A vertex-edge perfect Roman dominating function on a graph $ G = (V, E) $ (denoted by ve-PRDF) is a function $ f:V\left(G\right)\longrightarrow\{0, 1, 2\} $ such that for every edge $ uv\in E $, $ \max\{f(u), f(v)\}\neq0 $, or $ u $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $, or $ v $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $. The weight of a ve-PRDF on $ G $ is the sum $ w(f) = \sum_{v\in V}f(v) $. The vertex-edge perfect Roman domination number of $ G $ (denoted by $ \gamma_{veR}^{p}(G) $) is the minimum weight of a ve-PRDF on $ G $. In this paper, we first show that vertex-edge perfect Roman dominating is NP-complete for bipartite graphs. Also, for a tree $ T $, we give upper and lower bounds for $ \gamma_{veR}^{p}(T) $ in terms of the order $ n $, $ l $ leaves and $ s $ support vertices. Lastly, we determine $ \gamma_{veR}^{p}(G) $ for Petersen, cycle and Flower snark graphs.
Citation: Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu. Vertex-edge perfect Roman domination number[J]. AIMS Mathematics, 2023, 8(9): 21472-21483. doi: 10.3934/math.20231094
A vertex-edge perfect Roman dominating function on a graph $ G = (V, E) $ (denoted by ve-PRDF) is a function $ f:V\left(G\right)\longrightarrow\{0, 1, 2\} $ such that for every edge $ uv\in E $, $ \max\{f(u), f(v)\}\neq0 $, or $ u $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $, or $ v $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $. The weight of a ve-PRDF on $ G $ is the sum $ w(f) = \sum_{v\in V}f(v) $. The vertex-edge perfect Roman domination number of $ G $ (denoted by $ \gamma_{veR}^{p}(G) $) is the minimum weight of a ve-PRDF on $ G $. In this paper, we first show that vertex-edge perfect Roman dominating is NP-complete for bipartite graphs. Also, for a tree $ T $, we give upper and lower bounds for $ \gamma_{veR}^{p}(T) $ in terms of the order $ n $, $ l $ leaves and $ s $ support vertices. Lastly, we determine $ \gamma_{veR}^{p}(G) $ for Petersen, cycle and Flower snark graphs.
[1] | A. Almulhim, A. Akwu, B. Al Subaiei, The perfect roman domination number of the cartesian product of some graphs, J. Math., 2022 (2022), 1957027. http://dx.doi.org/10.1155/2022/1957027 doi: 10.1155/2022/1957027 |
[2] | G. Chang, S. Chen, C. Liu, Edge Roman domination on graphs, Graph. Combinator., 32 (2016), 1731–1747. http://dx.doi.org/10.1007/s00373-016-1695-x doi: 10.1007/s00373-016-1695-x |
[3] | E. Cockayne, P. Dreyer, S. Hedetniemi, S. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (2004), 11–22. http://dx.doi.org/10.1016/j.disc.2003.06.004 |
[4] | I. Dejter, Perfect domination in regular grid graphs, Australas. J. Comb., 42 (2008), 99–114. |
[5] | T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs, Boca Raton: CRC Press, 1998. http://dx.doi.org/10.1201/9781482246582 |
[6] | M. Henning, W. Klostermeyer, G. MacGillivray, Perfect Roman domination in trees, Discrete Appl. Math., 236 (2018), 235–245. http://dx.doi.org/10.1016/j.dam.2017.10.027 doi: 10.1016/j.dam.2017.10.027 |
[7] | S. Jena, G. Das, Vertex-edge domination in unit disk graphs, Discrete Appl. Math., 319 (2022), 351–361, http://dx.doi.org/10.1016/j.dam.2021.06.002 doi: 10.1016/j.dam.2021.06.002 |
[8] | S. Mitchell, S. Hedetniemi, Edge domination in trees, Proceedings of 8th SE Conference Combinatorics, Graph, Theory and Computing, 19 (1977), 489–509. |
[9] | H. Naresh Kumar, Y. Venkatakrishnan, Trees with vertex-edge Roman domination number twice the domination number minus one, Proyecciones, 39 (2020), 1381–1392, http://dx.doi.org/10.22199/issn.0717-6279-2020-06-0084 doi: 10.22199/issn.0717-6279-2020-06-0084 |
[10] | H. Naresh Kumar, Y. Venkatakrishnan, Vertex-edge Roman domination, Kragujev. J. Math., 45 (2021), 685–698. |
[11] | K. Peters, Theoretical and algorithmic results on domination and connectivity, Ph. D Thesis, Clemson University, 1986. |
[12] | S. Vaidya, R. Pandit, Edge domination in some path and cycle relate graphs, J. Math., 2014 (2014), 975812. http://dx.doi.org/10.1155/2014/975812 doi: 10.1155/2014/975812 |
[13] | P. Zyliński, Vertex-edge domination in graphs, Aequat. Math., 93 (2019), 735–742. http://dx.doi.org/10.1007/s00010-018-0609-9 doi: 10.1007/s00010-018-0609-9 |