Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

New numerical method for solving optimal control problem for the stationary Navier-Stokes equations

  • Received: 03 March 2023 Revised: 23 May 2023 Accepted: 25 May 2023 Published: 05 July 2023
  • MSC : 76B75, 76D55

  • The purpose of this article is to propose a new numerical method to solve the problem of optimal control of the steady-state Navier-Stokes equations via the velocity-pressure formulation. We apply a new technique to derive a system of equations from which the solution can be calculated. The spectral method is used to discretize the problem. An extended relaxation method is proposed in the numerical part to ensure the correct convergence of the system. Finally, numerical results are provided to confirm the effectiveness of this approach.

    Citation: Sameh Abidi, Jamil Satouri. New numerical method for solving optimal control problem for the stationary Navier-Stokes equations[J]. AIMS Mathematics, 2023, 8(9): 21484-21500. doi: 10.3934/math.20231095

    Related Papers:

    [1] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
    [2] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [3] Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704
    [4] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
    [5] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [6] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [7] Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164
    [8] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [9] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [10] Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486
  • The purpose of this article is to propose a new numerical method to solve the problem of optimal control of the steady-state Navier-Stokes equations via the velocity-pressure formulation. We apply a new technique to derive a system of equations from which the solution can be calculated. The spectral method is used to discretize the problem. An extended relaxation method is proposed in the numerical part to ensure the correct convergence of the system. Finally, numerical results are provided to confirm the effectiveness of this approach.



    Segre [1] made a pioneering attempt in the development of special algebra. He conceptualized the commutative generalization of complex numbers, bicomplex numbers, tricomplex numbers, etc. as elements of an infinite set of algebras. Subsequently, in the 1930s, researchers contributed in this area [2,3,4]. The next fifty years failed to witness any advancement in this field. Later, Price [5] developed the bicomplex algebra and function theory. Recent works in this subject [6,7] find some significant applications in different fields of mathematical sciences as well as other branches of science and technology. An impressive body of work has been developed by a number of researchers. Among these works, an important work on elementary functions of bicomplex numbers has been done by Luna-Elizaarrarˊas et al. [8]. Choi et al. [9] proved some common fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Jebril [10] proved some common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces. In 2017, Dhivya and Marudai [11] introduced the concept of a complex partial metric space, suggested a plan to expand the results and proved some common fixed point theorems under a rational expression contraction condition. In 2019, Mani and Mishra [12] proved coupled fixed point theorems on a complex partial metric space using different types of contractive conditions. In 2021, Gunaseelan et al. [13] proved common fixed point theorems on a complex partial metric space. In 2021, Beg et al.[14] proved fixed point theorems on a bicomplex valued metric space. In 2021, Zhaohui et al. [15] proved common fixed theorems on a bicomplex partial metric space. In this paper, we prove coupled fixed point theorems on a bicomplex partial metric space. An example is provided to verify the effectiveness and applicability of our main results. An application of these results to Fredholm integral equations and nonlinear integral equations is given.

    Throughout this paper, we denote the set of real, complex and bicomplex numbers, respectively, as C0, C1 and C2. Segre [1] defined the complex number as follows:

    z=ϑ1+ϑ2i1,

    where ϑ1,ϑ2C0, i21=1. We denote the set ofcomplex numbers C1 as:

    C1={z:z=ϑ1+ϑ2i1,ϑ1,ϑ2C0}.

    Let zC1; then, |z|=(ϑ21+ϑ22)12. The norm ||.|| of an element in C1 is the positive real valued function ||.||:C1C+0 defined by

    ||z||=(ϑ21+ϑ22)12.

    Segre [1] defined the bicomplex number as follows:

    ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2,

    where ϑ1,ϑ2,ϑ3,ϑ4C0, and independent units i1,i2 are such that i21=i22=1 and i1i2=i2i1. We denote the set of bicomplex numbers C2 as:

    C2={ς:ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2,ϑ1,ϑ2,ϑ3,ϑ4C0},

    i.e.,

    C2={ς:ς=z1+i2z2,z1,z2C1},

    where z1=ϑ1+ϑ2i1C1 and z2=ϑ3+ϑ4i1C1. If ς=z1+i2z2 and η=ω1+i2ω2 are any two bicomplex numbers, then the sum is ς±η=(z1+i2z2)±(ω1+i2ω2)=z1±ω1+i2(z2±ω2), and the product is ς.η=(z1+i2z2)(ω1+i2ω2)=(z1ω1z2ω2)+i2(z1ω2+z2ω1).

