The purpose of this article is to propose a new numerical method to solve the problem of optimal control of the steady-state Navier-Stokes equations via the velocity-pressure formulation. We apply a new technique to derive a system of equations from which the solution can be calculated. The spectral method is used to discretize the problem. An extended relaxation method is proposed in the numerical part to ensure the correct convergence of the system. Finally, numerical results are provided to confirm the effectiveness of this approach.
Citation: Sameh Abidi, Jamil Satouri. New numerical method for solving optimal control problem for the stationary Navier-Stokes equations[J]. AIMS Mathematics, 2023, 8(9): 21484-21500. doi: 10.3934/math.20231095
The purpose of this article is to propose a new numerical method to solve the problem of optimal control of the steady-state Navier-Stokes equations via the velocity-pressure formulation. We apply a new technique to derive a system of equations from which the solution can be calculated. The spectral method is used to discretize the problem. An extended relaxation method is proposed in the numerical part to ensure the correct convergence of the system. Finally, numerical results are provided to confirm the effectiveness of this approach.
[1] | V. Isakov, Inverse problems for partial differential equations, New York: Springer, 1998. https://doi.org/10.1007/978-1-4899-0030-2 |
[2] | M. Kern, Problèmes inverses aspects numériques, Engineering school. 1999 à 2002, École supérieure d'ingénieurs Léonard de Vinci, 2002, cel-00168393v2. |
[3] | S. El Yacoubi, J. Sokołowski, Domain optimization problems for parabolic control systems, Appl. Math. Comput. Sci., 6 (1996), 277–289. |
[4] | A. Henrot, J. Sokołowski, A shape optimization problem for the heat equation, In: Optimal control, Boston, MA: Springer, 1998,204–223. https://doi.org/10.1007/978-1-4757-6095-8_10 |
[5] | K. H. Hoffmann, J. Sokołowski, Interface optimization problems for parabolic equations, Control Cybernet, 23 (1994), 445–451. |
[6] | J. Sokołowski, Shape sensitivity analysis of boundary optimal control problems for parabolic systems, SIAM J. Control Optim., 26 (1988), 763–787. https://doi.org/10.1137/0326045 doi: 10.1137/0326045 |
[7] | H. Harbrecht, J. Tausch, An efficient numerical method for a shape-identification problem arising from the heat equation, Inverse Probl., 27 (2001), 065013. https://doi.org/10.1088/0266-5611/27/6/065013 doi: 10.1088/0266-5611/27/6/065013 |
[8] | H. Harbrecht, J. Tausch, On shape optimization with parabolic state equation, In: Trends in PDE constrained optimization, Cham: Birkhäuser, 2014,213–229. https://doi.org/10.1007/978-3-319-05083-6_14 |
[9] | E. S. Baranovskii, Optimal boundary control of the Boussinesq approximation for polymeric fluids, J. Optim. Theory Appl., 189 (2021), 623–645. https://doi.org/10.1007/s10957-021-01849-4 doi: 10.1007/s10957-021-01849-4 |
[10] | A. Chierici, V. Giovacchini, S. Manservisi, Analysis and computations of optimal control problems for Boussinesq equations, Fluids, 7 (2022), 203. https://doi.org/10.3390/fluids7060203 doi: 10.3390/fluids7060203 |
[11] | S. Abidi, J. Satouri, Identification of the diffusion in a nonlinear parabolic problem and numerical resolution, ANZIAM J., 57 (2016), 1–38. https://doi.org/10.21914/anziamj.v57i0.8835 doi: 10.21914/anziamj.v57i0.8835 |
[12] | I. Neitzel, F. Tröltzsch, On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints, ESAIM: COCV, 15 (2019), 426–453. https://doi.org/10.1051/cocv:2008038 doi: 10.1051/cocv:2008038 |
[13] | J. C. De Los Reyes, R. Griesse, State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations, J. Math. Anal. Appl., 343 (2008), 257–272. https://doi.org/10.1016/j.jmaa.2008.01.029 doi: 10.1016/j.jmaa.2008.01.029 |
[14] | F. Troltzsch, Optimal control of partial differential equations: Theory, methods, and applications, American Mathematical Society, 2010. https://doi.org/10.1090/gsm/112 |
[15] | M. D. Gunzburger, Perspectives in flow control and optimization, SIAM, 2002. https://doi.org/10.1137/1.9780898718720 |
[16] | M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, Dordrecht: Springer, 2009. https://doi.org/10.1007/978-1-4020-8839-1 |
[17] | D. Whitley, S. Rana, J. Dzubera, K. E. Mathias, Evaluating evolutionary algorithms, Artif. Intell., 85 (1996), 245–276. https://doi.org/10.1016/0004-3702(95)00124-7 doi: 10.1016/0004-3702(95)00124-7 |
[18] | C. Meyer, F. Tröltzsch, On an elliptic optimal control problem with pointwise mixed control-state constraints, In: Recent advances in optimization, Berlin, Heidelberg: Springer, 2006,187–204. https://doi.org/10.1007/3-540-28258-0_12 |
[19] | O. Benedix, Adaptive numerical solution of state constrained optimal control problems, Universitätsbibliothek der TU München, 2011. |
[20] | C. Jia, A note on the model reference adaptive control of linear parabolic systems with constant coefficients, J. Syst. Sci. Complex., 24 (2011), 1110–1117. https://doi.org/10.1007/s11424-011-0042-9 doi: 10.1007/s11424-011-0042-9 |
[21] | D. Bresch-Pietria, M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica, 50 (2014), 1407–1415. https://doi.org/10.1016/j.automatica.2014.02.040 doi: 10.1016/j.automatica.2014.02.040 |
[22] | K. Van de Doel, U. M. Ascher, On level set regularization for highly ill-posed distributed parameter systems, J. Comput. Phys., 216 (2006), 707–723. https://doi.org/10.1016/j.jcp.2006.01.022 doi: 10.1016/j.jcp.2006.01.022 |
[23] | M. Böhm, M. A. Demetriou, S. Reich, I. G. Rosen, Model reference adaptive control of distributed parameter systems, SIAM J. Control Optim., 36 (1998), 33–81. https://doi.org/10.1137/S0363012995279717 doi: 10.1137/S0363012995279717 |
[24] | C. Bernardi, Y. Maday, Spectral methods, Handbook of Numerical Analysis, 5 (1997), 209–485. https://doi.org/10.1016/S1570-8659(97)80003-8 |
[25] | R. Agroum, S. M. Aouadi, C. Bernardi, J. Satouri, Spectral discretization of the Navier-Stokes problem coupled with the heat equation, 2013, hal-00842939. |
[26] | F. Brezzi, J. Rappaz, P. A. Raviart, Finite-dimensional approximation of nonlinear problems, Part I: branches of nonsingular solutions, Numer. Math., 36 (1980), 1–25. https://doi.org/10.1007/BF01395985 doi: 10.1007/BF01395985 |