In networks, the Markov clustering (MCL) algorithm is one of the most efficient approaches in detecting clustered structures. The MCL algorithm takes as input a stochastic matrix, which depends on the adjacency matrix of the graph network under consideration. Quantum clustering algorithms are proven to be superefficient over the classical ones. Motivated by the idea of a potential clustering algorithm based on quantum Markov chains, we prove a clustering property for quantum Markov chains (QMCs) on Cayley trees associated with open quantum random walks (OQRW).
Citation: Luigi Accardi, Amenallah Andolsi, Farrukh Mukhamedov, Mohamed Rhaima, Abdessatar Souissi. Clustering quantum Markov chains on trees associated with open quantum random walks[J]. AIMS Mathematics, 2023, 8(10): 23003-23015. doi: 10.3934/math.20231170
In networks, the Markov clustering (MCL) algorithm is one of the most efficient approaches in detecting clustered structures. The MCL algorithm takes as input a stochastic matrix, which depends on the adjacency matrix of the graph network under consideration. Quantum clustering algorithms are proven to be superefficient over the classical ones. Motivated by the idea of a potential clustering algorithm based on quantum Markov chains, we prove a clustering property for quantum Markov chains (QMCs) on Cayley trees associated with open quantum random walks (OQRW).
[1] | L. Accardi, Non-commutative Markov chains, Proc. Int. Sch. Math. Phys., 1974,268–295. |
[2] | L. Accardi, A. Frigerio, Markovian cocycles, Math. Proc. R. Ir. Acad., 83 (1983), 251–263. |
[3] | L. Accardi, F. Mukhamedov, A. Souissi, Construction of a new class of quantum Markov fields, Adv. Oper. Theory, 1 (2016), 206–218. https://doi.org/10.22034/aot.1610.1031 doi: 10.22034/aot.1610.1031 |
[4] | L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree I: Uniqueness of the associated chain with XY-model on the Cayley tree of order two, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14 (2011), 443–463. https://doi.org/10.1142/S021902571100447X doi: 10.1142/S021902571100447X |
[5] | L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree II: phase transitions for the associated chain with XY-model on the Cayley tree of order three, Ann. Henri Poincaré, 12 (2011), 1109–1144. https://doi.org/10.1007/s00023-011-0107-2 doi: 10.1007/s00023-011-0107-2 |
[6] | L. Accardi, A. Souissi, E. G. Soueidy, Quantum Markov chains: A unification approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162 |
[7] | L. Accardi, Y. G. Lu, A. Souissi, A Markov-Dobrushin inequality for quantum channels, Open Syst. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189 doi: 10.1142/S1230161221500189 |
[8] | L. Accardi, G. S. Watson, Quantum random walks, In: Lecture notes in mathematics, Heidelberg: Springer, 1989. https://doi.org/10.1007/BFb0083545 |
[9] | S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks, J. Stat. Phys., 147 (2012), 832–852. https://doi.org/10.1007/s10955-012-0491-0 |
[10] | O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, Bull. Amer. Math. Soc., 7 (1982), 425. |
[11] | A. Barhoumi, A. Souissi, Recurrence of a class of quantum Markov chains on trees, Chaos Solitons Fract., 164 (2022), 112644. https://doi.org/10.1016/j.chaos.2022.112644 doi: 10.1016/j.chaos.2022.112644 |
[12] | A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31 (2019), 1950020. https://doi.org/10.1142/S0129055X1950020X doi: 10.1142/S0129055X1950020X |
[13] | B. D. McKay, A. Piperno, Practical graph isomorphism, II, J. Symb. Comput., 60 (2014), 94–112. https://doi.org/10.1016/j.jsc.2013.09.003 |
[14] | M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178 |
[15] | M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973. https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710 |
[16] | Y. Feng, N. K. Yu, M. S. Ying, Model checking quantum Markov chains, J. Comput. Sys. Sci., 79 (2013), 1181–1198. https://doi.org/10.1016/j.jcss.2013.04.002 doi: 10.1016/j.jcss.2013.04.002 |
[17] | D. Kastler, D. W. Robinson, Invariant states in statistical mechanics, Commun. Math. Phys., 3 (1966), 151–180. https://doi.org/10.1007/BF01645409 doi: 10.1007/BF01645409 |
[18] | C. K. Ko, H. J. Yoo, Quantum Markov chains associated with unitary quantum walks, J. Stoch. Anal., 1 (2020), 4. https://doi.org/10.31390/josa.1.4.04 doi: 10.31390/josa.1.4.04 |
[19] | F. Mukhamedov, S. El Gheteb, Uniqueness of quantum Markov chain associated with XY -Ising model on the Cayley tree of order two, Open Syst. Inf. Dyn., 24 (2017), 175010. https://doi.org/10.1142/S123016121750010X doi: 10.1142/S123016121750010X |
