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1. Introduction

Markov chains and random walks find widespread applications in several areas. Markov chains-
based algorithms play crucial in unsupervised Machine learning and networks, such as the Markov
clustering algorithm [41, 42], which is proven to be one of the most powerful approaches for detecting
clustered structures. Quantum Markov Chains (QMCs) [1] have been introduced long ago [2, 6] and
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found important applications in physics [7,14–16,40]. QMCs on trees [4,5,22,23,30,36,38] have been
studied in connection with statistical mechanical models [3, 24, 27, 36]. In particular, quantum phase
transitions were investigated for Pauli type models [19–21]. A variety of aspects of quantum Markov
states on trees have been investigated [26–29].

Over the last few decades, quantum random walks [8] have been the subject of a significant amount of
research due to their utility in a variety of domains, such as quantum information and networks [33, 34].
In [8], OQRWs have been introduced in the unitary case. In [9], Attal et al. extended this approach
and also considered OQRWs on graphs. The inclusion of OQRWs in the general frame of QMCs
has been established in [12, 18] and then extended to QMCs on trees [31, 32]. Stopping rules and
recurrence for QMCs were introduced in [37]. In addition, in recent works [31, 32], QMCs on trees
have been associated with OQRWs. This led to further applications, such as quantum phase transitions
and recurrence of QMCs on trees [11, 37].

In quantum statistical mechanics, the clustering property for a state indicates the absence of long-
range order [17, 35]. In [30], we investigate the clustering property for a class of QMCs on the
Comb graph. In [20, 39], it was shown that a QMC associated with an XY-Ising model on the Cayley
tree satisfy the clustering property. In the present paper, we show that the QMC associated with the
disordered phase of a quantum system based on OQRW does not satisfy the clustering property. To
the best of our knowledge, non-clustering QMCs on tree have not been addressed previously in the
literature. Further relevant problems can be investigated, such as the types of von Neumann algebras
associated with the QMCs under consideration, such as [25]. The obtained results can have important
and promising implications in Markov models in data science.

The paper is organized as follows: Section 2 is devoted to some preliminaries on trees. In Section 3,
we introduce QMCs associated with OQRW on trees. Section 4 is dedicated to the main result of the
paper.

2. Preliminaries

Let Γk
+ = (V, E) be semi-infinite Cayley tree of order k. Denote o ∈ V the root of the tree. Two

vertices x and y are called nearest-neighbors if there exists an edge joining them, we denote x ∼ y.
Let u and v be two different vertices, we call edge-path with length n ∈ N joining u to v a finite list
of vertices u1, u2, · · · , un such that u ∼ u1 ∼ u2 ∼ · · · ∼ un = v. It is well known that, a tree can be
characterized through the property that any two distinct vertices are joined by means of a unique edge-
path. The distance on the tree d(u, v) between u and v is the length of the unique edge-path joining
them. The hierarchical structure of Γk

+ allows to define the levels

Wm := {u ∈ V : d(u, o) = m} .

On the levels, a coordinate structure is assigned as follows. For m ∈ N and x ∈ Wm is identified to a
n-uplet x ≡ (`1, . . . , `m), where ` j ∈ {1, . . . , k}, 1 ≤ j ≤ m . The coordinate structure is illustrated in
Figure 1 in the case of the Cayley tree of order two. In the above notations, we write

Wm =
{
(`1, `2, · · · , `m); ` j = 1, 2, · · · , k

}
.

Define

Λn =

n⋃
j=0

W j ; Λ[m,n] =

n⋃
j=m

W j.
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Figure 1. Coordinate structure on Γ3
+.

For `1, `2. . . . , `n ∈ {1, 2, . . . , k} and u = (`1, `2, . . . , `n) ∈ Wn there exists a unique path joining it to
the root o given as follows:

o ∼ u1 = (`1) ∼ u2 = (`1, `2) ∼ · · · ∼ un−1 = (`1, `2, · · · , `n−1) ∼ u.

Let u′ = (`′1, `
′
2, . . . , `

′
m) ∈ Wm, the shift αu on the tree is defined as

αu(u′) = (`1, `2, · · · , `n, `
′
1, `
′
2, · · · `

′
m) ∈ Wn+m.

