A connected acyclic graph in which the degree of every vertex is at most four is called a molecular tree. A number associated with a molecular tree that can help to approximate the physical or chemical properties of the corresponding molecule is called a topological index. It is of great importance to investigate the relation between the structure and the thermodynamic properties of those molecules. In this paper, we investigated the extreme value of the first reformulated Zagreb index with a given order and degree of a graph. Further, we investigated the molecular trees that attain the maximum and minimum values. As an application, we presented the regression models to predict the acentric factor and entropy of octane isomers. Our extremal graphs give the minimum and the maximum acentric factor and entropy, which satisfied the experimental values.
Citation: Shabana Anwar, Muhammad Kamran Jamil, Amal S. Alali, Mehwish Zegham, Aisha Javed. Extremal values of the first reformulated Zagreb index for molecular trees with application to octane isomers[J]. AIMS Mathematics, 2024, 9(1): 289-301. doi: 10.3934/math.2024017
A connected acyclic graph in which the degree of every vertex is at most four is called a molecular tree. A number associated with a molecular tree that can help to approximate the physical or chemical properties of the corresponding molecule is called a topological index. It is of great importance to investigate the relation between the structure and the thermodynamic properties of those molecules. In this paper, we investigated the extreme value of the first reformulated Zagreb index with a given order and degree of a graph. Further, we investigated the molecular trees that attain the maximum and minimum values. As an application, we presented the regression models to predict the acentric factor and entropy of octane isomers. Our extremal graphs give the minimum and the maximum acentric factor and entropy, which satisfied the experimental values.
[1] | I. Gutman, T. Nenad, Graph theory and molecular orbitals. Total $\phi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[2] | S. Nikolić, G. Kova$\check{c}$ević, A. Mili$\check{c}$ević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003), 113–124. |
[3] | A. Mili$\check{c}$ević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 (2004), 393–399. https://doi.org/10.1023/B:MODI.0000047504.14261.2a doi: 10.1023/B:MODI.0000047504.14261.2a |
[4] | A. Ilić, B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math., 160 (2012), 204–209. https://doi.org/10.1016/j.dam.2011.09.021 doi: 10.1016/j.dam.2011.09.021 |
[5] | A. Miličević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 (2004), 393–399. https://doi.org/10.1023/B:MODI.0000047504.14261.2a doi: 10.1023/B:MODI.0000047504.14261.2a |
[6] | A. Ghalavand, A. R. Ashrafi, Extremal trees with respect to the first and second reformulated Zagreb index, Malaya J. Mate., 5 (2017), 524–530. https://doi.org/10.26637/mjm503/006 doi: 10.26637/mjm503/006 |
[7] | I. Gutman, O. Miljković, G. Caporossi, P. Hansen, Alkanes with small and large Randić connectivity indices, Chemi. Phys. Lett., 306 (1999), 366–372. https://doi.org/10.1016/S0009-2614(99)00472-8 doi: 10.1016/S0009-2614(99)00472-8 |
[8] | I. Gutman, O. Miljković, Molecules with smallest connecivity tivity indices, Match-Commun. Math. Co., 41 (2000), 57–70. |
[9] | S. Ji, X. Li, B. Huo, On reformulated Zagreb indices with respect to acyclic, unicyclic and bicyclic graphs, Match-Commun. Math. Co., 72 (2014), 723–732. |
[10] | N. De, Reformulated Zagreb indices of dendrimers, Math. Aeterna, 3 (2013), 133–138. |
[11] | S. Ji, Y. Qu, X. Li, The reformulated Zagreb indcies of tricyclic graphs, Appl. Math. Comput., 268 (2015), 590–595. https://doi.org/10.1016/j.amc.2015.06.058 doi: 10.1016/j.amc.2015.06.058 |
[12] | H. Deng, Z. Tang, R. Wu, Molecular trees with extremal values of Sombor indices, Int. J. Quantum. Chem., 2021. https://doi.org/10.1002/qua.26622 |
[13] | M. Chemometrics, Molecular Descriptors: The free online resource, Milano Chemometrics and QSAR Research Group, 2017. Available from: http://www.moleculardescriptors.eu/dataset/dataset.htm. |
