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in detecting clustered structures. The MCL algorithm takes as input a stochastic matrix, which depends
on the adjacency matrix of the graph network under consideration. Quantum clustering algorithms are
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1. Introduction

Markov chains and random walks find widespread applications in several areas. Markov chains-
based algorithms play crucial in unsupervised Machine learning and networks, such as the Markov
clustering algorithm [41,42], which is proven to be one of the most powerful approaches for detecting
clustered structures. Quantum Markov Chains (QMCs) [1] have been introduced long ago [2, 6] and
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found important applications in physics [7,14-16,40]. QMCs on trees [4,5,22,23,30,36,38] have been
studied in connection with statistical mechanical models [3,24,27,36]. In particular, quantum phase
transitions were investigated for Pauli type models [19-21]. A variety of aspects of quantum Markov
states on trees have been investigated [26-29].

Over the last few decades, quantum random walks [8] have been the subject of a significant amount of
research due to their utility in a variety of domains, such as quantum information and networks [33, 34].
In [8], OQRWSs have been introduced in the unitary case. In [9], Attal et al. extended this approach
and also considered OQRWs on graphs. The inclusion of OQRWs in the general frame of QMCs
has been established in [12, 18] and then extended to QMCs on trees [31,32]. Stopping rules and
recurrence for QMCs were introduced in [37]. In addition, in recent works [31,32], QMCs on trees
have been associated with OQRWs. This led to further applications, such as quantum phase transitions
and recurrence of QMCs on trees [11,37].

In quantum statistical mechanics, the clustering property for a state indicates the absence of long-
range order [17,35]. In [30], we investigate the clustering property for a class of QMCs on the
Comb graph. In [20, 39], it was shown that a QMC associated with an XY-Ising model on the Cayley
tree satisfy the clustering property. In the present paper, we show that the QMC associated with the
disordered phase of a quantum system based on OQRW does not satisfy the clustering property. To
the best of our knowledge, non-clustering QMCs on tree have not been addressed previously in the
literature. Further relevant problems can be investigated, such as the types of von Neumann algebras
associated with the QMCs under consideration, such as [25]. The obtained results can have important
and promising implications in Markov models in data science.

The paper is organized as follows: Section 2 is devoted to some preliminaries on trees. In Section 3,
we introduce QMCs associated with OQRW on trees. Section 4 is dedicated to the main result of the

paper.

2. Preliminaries

Let I* = (V, E) be semi-infinite Cayley tree of order k. Denote o0 € V the root of the tree. Two
vertices x and y are called nearest-neighbors if there exists an edge joining them, we denote x ~ y.
Let u and v be two different vertices, we call edge-path with length n € N joining u to v a finite list
of vertices uy, U, -+ ,u, such that u ~ u; ~ up ~ --- ~ u,, = v. It is well known that, a tree can be
characterized through the property that any two distinct vertices are joined by means of a unique edge-
path. The distance on the tree d(u,v) between u and v is the length of the unique edge-path joining
them. The hierarchical structure of I'* allows to define the levels

Wn ={ueV : du,o) =m}.

On the levels, a coordinate structure is assigned as follows. For m € N and x € W, is identified to a
n-uplet x = (¢y,...,¢,), where {; € {1,...,k}, 1 < j < m. The coordinate structure is illustrated in
Figure 1 in the case of the Cayley tree of order two. In the above notations, we write

Wo = {(b1. 6o+ )i €= 1,2, k).

A, = O Wi 5 Ay = O Wi
j=0 j=m
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Figure 1. Coordinate structure on I'>.