In particular, αu(o) = u. For each u ∈ Wn, we define its set of direct successors by

S (u) = {v ∈ Wn+1 : u ∼ v} = {(u, 1), (u, 2), · · · , (u, k)}. (2.1)

Put
Vu = {v = u ◦ u′ : u′ ∈ V} . (2.2)

Recall that a graph isomorphism [13] is an edge-preserving bijection from a graph G1 = (V1, E1) onto
a graph G2 = (V2, E2) such that:
- α is a bijective map from V1 onto V2;
- for every x, y ∈ V1 one has x ∼ y if and only if α(x) ∼ α(y).

The sub-tree Γk
+,u = (Vu, Eu), whose vertex set is Vu, is isomorphic to Γk

+. For each n ∈ N, we define

Wu; n = {v ∈ Vu : d(u, v) = n} = αu(Wn), Λu; n =

n⋃
j=0

Wu; j = αu(Λn).

The map αu is a graph isomorphism from Γk
+ = (V, E) onto Γk

+,u = (Vu, Eu), we denote its inverse
isomorphism by α−1

u .

To each vertex x ∈ V , we assign the C∗–algebra of observablesAx = A with unit 1Ix. For any finite
region V ′ ⊂ V , we consider the local algebra AV′ =

⊗
x∈V′Ax. In particular, for each n, one defines

AΛn =
⊗

u∈Λn
Au. One has the embedding

AΛn ≡ AΛn ⊗ 1IWn+1 ⊂ AΛn+1 ,
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where for each finite region V ′ ⊂ V , one has 1IV′ =
⊗

u∈V′ 1Iu. We obtain the following local algebra
associated with the increasing set {AΛn}n≥0

AV,loc = ↑
⋃
n∈N

AΛn ,

and its C∗-closure [10] is the following quasi-local algebra

AV = AV, loc
C∗
.

For a ∈ A and x ∈ V , we denote a(x) = a ⊗ 1IV\{x}, where a appears at the componentAu of the infinite
tensor product AV . Notice that, the graph isomorphism αu defines a ∗−isomorphism α̃u from AV into
AVu satisfying

α̃u

⊗
x∈Λn

ax

 =
⊗
y∈Λu; n

a(y)
α−1

u (y)
, (2.3)

where for each y ∈ Λu; n by α−1
u (y) we mean the element x ∈ Λn satisfying αu(x) = y.

Let C ⊂ B be two C∗-algebras. We call transition expectation (TE), any completely positive identity
preserving (CP1) from B into C. Let C ⊆ B ⊆ A be unitary C∗–algebras. Recall that:

• A quasi-conditional expectation (QCE) is a CP1 linear map E : A → B such that

E(ca) = cE(a), ∀a ∈ A, ∀c ∈ C.

• A TE is any CP1 linear map between two unitary C∗-algebras.

The set of states on a C∗–algebraA will be denoted by S(A).
For a given TE EWn fromAΛ[n,n+1] intoAWn , the map

EΛn = idAΛn−1
⊗ EWn (2.4)

is a TE w.r.t. the triplet AΛn−1 ⊂ AΛn ⊂ AΛn+1 . The hierarchical structure of the Cayley tree manifests
in the fact that

Wn+1 =
⊔
u∈Wn

S (u).

This allows to consider local TE Eu fromA{u}∪S (u) intoAu. Then the map

En :=
⊗
u∈Wn

Eu

defines a TE fromAΛ[n,n+1] intoAWn .

Definition 2.1. [6] A (backward) QMC onAV is defined to be a triplet (φo, (En)n≥0, (hn)n), where

• φo ∈ S(Ao) is an initial state,
• for each n, En is a TE fromAΛ[n,n+1] intoAWn ,
• for each n, hn ∈ AWn,+ is a positive boundary condition,
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such that for each a ∈ AV the limit

ϕ(a) := lim
n→∞

φ0 ◦ EΛ0 ◦ EΛ1 ◦ · · · ◦ EΛn

(
h1/2

n+1ah1/2
n+1

)
, (2.5)

exists in the weak-*-topology and defines a state ϕ onAV , which will be also referred as QMC.

Definition 2.2. [38] The triplet ϕ ≡
(
φo, (EΛn)n≥0, (hn)n

)
is called a tree-homogeneous QMC (THQMC)

if there exists a TE E : A{o}∪S (o) → Ao such that for each n

EΛn = idAΛn−1]
⊗

⊗
u∈Wn

αu ◦ E ◦ α
−1
u (2.6)

where idAΛn−1
is the identity map onAΛn−1 and

hn =
⊗
u∈Wn

αu(h) (2.7)

for some boundary condition h ∈ Ao;+.
In the sequel, for the sake of simplicity we denote a(u) := αu(a) for each a ∈ A and u ∈ V.