    There are four idempotent elements in C2: They are 0,1,e1=1+i1i22,e2=1i1i22 of which e1 and e2 are nontrivial, such that e1+e2=1 and e1e2=0. Every bicomplex number z1+i2z2 can be uniquely expressed as the combination of e1 and e2, namely

    ς=z1+i2z2=(z1i1z2)e1+(z1+i1z2)e2.

    This representation of ς is known as the idempotent representation of a bicomplex number, and the complex coefficients ς1=(z1i1z2) and ς2=(z1+i1z2) are known as the idempotent components of the bicomplex number ς.

    An element ς=z1+i2z2C2 is said to be invertible if there exists another element η in C2 such that ςη=1, and η is said to be inverse (multiplicative) of ς. Consequently, ς is said to be the inverse(multiplicative) of η. An element which has an inverse in C2 is said to be a non-singular element of C2, and an element which does not have an inverse in C2 is said to be a singular element of C2.

    An element ς=z1+i2z2C2 is non-singular if and only if ||z21+z22||0 and singular if and only if ||z21+z22||=0. When it exists, the inverse of ς is as follows.

    ς1=η=z1i2z2z21+z22.

    Zero is the only element in C0 which does not have a multiplicative inverse, and in C1, 0=0+i10 is the only element which does not have a multiplicative inverse. We denote the set of singular elements of C0 and C1 by O0 and O1, respectively. However, there is more than one element in C2 which does not have a multiplicative inverse: for example, e1 and e2. We denote this set by O2, and clearly O0={0}=O1O2.

    A bicomplex number ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2C2 is said to be degenerated (or singular) if the matrix

    (ϑ1ϑ2ϑ3ϑ4)

    is degenerated (or singular). The norm ||.|| of an element in C2 is the positive real valued function ||.||:C2C+0 defined by

    ||ς||=||z1+i2z2||={||z21||+||z22||}12=[|z1i1z2|2+|z1+i1z2|22]12=(ϑ21+ϑ22+ϑ23+ϑ24)12,

    where ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2=z1+i2z2C2.

    The linear space C2 with respect to a defined norm is a normed linear space, and C2 is complete. Therefore, C2 is a Banach space. If ς,ηC2, then ||ςη||2||ς||||η|| holds instead of ||ςη||||ς||||η||, and therefore C2 is not a Banach algebra. For any two bicomplex numbers ς,ηC2, we can verify the following:

    1. ςi2η||ς||||η||,

    2. ||ς+η||||ς||+||η||,

    3. ||ϑς||=|ϑ|||ς||, where ϑ is a real number,

    4. ||ςη||2||ς||||η||, and the equality holds only when at least one of ς and η is degenerated,

    5. ||ς1||=||ς||1 if ς is a degenerated bicomplex number with 0ς,

    6. ||ςη||=||ς||||η||, if η is a degenerated bicomplex number.

    The partial order relation i2 on C2 is defined as follows. Let C2 be the set of bicomplex numbers and ς=z1+i2z2, η=ω1+i2ω2C2. Then, ςi2η if and only if z1ω1 and z2ω2, i.e., ςi2η if one of the following conditions is satisfied:

    1. z1=ω1, z2=ω2,

    2. z1ω1, z2=ω2,

    3. z1=ω1, z2ω2,

    4. z1ω1, z2ω2.

    In particular, we can write ςi2η if ςi2η and ςη, i.e., one of 2, 3 and 4 is satisfied, and we will write ςi2η if only 4 is satisfied.

    Now, let us recall some basic concepts and notations, which will be used in the sequel.

    Definition 2.1. [15] A bicomplex partial metric on a non-void set U is a function ρbcpms:U×UC+2, where C+2={ς:ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2,ϑ1,ϑ2,ϑ3,ϑ4C+0} and C+0={ϑ1C0|ϑ10} such that for all φ,ζ,zU:

    1. 0i2ρbcpms(φ,φ)i2ρbcpms(φ,ζ) (small self-distances),

    2. ρbcpms(φ,ζ)=ρbcpms(ζ,φ) (symmetry),

    3. ρbcpms(φ,φ)=ρbcpms(φ,ζ)=ρbcpms(ζ,ζ) if and only if φ=ζ (equality),

    4. ρbcpms(φ,ζ)i2ρbcpms(φ,z)+ρbcpms(z,ζ)ρbcpms(z,z) (triangularity) .

    A bicomplex partial metric space is a pair (U,ρbcpms) such that U is a non-void set and ρbcpms is a bicomplex partial metric on U.