For ¢y,6,.....¢, € {1,2,...,k} and u = ({1, 05, ...,L,) € W, there exists a unique path joining it to
the root o given as follows:

o~up =) ~uy=,0)~ - ~up =, 0, 1) ~u
Letu' = ({},0),...,(,) € W, the shift @, on the tree is defined as
a,W) =, 6, 0,0, L) € W,
In particular, a,(0) = u. For each u € W,,, we define its set of direct successors by
Swy=WveW,n : u~vi={ul),w?2), -, (uk). 2.1

Put
Vo={v=uou :u eV}. (2.2)

Recall that a graph isomorphism [13] is an edge-preserving bijection from a graph G; = (Vy, E) onto
a graph G, = (V,, E,) such that:
- a 1s a bijective map from V; onto V5;
- for every x,y € V| one has x ~ y if and only if a(x) ~ a(y).
The sub-tree Fﬁ’u = (V,, E,), whose vertex set is V,, is isomorphic to F’j. For each n € N, we define

Wu; n = {V ev, : d(u’ V) = I’l} = a’u(Wn)’ Au; n = U Wu; j= a’u(An)-
J=0

k
+.,u

The map «, is a graph isomorphism from I'* = (V,E) onto T
isomorphism by a;,!.

To each vertex x € V, we assign the C*—algebra of observables A, = A with unit 1. For any finite
region V' C V, we consider the local algebra Ay, = ®er/ A,. In particular, for each n, one defines
A, = Q). A, Au- One has the embedding

= (V,, E,), we denote its inverse

ﬂ/\n = ﬂA,, ® IWn+l C Ap

n+1?
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where for each finite region V’ C V, one has 1y = (X)
associated with the increasing set {Ax, }n>0

1,. We obtain the following local algebra

ueV’

Avioe = 1| An,»

neN

and its C*-closure [10] is the following quasi-local algebra

—C*
Ay = Avioe -

Fora € A and x € V, we denote a™ = a ® 1y\(x, Where a appears at the component A, of the infinite
tensor product Ay. Notice that, the graph isomorphism «, defines a *—isomorphism a, from Ay into

Ay, satistying
@, [@ ax) = Q) a, (2.3)

xXEN, yEAu;n

where for each y € A, by @;'(y) we mean the element x € A, satisfying @, (x) = y.
Let C c B be two C*-algebras. We call transition expectation (TE), any completely positive identity
preserving (CP1) from 8B into C. Let C € 8 C ‘A be unitary C*—algebras. Recall that:

¢ A quasi-conditional expectation (QCE) is a CP1 linear map E : ‘A — B such that
E(ca) = cE(a), YaeA, VYceC.

e A TE is any CPI linear map between two unitary C*-algebras.

The set of states on a C*—algebra A will be denoted by S(A).
For a given TE &y, from A,,,,,,, into Ay, , the map

nn+l
EA,, = id‘ﬂAn—l ®8W,, (24)

is a TE w.r.t. the triplet Ay, , C A, C Ay,,,. The hierarchical structure of the Cayley tree manifests
in the fact that

Woer = || S,

This allows to consider local TE &, from Ay,us ) into A,. Then the map

&, = ®8M

uew,
defines a TE from Ay, ,,,, into Ay, .
Definition 2.1. [6] A (backward) QMC on Ay is defined to be a triplet (¢,, (E,)ns0, (hy),), where

e ¢, € S(A,) is an initial state,
e for eachn, &, is a TE from Ay, ., into Ay,
e for each n, h, € Ay, .. is a positive boundary condition,
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such that for each a € Ay the limit
¢(a) := lim g © Ep, 0 Ex, 0+ 0 Ex, (hf1 ahj/f]), (2.5)

exists in the weak-*-topology and defines a state ¢ on Ay, which will be also referred as QMC.

Definition 2.2. [38] The triplet ¢ = (¢,, (EA,)nz0, (hn)y) is called a tree-homogeneous QMC (THQMC)
if there exists a TE & : Ayus o) — A, such that for each n

Ex, =idgn,  ® ® a,0&0q; (2.6)
uew,
where idg,  is the identity map on Ay, , and
he = @) ) 2.7)

for some boundary condition h € A,.,.
In the sequel, for the sake of simplicity we denote a" := a,(a) for eacha € Aandu € V.