Theorem 2.1. Let φo be a state onAo and E : AΛ1 → Ao a TE. For h ∈ A+, if

φo

(
h(o)

)
= 1, (2.8)

E
(
1I(o) ⊗ h(1) ⊗ h(2) · · · ⊗ h(k)

)
= h(o), (2.9)

then (φo,E, h) is a THQMC on the algebraAV .

3. QMCS on trees associated with OQRW

Let H and K be two separable Hilbert spaces. Let B(H) (respectively B(K)) be the algebra of all
bounded operators over H (respectively K) with identity 1IH (respectively 1IK ). Let {|i〉 : i ∈ Λ} be
an orthonormal basis of K , where Λ is a connected graph. The algebra of observables at a given site
u ∈ V isAu = B(H)⊗B(K) ≡ B(H ⊗K) with identity 1Iu = 1IH ⊗ 1IK . In the notations of the previous
section, for eacha ∈ B(H) ⊗ B(K) we denote αu(a) = a(u) ∈ Au. For each (i, j) ∈ Λ2, the quantum
transition from the state | j〉 into the state |i〉 is implemented by an operator Bi

j ∈ B(H) such that∑
i∈Λ

Bi∗
j Bi

j = 1IH . (3.1)

Consider a density operator ρ ∈ B(H ⊗K), of the form

ρ =
∑
i∈Λ

ρi ⊗ |i〉〈i| , ρi ∈ B(H)+\{0},

where B(H)+ is the cone of positive operators overH .
For each u ∈ V , we set

Mi
j = Bi

j ⊗ |i〉〈 j| ∈ B(H) ⊗ B(K). (3.2)
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Put
Ai

j :=
1

Tr(ρ j)1/2ρ
1/2
j ⊗ |i〉〈 j|, with i, j ∈ Λ, (3.3)

Ki
j := Mi∗

j
(u)
⊗

⊗
v∈S (u)

Ai
j
(v)
∈ A{u}∪S (u), (3.4)

where b(x) = αx(b) for every b ∈ B(H ⊗K) and x ∈ V .
Let

E(a) = Tru]

 ∑
(i, j)∈Λ2

Ki
ja

∑
(i′, j′)∈Λ2

Ki′ ∗
j′

 ,
where Tru] is the partial trace defined by linear extension of

Tru](au ⊗ a(u,1) ⊗ · · · ⊗ a(u,k)) = Tr(a(u,1)) · · ·Tr(a(u,k)) · au.

For a = au ⊗ au,1 ⊗ · · · ⊗ au,k one shows that

E(a) =
∑

(i, j, j′)∈Λ3

Mi∗
j

(u)auMi
j′

(u)
 k∏
`=1

ϕ j, j′(au,`)

 , (3.5)

where
ϕ j j′(b) :=

1

Tr(ρ j)1/2Tr
(
ρ j′

)1/2 Tr
(
ρ1/2

j ρ1/2
j′ ⊗ | j

′〉〈 j| b
)
, ∀b ∈ B(H) ⊗ B(K). (3.6)

Theorem 3.1. With the above notations, if ωo ∈ Ao;+ is an initial state and h ∈ Ao;+ is a boundary
condition such that

Tr(ωoho) = 1, (3.7)∑
i, j, j′∈Λ

Mi∗
j Mi

j′

k∏
`=1

ϕ j, j′(h(u,`)) = hu. (3.8)

Then the triplet (ωo, (Eu)u∈V , (hu)u∈V) defines a quantum Markov chain ϕ on the algebraAV . Moreover,
for each a =

⊗
u∈Λn

au ∈ AΛn one has

ϕ(a) =
∑
j, j′∈Λ

Tr
(
ωoM j j′(ao)

) ∏
u∈Λ[1,n]

ψ j, j′(au)
∏

v∈Λn+1

ϕ j, j′(h(v)), (3.9)

where Eu is given by (3.5), the functional ϕ j j is given by (3.6), and

M j j′(·) =
∑
i∈Λ

Mi∗
j′ · Mi

j, (3.10)

ψ j, j′(b) =
1

Tr(ρ j)1/2Tr(ρ j′)1/2

∑
i∈Λ

Tr
(
Bi

j′ρ
1/2
j′ ρ

1/2
j Bi

j
∗
⊗ |i〉〈i| b

)
. (3.11)

Proof. See [31]. �
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The forward Markov operator associated with the TE (3.5) is defined fromAu into itself as follows