[20] | F. Mukhamedov, S. El Gheteb, Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two, Math. Phys. Anal. Geom., 22 (2019), 10. https://doi.org/10.1007/s11040-019-9308-6 doi: 10.1007/s11040-019-9308-6 |
[21] | F. Mukhamedov, S. El Gheteb, Factors generated by XY-model with competing Ising interactions on the Cayley tree, Ann. Henri Poincaré, 21 (2020), 241–253. https://doi.org/10.1007/s00023-019-00853-9 doi: 10.1007/s00023-019-00853-9 |
[22] | F. Mukhamedov, A. Barhoumi, A. Souissi, Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree, J. Stat. Phys., 163 (2016), 544–567. https://doi.org/10.1007/s10955-016-1495-y doi: 10.1007/s10955-016-1495-y |
[23] | F. Mukhamedov, A. Barhoumi, A. Souissi, On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree, Math. Phys. Anal. Geom., 19 (2016), 21. https://doi.org/10.1007/s11040-016-9225-x doi: 10.1007/s11040-016-9225-x |
[24] | F. Mukhamedov, A. Barhoumi, A. Souissi, S. El Gheteb, A quantum Markov chain approach to phase transitions for quantum Ising model with competing XY-interactions on a Cayley tree, J. Math. Phys., 61 (2020), 093505. https://doi.org/10.1063/5.0004889 doi: 10.1063/5.0004889 |
[25] | F. Mukhamedov, A. Souissi, Types of factors generated by quantum Markov states of Ising model with competing interactions on the Cayley tree, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23 (2020), 2050019. https://doi.org/10.1142/S0219025720500198 doi: 10.1142/S0219025720500198 |
[26] | F. Mukhamedov, A. Souissi, Quantum Markov states on Cayley trees, J. Math. Anal. Appl., 473 (2019), 313–333. https://doi.org/10.1016/j.jmaa.2018.12.050 doi: 10.1016/j.jmaa.2018.12.050 |
[27] | F. Mukhamedov, A. Souissi, Diagonalizability of quantum Markov states on trees, J. Stat. Phys., 182 (2021), 9. https://doi.org/10.1007/s10955-020-02674-1 doi: 10.1007/s10955-020-02674-1 |
[28] | F. Mukhamedov, A. Souissi, Refinement of quantum Markov states on trees, J. Stat. Mech. Theory Exp., 2021 (2021), 083103. https://doi.org/10.1088/1742-5468/ac150b doi: 10.1088/1742-5468/ac150b |
[29] | F. Mukhamedov, A. Souissi, Entropy for quantum Markov states on Cayley trees, J. Stat. Mech. Theory Exp., 2022 (2022), 093101. https://doi.org/10.1088/1742-5468/ac8740 doi: 10.1088/1742-5468/ac8740 |
[30] | F. Mukhamedov, A. Souissi, T. Hamdi, Quantum Markov chains on comb graphs: Ising model, Proc. Steklov Inst. Math., 313 (2021), 178–192. https://doi.org/10.1134/S0081543821020176 doi: 10.1134/S0081543821020176 |
[31] | F. Mukhamedov, A. Souissi, T. Hamdi, Open quantum random walks and quantum Markov chains on trees I: Phase transitions, Open Syst. Inf. Dyn., 29 (2022), 2250003. https://doi.org/10.1142/S1230161222500032 doi: 10.1142/S1230161222500032 |
[32] | F. Mukhamedov, A. Souissi, T. Hamdi, A. Andolsi, Open quantum random walks and quantum Markov Chains on trees II: The recurrence, Quantum Inf. Process., 22 (2023), 232. https://doi.org/10.1007/s11128-023-03980-9 doi: 10.1007/s11128-023-03980-9 |
[33] | N. Masuda, M. A. Porter, R. Lambiotte, Random walks and diffusion on networks, Phys. Rep., 716 (2017), 1–58. https://doi.org/10.1016/j.physrep.2017.07.007 doi: 10.1016/j.physrep.2017.07.007 |
[34] | R. Orus, A practical introduction of tensor networks: Matrix product states and projected entangled pair states, Ann Phys., 349 (2014), 117–158. https://doi.org/10.1016/j.aop.2014.06.013 doi: 10.1016/j.aop.2014.06.013 |
[35] | D. Ruelle, Statistical mechanics: Rigorous results, 1969. |
[36] | A. Souissi, A class of quantum Markov fields on tree-like graphs: Ising-type model on a Husimi tree, Open Syst. Inf. Dyn., 28 (2021), 2150004. https://doi.org/10.1142/S1230161221500049 doi: 10.1142/S1230161221500049 |
[37] | A. Souissi, On stopping rules for tree-indexed quantum Markov chains, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2023. https://doi.org/10.1142/S0219025722500308 |
[38] | A. Souissi, F. Mukhamedov, A. Barhoumi, Tree-homogeneous quantum Markov chains, Int. J. Theor. Phys., 62 (2023), 19. https://doi.org/10.1007/s10773-023-05276-1 doi: 10.1007/s10773-023-05276-1 |
[39] | A. Souissi, E. G. Soueidy, M. Rhaima, Clustering property for quantum Markov chains on the comb graph, AIMS Mathematics, 8 (2023), 7865–7880. https://doi.org/10.3934/math.2023396 doi: 10.3934/math.2023396 |
[40] | A. Souissi, El G. Soueidy, A. Barhoumi, On a $\psi$-mixing property for entangled Markov chains, Phys. A, 613 (2023), 128533, https://doi.org/10.1016/j.physa.2023.128533 doi: 10.1016/j.physa.2023.128533 |
[41] | S. M. Van Dongen, Graph clustering by flow simulation, 2000. |
[42] | S. Van Dongen, Graph clustering via a discrete uncoupling process, SIAM J. Matrix Anal. Appl., 30 (2008), 121–141. https://doi.org/10.1137/040608635 doi: 10.1137/040608635 |