Theorem 2.1. Let ¢, be a state on A, and E: Ax, — A, a TE. For h € A, if

¢o (h) = 1, 2.8)
& (1<0> ehVeh?...® h<k>) = K, (2.9)

then (¢,,E, h) is a THOMC on the algebra Ay.
3. QMCS on trees associated with OQRW

Let H and K be two separable Hilbert spaces. Let B(H) (respectively B(K)) be the algebra of all
bounded operators over H (respectively K) with identity 1 (respectively Ig). Let {|i) : i € A} be
an orthonormal basis of K, where A is a connected graph. The algebra of observables at a given site
ueVis A, = B(H)®B(K) = B(H ® K) with identity 1, = I ® Ix. In the notations of the previous
section, for eacha € B(H) ® B(K) we denote a,(a) = a* € A,. For each (i, j) € A%, the quantum
transition from the state |j) into the state |i) is implemented by an operator B; € B(H) such that

> BB =1y (3.1)
iEA

Consider a density operator p € B(H ® K), of the form

p=) P8I, pieBH)NOL

ieA

where B(H). is the cone of positive operators over H.
For each u € V, we set
M = B, ®1i){jl € B(H) @ B(K). (3.2)
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Put

; 1 n : .
Al = Wp}ﬂ ®i)(jl, with i,jeA,
J

; ()] i (V)
K; = M} ® ® Alj € Aqyus w»

veS (u)

where b = a,(b) forevery b € B(H ® K) and x € V.

Let
8(a):Tru][ > Ka ) K])

(i, )en? (,])EN?

where Tr is the partial trace defined by linear extension of
Tr(a, ® ag,) ® -+ - ® auxy) = Tr(aw,) - - - Tr(aug) - au.
Fora=a,®a,; ®---® a,; one shows that

k
i (1) i ()
&m:EZM,%%,thmﬂ,
(=1

(i.J.))EN’

where
1

@iy (b) = STr (o2 ®17)iIb), Vb € BH) @ BIK).

Tr(p))'2Tr (p; )

(3.3)

(3.4)

(3.5)

(3.6)

Theorem 3.1. With the above notations, if w, € A,.. is an initial state and h € A, is a boundary

condition such that

TI'((,U,, ho) =1 s

k
Z M M;, 1—[ @i (hwo) = hy.

i,J,J’ €A =1

(3.7)

(3.8)

Then the triplet (w,, (Ey)uev, (hu)uev) defines a quantum Markov chain ¢ on the algebra Ay. Moreover,

foreacha =), a, € Ay, one has

p@) = > Tr(wMjp@@n) [ | wir@) || ¢10®),

JJ EN UEA[1 VEN, 41

where &, is given by (3.5), the functional ¢;; is given by (3.6), and

Mp(y= > M - M,

ieA

: D Tr(Bip*piBY @ liXilb).

Vi (b) = Tr(pj)l/zTI‘(pj')l/z

ieA

Proof. See [31].
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The forward Markov operator associated with the TE (3.5) is defined from ‘A, into itself as follows
Puf(a) =6 (a, @1, ® -8 1y) (3.12)

and for each £ € {1,2,--- , k}, the £ backward Markov operator is defined on A.¢ Into A, by
Prep(ae) =E (L1101 1®a, @11 ® - ®1y). (3.13)

In previous works [31,38], it was shown that the boundary condition 4 = 1 corresponds to the QMC
associated with the disordered phase of the system. One finds

P.(a,) = Z Mia .M, (D) Z Mia .M (3.14)
i.JJ
and - o
Porslac) = Y MIMY (D) @ipac) = ) Ty & 1) ilpji(ane). (3.15)
LiJ J