Px; f (ax) := Ex
(
ax ⊗ 1Ix,1 ⊗ · · · ⊗ 1Ix,k

)
(3.12)

and for each ` ∈ {1, 2, · · · , k}, the `th backward Markov operator is defined onAx,` intoAx by

Px,`;b(ax,`) := Ex
(
1Ix ⊗ 1Ix,1 ⊗ 1Ix,`−1 ⊗ ax,` ⊗ 1Ix,`+1 ⊗ · · · ⊗ 1Ix,k

)
. (3.13)

In previous works [31, 38], it was shown that the boundary condition h = 1I corresponds to the QMC
associated with the disordered phase of the system. One finds

Px; f (ax) =
∑
i, j, j′

Mi∗
j axMi

j′
(
ϕ j j′(1I)

)k
=

∑
i, j

Mi∗
j axMi

j (3.14)

and
Px,`;b(ax,`) =

∑
i, j, j′

Mi∗
j Mi

j′
(
ϕ j j′(1I)

)k−1
ϕ j j′(ax,`)

(3.1)
=

∑
j

1IH ⊗ | j〉〈 j|ϕ j j(ax,`). (3.15)

4. Main result

In this section, we restrict ourselves to the case h = 1I. Indeed, thanks to (3.1) the boundary condition
h = 1I is solution of (3.8). The corresponding QMC evaluated on localized elements a =

⊗
x∈Λm

ax is
given by

ϕ(a) =
∑
j∈Λ

Tr
(
ωoM j j(ao)

) ∏
u∈Λ[1,n]

ψ j j(au). (4.1)

Definition 4.1. A state ψ onAV is said to be clustering (mixing) if

lim
u∈V; |u|→∞

ϕ (aαu(b)) = ϕ(a)ϕ(b), ∀(a, b) ∈ AV , (4.2)

where |u| = d(u, o).

Theorem 4.1. Let ϕ ≡ (φo,E, h = 1I) then

(i) Let m ≥ 0 be an integer, for every a, b ∈ AΛm ,

lim
u;|u|→∞

ϕ (aαu(b)) =
∑
j∈Λ

φo

(
M j j(a0)

) ∏
x∈Λ[1,m]

ψ j j (ax)ϕ j j

(
b̂
)
, (4.3)

where
b̂ := Eo

(
bo ⊗ EW1(bW1 ⊗ · · · EWm(bWm ⊗ 1IWm+1))

)
. (4.4)

(ii) The QMC ϕ given by (3.9) is clustering if and only if |Λ| = 1.

Proof. (i) Let u = (`1, `2, · · · , `n). Let a, b ∈ AV;loc. Without lose of generality, we can assume that
a =

⊗
x∈Λm

ax, b =
⊗

x∈Λm
bx ∈ AΛm . For F ⊂ Λm, we denote bF =

⊗
x∈F bx, one can see that

αu(bW j) =
⊗
v∈Wu; j

b(v)
α−1

u (v)
=:

⊗
v∈Wu; j

b′v = b′Wu; j
.
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We find
αu(b̂) = Eu

(
b(u)

o ⊗ EWu;1(b
(Wu;1)
W1

⊗ · · · EWu;m(b(Wu;m)
Wm

⊗ 1IWm+1))
)
.

On the other hand, we have

EWn+m(b′Wu;m
⊗ 1IWn+m\Wu;m ⊗ 1IWn+m) =

⊗
v∈Wu;m

Ev
(
b′v ⊗ 1IS (v)

)
⊗

⊗
w∈Wn+m\Wu;m

Ew
(
1Iw∨S (w)

)
(3.12)
=

⊗
v∈Wu;m

Pv; f (b′v) ⊗ 1IWn+m\Wu;m .

Then

EWn+m−1

(
b′Wu;m

⊗ 1IWn+m−1\Wu;m−1 ⊗ EWn+m

(
b′Wu;m

⊗ 1IWn+m\Wu;m ⊗ 1IWn+m

))
= EWn+m−1

b′Wu;m
⊗ 1IWn+m−1\Wu;m−1 ⊗

⊗
v∈Wu;m

Pv; f (b′v) ⊗ 1IWn+m\Wu;m


=

⊗
w∈Wu;m−1

Ew

b′w ⊗ ⊗
v∈S (w)

Pv; f (b′v)

 ⊗ 1IWn+m−1\Wu;m−1 ,

iterating the above procedure, we get

EWn

(
b′u ⊗ EWn+1

(
b′Wu;1

⊗ · · · EWn+m

(
b′Wu;m

⊗ 1IWn+m

)
· · ·

)) (4.4)
= b̂u ⊗ 1IWn\{u}.

