 5674 

2012 300125.8 30126 

2013 51635.13 51632 

2014 43413.76 43412 

2015 31623.47 31620 

2016 31158.32 31155 

2017 36593.65 36595 

2018 41476.33 41478 

4.4. Prediction of prediction model 

Upon juxtaposing the predicted and actual data presented in Tables 2 and 4, a comprehensive 

assessment of the three prediction models in relation to the factual outcomes is undertaken. The varied 

results of this comparative analysis are meticulously delineated in Table 5. 
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Table 5. Prediction results and actual values of the three prediction models. 

Years GM (1,1) model Residual correction Gray Markov chain Actual value 

2011 5674.23 5674.91 5674.16 5674 

2012 30119.44 30119.77 30125.8 30126 

2013 51638.63 51638.88 51635.13 51632 

2014 43416.26 43416.77 43413.76 43412 

2015 31625.38 31625.81 31623.47 31620 

2016 31161.89 31162.29 31158.32 31155 

2017 36592.44 36591.07 36593.65 36595 

2018 41474.24 41475.29 41476.33 41478 

2019 41165.38 41168.47 41166.06 41166 

Table 5 reveals that the forecasts generated by the grey Markov chain demonstrate an impressive 

fidelity to the actual data. Particularly noteworthy are the predictions for the years 2011 and 2018, 

which, despite significant data volatility, exhibit a striking alignment with the observed actual values. 

This emphasizes the enhanced accuracy and precision of the optimized model, especially when dealing 

with data predictions marked by substantial fluctuations. 

4.5. Evaluation of predictive models 

In the evaluation of the economic forecasting model, we embarked on a comparative analysis 

delineating the disparities between the predictive outcomes of the Macao tourism economic forecast 

model and the actual values. This investigation incorporates the concept of mean square error (MSE) 

to elucidate the magnitude of deviation between the projected results and the authentic values. 

The mean square error serves as an expedient metric for quantifying the “average error”, 

providing insights into the magnitude of data fluctuations. Categorized within the domains of 

prediction evaluation and prediction amalgamation, its nomenclature can be deconstructed thus: The 

“mean” denotes the arithmetic average, encapsulating the collective value; “variance” quantifies the 

disparity between random variables and their probabilistic estimates, representing a measure of 

deviation from the mean; and “error” signifies the discrepancy between the measured value and its true 

counterpart. 

The mean square error (MSE) stands as a ubiquitous metric for evaluating errors and quantifying 

disparities between predicted and actual values. Its calculation method unfolds thus: 

Suppose there are n samples, yi represents the true value of the i-th sample and represents the 

predicted value of the i-th sample. Then the calculation formula for mean square error MSE is as 

follows: 

2

1

1
ˆ( ) .

n

i i

i

MSE y y
n =

= −         (16) 

The resultant value represents MSE, epitomizing the average of squared discrepancies between 

predicted and actual values. In an ideal scenario where predicted values align perfectly with actual 

values, the MSE would equate to zero, signifying impeccable accuracy in the model’s predictions. A 

diminutive MSE signifies closer alignment of the model’s predictive outcomes with actual values, 

whereas an elevated MSE indicates a greater divergence between the model’s projections and the true 
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values. 

Upon juxtaposing the predictive outcomes with the actual data, as delineated in Tables 2 and 4, 

the test MSE results for the prediction model are elucidated in Table 6. 

Table 6. Comparison of three prediction models prediction models. 

Type GM (1,1) model Residual correction Gray Markov chain 

Mean square error (MSE) 0.68 0.47 0.31 

Analysis of Table 6 reveals that the optimized gray Markov prediction model manifests a 

diminished MSE, indicative of reduced volatility in the predictive data [42,43]. Through this refined 

gray Markov prediction model, traditional challenges can be more effectively addressed. The GM (1,1) 

prediction model is inherently constrained, particularly in scenarios where time series exhibit 

pronounced volatility, leading to potentially subpar predictive outcomes [44,45]. The optimized model 

exhibits greater efficacy in forecasting Macao’s total tourism expenditure, thereby broadening the 

applicability of the gray prediction model. Concurrently, it enhances both the precision and stability of 

predictions, offering novel insights for prognosticating and fostering the development of the Macao 

tourism market. 