4. Main result

In this section, we restrict ourselves to the case 7 = 1. Indeed, thanks to (3.1) the boundary condition

h = 1is solution of (3.8). The corresponding QMC evaluated on localized elements a = ®x cn, @x 18
given by
pa) =Y Tr(wMjia)) | | wian. (4.1)
JEA UENA[1 1)
Definition 4.1. A state  on Ay is said to be clustering (mixing) if
uevh|£I|l—> ¢(aa,b)) = p(a)p(b), Y(a,b)e Ay, 4.2)
where |u| = d(u, o).
Theorem 4.1. Let ¢ = (¢,,E,h = 1) then
(i) Let m > 0 be an integer, for every a,b € Ay,
Jim g ao (b)) = 3 ¢0 (M) | | i@ (). 43)
]GA XGA[l,m]
where
b = 80 (l’)a ® 8W1 (bwl - 8Wn1(me ® IWm+| ))) . (44)
(ii) The QMC ¢ given by (3.9) is clustering if and only if |A| = 1.
Proof. (i) Letu = (¢,,6,,--- ,¢,). Leta,b € Ay.,.. Without lose of generality, we can assume that

a=@Q .\ anb= ®x€A b, € Ay,. For F C A,,, we denote br = (X) . by, one can see that

abw) = Q) b, = ) b = by,

veW,;; veW,;

AIMS Mathematics Volume 8, Issue 10, 23003-23015.
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We find
,(b) = &, (b ® &, by ® - Ew,, by ® 1y, ).

On the other hand, we have

8Wn+m (bg’vu;m ® IWVH"”\W”lm ® IW’””") = ® 8‘; (b‘,) ® IS(V)) ® ® SW (IWVS(W))
veW,., WEW,im \Wism
(3.12) ’
= ® Pv;f(bv) ® IWn+m\Wu;m'
VEWu;m
Then
8‘/V}'Hrmfl (b;/Vu;m ® IWnerfl\Wu;mfl ® 8Wn+m (b;}Vu;m ® IWn+m\W14;m ® IWn+m))
= 8‘/Vnerfl (b;)Vu;m ® IWnerfl\Wu;mfl ® ® PVaf(b;) ® IWiz+m\Wu;m
vEWim
= ® 8\4/ [b:V ® ® Pv,f(b:;)] ® IWn+m—1\Wu;m—1’
we Wu;m—l ves (W)

iterating the above procedure, we get

&w, (0, ® Ew,., by, ® Ew,.,, (B, ©Tw,., ) ) E by ® Ty,

Denote u; = (€1, ¢,,...,¢;) foreach j e {1,2,--- ,n}. Forc; € Ay, we have

) (3.13)

SWH (IWj—l QCy; ® IWj\{Mj} Puj—l§€§b (Cuj) ® IWj—l\{”j—l}'

It follows that

plaa,(b))

$o(Eo(a, ® Ew, (aw, ® - Ew, (aw, ® Ew,.., (1w, ® - Ew, (1w, ®
Ew, (8, ® Ew,,(bhy,, ® - &, (b, ®Tw,) ) ) +)))
= ¢0(80(a0 ® 8W| (CIWI R--- SWM(QWM ® 8Wm+1(IWm+| ®--- 8Wn_1 (IW,,,_l ®

b, ® IWn\{u}) .. )) .. )))

= ¢0(80(a0 ® 8W| (aWI Q- 8Wm (an ® SW’”“(IW'”“ © SWH_Z(IW,,,_z ®
Pun_l;f,,;b(l;u) ® IWn-l\{Mn—l}) T )) o )))

= ¢a(80(ao ® Ew, (Clw. Q- 'aw,,,(awm ® FZ:Hl;b(B”) ® IWm+]\{um+1}) e ))),

where
Ditn —
Pu”H_l;b(C) - Pum+l;€m+2;bPum+2;€m+3;b o Punfl;fn;b(c)’ ce ‘ﬂu'

For ¢ € A,,, we have

3.15) N
Pui;fm;bPui+1;5i+2;b(C) = Pui;fi+1;b (Z I‘H ® |]><]|90JJ(C)]
J

AIMS Mathematics Volume 8, Issue 10, 23003-23015.
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= Y 11X lery (Z Iy ® |j><j|gojj(0)]
7 J
38 D I @1/ 16;5¢i(c)
W
= D @1l ().
J

This means that elements of the form ¢’ = Iy ® |j){/lg;;(c;) are invariant for the all the
backward Markov operators P,,..,,. Then

Pir o (B) = > T @1l (bu).
J
Therefore, using (3.9) we find (4.3).