Denote u j = (`1, `2, . . . , ` j) for each j ∈ {1, 2, · · · , n}. For c j ∈ Au j , we have

EW j−1

(
1IW j−1 ⊗ cu j ⊗ 1IW j\{u j}

) (3.13)
= Pu j−1;`;b

(
cu j

)
⊗ 1IW j−1\{u j−1}.

It follows that

ϕ(aαu(b)) = φo

(
E0

(
ao ⊗ EW1

(
aW1 ⊗ · · · EWm

(
aWm ⊗ EWm+1

(
1IWm+1 ⊗ · · · EWn−1

(
1IWm−1 ⊗

EWn

(
b′u ⊗ EWn+1

(
b′Wu;1

⊗ · · · EWn+m

(
b′Wu;m

⊗ 1IWn+m

)
· · ·

)))
· · ·

))
· · ·

)))
= φo

(
E0

(
ao ⊗ EW1

(
aW1 ⊗ · · · EWm

(
aWm ⊗ EWm+1

(
1IWm+1 ⊗ · · · EWn−1

(
1IWm−1 ⊗

b̂u ⊗ 1IWn\{u}

)
· · ·

))
· · ·

)))
= φo

(
E0

(
ao ⊗ EW1

(
aW1 ⊗ · · · EWm

(
aWm ⊗ EWm+1

(
1IWm+1 ⊗ · · · EWn−2

(
1IWm−2 ⊗

Pun−1;`n;b(b̂u) ⊗ 1IWn−1\{un−1}

)
· · ·

))
· · ·

)))
...

= φo

(
E0

(
ao ⊗ EW1

(
aW1 ⊗ · · · EWm

(
aWm ⊗ P̃un

um+1;b(b̂u) ⊗ 1IWm+1\{um+1}

)
· · ·

)))
,

where
P̃un

um+1;b(c) = Pum+1;`m+2;bPum+2;`m+3;b · · · Pun−1;`n;b(c), c ∈ Au.

For c ∈ Aui , we have

Pui;`i+1;bPui+1;`i+2;b(c)
(3.15)
= Pui;`i+1;b

∑
j

1IH ⊗ | j〉〈 j|ϕ j j(c)
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=
∑

j′
1IH ⊗ | j′〉〈 j′|ϕ j′ j′

∑
j

1IH ⊗ | j〉〈 j|ϕ j j(c)


(3.6)
=

∑
j, j′

1IH ⊗ | j′〉〈 j′|δ j, j′ϕ j j(c)

=
∑

j

1IH ⊗ | j〉〈 j|ϕ j j(c).

This means that elements of the form c′ =
∑

j 1IH ⊗ | j〉〈 j|ϕ j j(ci) are invariant for the all the
backward Markov operators Pui;`;b. Then

P̃un
um+1;b

(
b̂u

)
=

∑
j

1IH ⊗ | j〉〈 j|ϕ j j

(
b̂u

)
.

Therefore, using (3.9) we find (4.3).

(ii) On the other hand, we have

ϕ(a)ϕ(b) = ϕ(a)φo

(
b̂
)

=
∑
j∈Λ

φo

(
M j j (a0)

) ∏
x∈Λ[1,m]

ψ j j(ax)φo

(
b̂
)
.

Fix j ∈ Λ. For a = (1IH ⊗ | j〉〈 j|)(1), we get

ϕ(aαu(b)) = ϕ j j(b̂) ; ϕ(a) = 1.

Therefore, the QMC ϕ satisfies (4.2) if and only if ϕ j j = φo, ∀ j ∈ Λ. If |Λ| > 1, then for j , j′ we
have ϕ j j(1IH ⊗ | j〉〈 j|) = 1 , 0 = ϕ j′ j′(1IH ⊗ | j〉〈 j|). If Λ is reduced to a singleton { j0}, the state ϕ
is a product state. It is enough to take φ0 = ϕ j0 j0 to get the clustering property. This finishes the
proof.

�

Remark 4.1. In (4.3), if a = 1I we get

lim
u; |u|→∞

ϕ(αu(b)) =
∑
j∈Λ

φo (1I ⊗ | j〉〈 j|)ϕ j j(b̂) =: ϕ∞(b̂), (4.5)

the limiting state ϕ∞ onA is equitably distributed between the state ϕ j j with respect to the initial state
φo.