[14] | E. I. Milovanović, I. Z. Milovanović, E. C. Dolićanin, E. Glogić, A note on the first reformulated Zagreb index, Appl. Math. Comput., 273 (2016), 16–20. |
[15] | B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z doi: 10.1007/s10910-015-0480-z |
[16] | S. Mondal, N. De, A. Pal, On neighborhood Zagreb index of product graphs, J. Mol. Struct., 2021. https://doi.org/10.1016/j.molstruc.2020.129210 |
[17] | G. Su, L. Xiong, L. Xu, B. Ma, On the maximum and minimum first reformulated Zagreb index of graphs with connectivity at most $k$, Filomat, 25 (2011), 75–83. https://doi.org/10.2298/FIL1104075S doi: 10.2298/FIL1104075S |
[18] | M. K. Jamil, I. Tomescu, First reformulated Zagreb index and some graph operations, Ars Combinatoria, 138 (2018), 193–209. |
[19] | X. Li, Y. Yang, Best lower and upper bounds for the Randic index $R_{-1}$ of chemical trees, Match-Commun. Math. Co., 52 (2004), 147–156. |
[20] | X. Li, Y. Shi, L. Zhong, Minimum general Randić index on chemical trees with given order and number of pendent vertices, Match-Commun. Math. Co., 60 (2008), 539–554. |
[21] | R. Xing, B. Zhou, N. Trinajstić, Sum-connectivity index of molecular trees, J. Math. Chem., 48 (2010), 583–591. https://doi.org/10.1007/s10910-010-9693-3 doi: 10.1007/s10910-010-9693-3 |
[22] | S. Liu, J. Li, Some properties on the harmonic index of molecular trees, ISRN Appl. Math., 2014 (2014). http://dx.doi.org/10.1155/2014/781648 |
[23] | N. H. M. Husin, R. Hasni, Z. Du, A. Ali, More results on extremum Randić indices of (molecular) trees, Filomat, 2 (2018), 3581–3590. https://doi.org/10.2298/FIL1810581H doi: 10.2298/FIL1810581H |
[24] | M. Imran, R. Ismail, M. Azeem, M. K. Jamil, E. H. A. Al-Sabri, Sombor topological indices for different nanostructures, Heliyon, 2023. https://doi.org/10.1016/j.heliyon.2023.e20600 |
[25] | M. Waheed, U. Saleem, A. Javed, M. K. Jamil, Computational aspects of entropy measures for metal organic frameworks, Mol. Phys., 2023. https://doi.org/10.1080/00268976.2023.2254418 |
[26] | R. Luo, K. Dawood, M. K. Jamil, M. Azeem, Some new results on the face index of certain polycyclic chemical networks, Math. Biosci. Eng., 20 (2023), 8031–8048. https://doi.org/10.3934/mbe.2023348 doi: 10.3934/mbe.2023348 |
[27] | I. Gutman, I. Redžepović, B. Furtula, On the product of Sombor and modified Sombor indices, Open J. Discrete Appl. Math., 6 (2023), 1–6. https://doi.org/10.30538/psrp-odam2023.0083 doi: 10.30538/psrp-odam2023.0083 |
[28] | H. Liu, Extremal (n, m)-graphs with respect to VDB topological indices, Appl. Math., 6 (2023), 16–20. https://doi.org/10.3934/mbe.2023240 doi: 10.3934/mbe.2023240 |
[29] | Y. Yao, The smallest sum-connectivity index on trees with n vertices and k pendant vertices, Open J. Discrete Appl. Math., 2 (2019), 23–30. https://doi.org/10.30538/psrp-odam2019.0013 doi: 10.30538/psrp-odam2019.0013 |
[30] | D. R. Schreiber, S. P. Kenneth, Equation of state in the acentric factor system, Fluid Phase Equilibr., 46 (1989), 113–130. https://doi.org/10.1016/0378-3812(89)80032-9 doi: 10.1016/0378-3812(89)80032-9 |
[31] | G. M. Kontogeorgis, D. P. Tassios, Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications, Chem. Eng. J., 66 (1997), 35–49. https://doi.org/10.1016/S1385-8947(96)03146-4 doi: 10.1016/S1385-8947(96)03146-4 |
[32] | A. Rényi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, 4 (1961), 547–562. |
[33] | C. Ricotta, L. Szeidl, Diversity partitioning of Rao's quadratic entropy, Theor. Popul. Biol., 76 (2009), 299–302. https://doi.org/10.1016/j.tpb.2009.10.001 doi: 10.1016/j.tpb.2009.10.001 |
[34] | C. Tamilarasi, The pivotal role of degree-based and neighborhood degree-sum-based topological indices in predicting the Physico-Chemical properties of N-octane isomers, Ann. Rom. Soc. Cell Biol., 25 (2021), 4481–4489. |
[35] | B. A. Ravindran, D. Togarichetu, V. M. Gangadharaiah, L. Veerabhadraiah, QSPR analysis of VL index with octane isomers, AIP Conf. Proc., 2649 (2023). https://doi.org/10.1063/5.0117457 |