(i1) On the other hand, we have

p(@yp(b) = p@)g, (b) = D 6o (M @) | | wiitades (b).

JjeA XEA[1m]
Fix j € A. Fora = (Iy ® |)){j)V, we get

plaa, (b)) = ¢;ib) ; ¢la)=1.

Therefore, the QMC ¢ satisfies (4.2) if and only if ¢;; = ¢,, Vj € A. If |A| > 1, then for j # j" we
have ¢;i(Iy @ |/)j)) = 1 # 0 = ¢; (I ® |){j]). If A is reduced to a singleton {jo}, the state ¢
is a product state. It is enough to take ¢y = ¢;,;, to get the clustering property. This finishes the
proof.

]

Remark 4.1. In (4.3), ifa = 1 we get
Jim g ) = )6, (X8 1D 9B) =: pu(D). (4.5)

JEA

the limiting state g, on A is equitably distributed between the state g ;; with respect to the initial state

Po-
From Theorem 4.1 the state ¢ is clustering if and only the OQRW is trivial and the walker occupies

a single site A = {iy}. In this case the QMC ¢ is a product state.

Example 4.1. Let H = K = C? with canonical basis (|1),]2)) and A = {1,2}. The algebra of
observable is A = M,(C) @ M,(C) = My(C). The transitions of the OQRW are given by

a 0 01 y 0 10
B{:(O,B)’ B;:(O 0), B%:(O 5), Bgz(o 0)’

where a,B,7v,0 € C such that
la> + > =1BF +16> =1 and ay#0. (4.6)
Put

AIMS Mathematics Volume 8, Issue 10, 23003-23015.
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(10 {00 (10
pl_oo’pz_()l’o-_o_l-

The initial state is the normalized trace given by ¢, = %Tr. One has ¢;j(b) = Tr (p i ® X jlb) for each
JjEA.
Leta =b =0 ®2)2|, from (3.5) we find

Ea®1) = Z MiaM’
i,j

> BoB e\
J

P 0
0 —lop

I 0
)®|1><1|+( 0 0 )®|2><2|.

Therefore
1
#(a) = do(E,(a)) = 7 (IBF + ).
Since b € A, then from (4.4) we have b=&,(b®I). It follows that
en® =W i end)=0.
In addition

M) = ZM;’*aMg

B2* ®|1)X1]aB! ® [1)(1] + Bl * ® |1)(2laB} ® [2){1]

2
_ (IVOI —|?5|2 )®|1><1|.

Then (4.3) implies that
. A~ 1
Jim paa () = go(Mu(@)en () = J1yP( - 16F)

Thus 1 . 1
(@)p(b) = 7= (1B + /F) = ZhP(bf = 16F) = ¢ (aau(b)).

Therefore, the state ¢ does not satisfy the clustering property. Moreover, from (4.5) limiting state is
given by

2
Poo = %;%j # Po.
If in addition |B| # |y|, then for u € V\ Ay, we have
. 2 A
w(b) = 7 (B2 + yP) # plau(b)) = gu(b) = Sl
then the QMC ¢ is not invariant under the translation 7.

AIMS Mathematics Volume 8, Issue 10, 23003-23015.
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5. Conclusions

In prior studies, significant characteristics of QMCs on trees, such as phase transition and
recurrence, have been investigated. In the present paper, we examine the clustering property of a
QMC approach on the Cayley tree associated OQRWs. This analysis reveals an additional ergodic
property within the disordered phase of the quantum system under examination. Notably, our research
shows promise in relation to the development of data clustering algorithms.
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