From Theorem 4.1 the state ϕ is clustering if and only the OQRW is trivial and the walker occupies
a single site Λ = {i0}. In this case the QMC ϕ is a product state.

Example 4.1. Let H = K = C2 with canonical basis (|1〉, |2〉) and Λ = {1, 2}. The algebra of
observable isA = M2(C) ⊗M2(C) ≡ M4(C). The transitions of the OQRW are given by

B1
1 =

(
α 0
0 β

)
, B1

2 =

(
0 1
0 0

)
, B2

1 =

(
γ 0
0 δ

)
, B2

2 =

(
1 0
0 0

)
,

where α, β, γ, δ ∈ C such that

|α|2 + |γ|2 = |β|2 + |δ|2 = 1 and αγ , 0. (4.6)

Put
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ρ1 =

(
1 0
0 0

)
, ρ2 =

(
0 0
0 1

)
, σ =

(
1 0
0 −1

)
.

The initial state is the normalized trace given by φo = 1
4Tr. One has ϕ j j(b) = Tr

(
ρ j ⊗ | j〉〈 j|b

)
for each

j ∈ Λ.
Let a = b = σ ⊗ |2〉〈2|, from (3.5) we find

Eo(a ⊗ 1I) =
∑

i, j

Mi∗
j aMi

j

=
∑

j

B2 ∗
j σB2

j ⊗ | j〉〈 j|

=

(
|γ|2 0
0 −|δ|2

)
⊗ |1〉〈1| +

(
1 0
0 0

)
⊗ |2〉〈2|.

Therefore

ϕ(a) = φ0(Eo(a)) =
1
4

(
|β|2 + |γ|2

)
.

Since b ∈ Ao then from (4.4) we have b̂ = Eo(b ⊗ 1I). It follows that

ϕ11(b̂) = |γ|2 ; ϕ22(b̂) = 0.

In addition

M11(a) =
∑

i

Mi ∗
1 aMi

1

= B2 ∗
1 ⊗ |1〉〈1|aB1

1 ⊗ |1〉〈1| + B1 ∗
1 ⊗ |1〉〈2|aB1

1 ⊗ |2〉〈1|

=

(
|γ|2 0
0 −|δ|2

)
⊗ |1〉〈1|.

Then (4.3) implies that

lim
u; |u|→∞

ϕ(aαu(b)) = φo(M11(a))ϕ11(b̂) =
1
4
|γ|2

(
|γ|2 − |δ|2

)
.

Thus
ϕ(a)φ(b) =

1
16

(
|β|2 + |γ|2

)2
,

1
4
|γ|2

(
|γ|2 − |δ|2

)
= ϕ (aαu(b)) .

Therefore, the state ϕ does not satisfy the clustering property. Moreover, from (4.5) limiting state is
given by

ϕ∞ =
1
2

2∑
j=1

ϕ j j , φo.

If in addition |β| , |γ|, then for u ∈ V \ Λ1, we have

ϕ(b) =
1
4

(
|β|2 + |γ|2

)
, ϕ(αu(b)) = ϕ∞(b̂) =

1
2
|γ|2,

then the QMC ϕ is not invariant under the translation τu.
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5. Conclusions

In prior studies, significant characteristics of QMCs on trees, such as phase transition and
recurrence, have been investigated. In the present paper, we examine the clustering property of a
QMC approach on the Cayley tree associated OQRWs. This analysis reveals an additional ergodic
property within the disordered phase of the quantum system under examination. Notably, our research
shows promise in relation to the development of data clustering algorithms.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research is funded by the “Researchers Supporting Project number (RSPD2023R683), King
Saud University, Riyadh, Saudi Arabia”.

Conflict of interest

The authors have no conflicts of interest to declare.

References

1. L. Accardi, Non-commutative Markov chains, Proc. Int. Sch. Math. Phys., 1974, 268–295.

2. L. Accardi, A. Frigerio, Markovian cocycles, Math. Proc. R. Ir. Acad., 83 (1983), 251–263.

3. L. Accardi, F. Mukhamedov, A. Souissi, Construction of a new class of quantum Markov fields,
Adv. Oper. Theory, 1 (2016), 206–218. https://doi.org/10.22034/aot.1610.1031

4. L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree I: Uniqueness
of the associated chain with XY-model on the Cayley tree of order two, Infin. Dimens. Anal.
Quantum Probab. Relat. Top., 14 (2011), 443–463. https://doi.org/10.1142/S021902571100447X

5. L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree II: phase
transitions for the associated chain with XY-model on the Cayley tree of order three, Ann. Henri
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