5. Conclusions 

Following the assessment of the predictive outcomes derived from the trio of methodologies 

applied to the tourism economy, a nuanced evaluation of their respective strengths and weaknesses 

emerges: 

(1) GM (1,1) model: Rooted in the principles of gray system theory, this model employs first-

order ordinary differential equations to delineate and forecast the trajectory of systems characterized 

by incomplete information. Relative to its counterparts, the gray prediction model is characterized by 

its simplicity of implementation and operational ease. It excels particularly when confronted with 

limited data sets, yielding expeditious results. However, it presupposes a linear relationship among the 

data, potentially overlooking intricate nonlinear trends and consequently compromising its precision. 

(2) Residual prediction: This approach entails a meticulous examination of the discrepancy or 

error between projected and actual values to refine and rectify the predictive model. It augments the 

fidelity of initial forecasts and facilitates iterative enhancements to the predictive framework. By 

assimilating prediction errors, it bolsters the model’s robustness. Nonetheless, this method is not 

devoid of drawbacks. It may necessitate augmented computational resources during the forecasting 

phase. Moreover, its efficacy is contingent upon the initial forecast model; a flawed foundational model 

may limit the efficacy of residual corrections. If misapplied, this method can potentially amplify noise 

within the data, leading to overfitting. 

(3) Gray Markov chain prediction: This approach synergistically amalgamates gray system theory 

with Markov chain theory to prognosticate future values predicated on prevailing states and transition 

probabilities. Its salient strength lies in its adeptness at assimilating historical data and transition 

probabilities for forecasting. It exhibits proficiency in navigating systems riddled with incomplete or 

nebulous data. Moreover, it tends to furnish more precise predictions for systems characterized by 

irregular or fluctuating patterns. 

In summary, the GM (1,1) model, while straightforward, grapples with limitations in 

encapsulating nonlinear trends. Residual forecasting, although capable of refining predictions, is 
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reliant on the integrity of the initial model [46]. On the other hand, gray Markov chain forecasting 

proffers heightened accuracy, albeit necessitating a deeper theoretical acumen and potentially imposing 

elevated computational demands. 

Venturing beyond the confines of conventional economic development paradigms, this study 

delves into the intrinsic limitations of the classical gray prediction GM (1,1) model. Through a refined 

approach employing residual correction techniques and Markov processes, we have meticulously 

optimized the GM (1,1) model, rectifying its inherent constraints and addressing the instability in 

predictive outcomes. This enhanced model was subsequently deployed to forecast Macao’s aggregate 

tourism revenue. Comparative analyses were conducted between the predictions derived from our 

refined GM (1,1) model, the conventional GM (1,1) model, and actual revenue values. Such rigorous 

validation substantiates the efficacy and precision of our novel model. The distinct advantages of this 

refined predictive framework equip Macao’s tourism management authorities with more robust 

forecasting data. This empowers them to judiciously allocate the region’s finite tourism resources, 

facilitating the provision of unparalleled tourism experiences for both domestic and international 

visitors. Concurrently, this initiative reinforces Macao’s aspiration to evolve into a preeminent global 

hub for tourism and leisure. In doing so, we aim to catalyze the judicious diversification of Macao’s 

economy. By adopting this differentiated developmental trajectory, Macao can bolster its tourism 

sector, thereby laying a foundation for sustainable economic diversification. 

The deployment of this innovative methodology introduces a fresh perspective to the simulation 

and forecasting research concerning tourism revenue. It furnishes a more scientifically rigorous 

forecasting mechanism, laying a robust foundation for the sustainable evolution of the tourism sector. 

This encompasses the strategic development of tourism infrastructure and the diversification of 

tourism products. Concurrently, this method holds considerable significance as a guiding framework 

for tourism management agencies and governmental departments, offering valuable insights and 

references for their respective operational and policy-making endeavors. 
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