The first Zagreb index of graphs is defined to be the sum of squares of degrees of all the vertices of graphs. It drew a great deal of attention in the past half-century. In this paper, we study the relationship between the first Zagreb index and Roman domination number of graphs. More precisely, we characterize the trees with the maximum first Zagreb index among trees with given Roman domination number.
Citation: Zhibin Du, Ayu Ameliatul Shahilah Ahmad Jamri, Roslan Hasni, Doost Ali Mojdeh. Maximal first Zagreb index of trees with given Roman domination number[J]. AIMS Mathematics, 2022, 7(7): 11801-11812. doi: 10.3934/math.2022658
The first Zagreb index of graphs is defined to be the sum of squares of degrees of all the vertices of graphs. It drew a great deal of attention in the past half-century. In this paper, we study the relationship between the first Zagreb index and Roman domination number of graphs. More precisely, we characterize the trees with the maximum first Zagreb index among trees with given Roman domination number.
[1] | H. A. Ahangar, M. Khaibari, Graphs with large Roman domination number, Malaysian J. Math. Sci., 11 (2017), 71–81. |
[2] | A. Alhashim, W. J. Desormeaux, T. W. Haynes, Roman domination in complementary prisms, Australas. J. Comb., 68 (2017), 218–228. |
[3] | J. Amjadi, R. Khoeilar, M. Chellali, Z. Shao, On the Roman domination subdivision number of a graph, J. Comb. Optim., 40 (2020), 501–511. https://doi.org/10.1007/s10878-020-00597-x doi: 10.1007/s10878-020-00597-x |
[4] | S. Bermudo, J. E. Nápoles, J. Rada, Extremal trees for the Randić index with given domination number, Appl. Math. Comput., 375 (2020), 125122. https://doi.org/10.1016/j.amc.2020.125122 doi: 10.1016/j.amc.2020.125122 |
[5] | B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100. |
[6] | B. Borovićanin, B. Furtula, On extremal Zagreb indices of trees with given domination number, Appl. Math. Comput., 279 (2016), 208–218. https://doi.org/10.1016/j.amc.2016.01.017 doi: 10.1016/j.amc.2016.01.017 |
[7] | E. W. Chambers, B. Kinnersley, N. Prince, D. B. West, Extremal problems for Roman domination, SIAM J. Discrete Math., 23 (2009), 1575–1586. https://doi.org/10.1137/070699688 doi: 10.1137/070699688 |
[8] | E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks, 10 (1980), 211–219. https://doi.org/10.1002/net.3230100304 doi: 10.1002/net.3230100304 |
[9] | E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11–22. https://doi.org/10.1016/j.disc.2003.06.004 doi: 10.1016/j.disc.2003.06.004 |
[10] | P. Dankelmann, Average distance and domination number, Discrete Appl. Math., 80 (1997), 21–35. https://doi.org/10.1016/S0166-218X(97)00067-X doi: 10.1016/S0166-218X(97)00067-X |
[11] | O. Favaron, H. Karami, R. Khoeilar, S. M. Sheikholeslami, On the Roman domination number of a graph, Discrete Math., 309 (2009), 3447–3451. https://doi.org/10.1016/j.disc.2008.09.043 doi: 10.1016/j.disc.2008.09.043 |
[12] | I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92. |
[13] | I. Gutman, N. Trinajstić, Graph theory and molecular orbits. Total $\varphi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1 |
[14] | M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory, 22 (2002), 325–334. https://doi.org/10.7151/dmgt.1178 doi: 10.7151/dmgt.1178 |
[15] | S. M. Hosamani, B. Basavanagoud, New upper bound for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74 (2015), 97–101. |
[16] | M. H. Liu, A simple approach to order the first Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem., 63 (2010), 425–432. |
[17] | M. H. Liu, B. L. Liu, New sharp upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 62 (2009), 689–698. |
[18] | D. A. Mojdeh, M. Habibi, L. Badakdshian, Y. S. Rao, Zagreb indices of trees, unicyclic and bicyclic graphs with given (total) domination, IEEE Access, 7 (2019), 94143–94149. https://doi.org/10.1109/ACCESS.2019.2927288 doi: 10.1109/ACCESS.2019.2927288 |
[19] | D. A. Mojdeh, A. Parsian, I. Masoumi, Strong Roman domination number of complementary prism graphs, Turkish J. Math. Comput. Sci., 11 (2019), 40–47. |
[20] | S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003), 113–124. |
[21] | R. Rasi, S. M. Sheikholeslami, A. Behmaram, An upper bound on the first Zagreb index in trees, Iranian J. Math. Chem., 8 (2017), 71–82. https://doi.org/10.22052/IJMC.2017.42995 doi: 10.22052/IJMC.2017.42995 |
[22] | R. Todeschini, V. Consonni, Handbook of molecular descriptors, Weinheim: Wiley-VCH, 2000. |
[23] | J. F. Wang, F. Belardo, A lower bound for the first Zagreb index and its applications, MATCH Commun. Math. Comput. Chem., 74 (2015), 35–56. |
[24] | D. B. West, Introduction to graph theory, Upper Saddle River: Prentice Hall, 2001. |