    Example 2.2. Let U=[0,) be endowed with bicomplex partial metric space ρbcpms:U×UC+2 with ρbcpms(φ,ζ)=max, where e^{i_{2}\theta} = \cos \theta +i_{2}\sin \theta , for all \varphi, \zeta\in \mathcal{U} and 0\leq \theta\leq \frac{\pi}{2} . Obviously, (\mathcal{U}, \rho_{bcpms}) is a bicomplex partial metric space.

    Definition 2.3. [15] A bicomplex partial metric space \mathcal{U} is said to be a T_{0} space if for any pair of distinct points of \mathcal{U} , there exists at least one open set which contains one of them but not the other.

    Theorem 2.4. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space; then, (\mathcal{U}, \rho_{bcpms}) is T_{0} .

    Definition 2.5. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\} in \mathcal{U} is said to be convergent and converges to \varphi\in\mathcal{U} if for every 0\prec_{i_{2}}\epsilon\in \mathscr{C}^{+}_{2} there exists \mathcal{N}\in \mathbb{N} such that \varphi_{\tau}\in \mathfrak{B}_{ \rho_{bcpms}}(\varphi, \epsilon) = \{\omega\in \mathcal{U}:\rho_{bcpms}(\varphi, \omega) < \epsilon+\rho_{bcpms}(\varphi, \varphi)\} for all \tau\geq \mathcal{N} , and it is denoted by \lim\limits_{\tau\rightarrow \infty} \varphi_{\tau} = \varphi .

    Lemma 2.6. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\}\in \mathcal{U} is converges to \varphi\in \mathcal{U} iff \rho_{bcpms}(\varphi, \varphi) = \lim\limits_{\tau \to \infty} \rho_{bcpms}(\varphi, \varphi_{\tau}) .

    Definition 2.7. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\} in \mathcal{U} is said to be a Cauchy sequence in (\mathcal{U}, \rho_{bcpms}) if for any \epsilon > 0 there exist \vartheta\in \mathscr{C}^{+}_{2} and \mathcal{N}\in \mathbb{N} such that || \rho_{bcpms}(\varphi_{\tau}, \varphi_{\upsilon})-\vartheta|| < \epsilon for all \tau, \upsilon\geq\mathcal{N} .

    Definition 2.8. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. Let \{\varphi_{\tau}\} be any sequence in \mathcal{U} . Then,

    1. If every Cauchy sequence in \mathcal{U} is convergent in \mathcal{U} , then (\mathcal{U}, \rho_{bcpms}) is said to be a complete bicomplex partial metric space.

    2. A mapping \mathcal{S}:\mathcal{U} \to \mathcal{U} is said to be continuous at \varphi_{0}\in \mathcal{U} if for every \epsilon > 0 , there exists \delta > 0 such that \mathcal{S}(\mathfrak{B}_{ \rho_{bcpms}}(\varphi_{0}, \delta))\subset \mathfrak{B}_{ \rho_{bcpms}}(\mathcal{S}(\varphi_{0}, \epsilon)) .

    Lemma 2.9. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space and \{\varphi_{\tau}\} be a sequence in \mathcal{U} . Then, \{\varphi_{\tau}\} is a Cauchy sequence in \mathcal{U} iff \lim\limits_{\tau, \upsilon\to \infty} \rho_{bcpms}(\varphi_{\tau}, \varphi_{\upsilon}) = \rho_{bcpms}(\varphi, \varphi) .

    Definition 2.10. Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. Then, an element (\varphi, \zeta)\in \mathcal{U}\times \mathcal{U} is said to be a coupled fixed point of the mapping \mathcal{S}: \mathcal{U}\times \mathcal{U}\to \mathcal{U} if \mathcal{S}(\varphi, \zeta) = \varphi and \mathcal{S}(\zeta, \varphi) = \zeta .

    Theorem 2.11. [15] Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space and \mathcal{S}, \mathcal{T} \colon \mathcal{ U} \rightarrow \mathcal{U} be two continuous mappings such that

    \begin{align*} \rho_{bcpms}(\mathcal{S} \varphi, \mathcal{T} \zeta) &\preceq_{i_{2}} \mathfrak{l} \max\{ \rho_{bcpms}(\varphi, \zeta), \rho_{bcpms}(\varphi, \mathcal{S} \varphi), \rho_{bcpms}(\zeta, \mathcal{T} \zeta), \notag \\ &\; \; \; \; \dfrac{1}{2}( \rho_{bcpms}(\varphi, \mathcal{T} \zeta)+ \rho_{bcpms}(\zeta, \mathcal{S} \varphi))\}, \label{e1} \end{align*}

    for all \varphi, \zeta \in \mathcal{U} , where 0\leq \mathfrak{l} < 1 . Then, the pair (\mathcal{S}, \mathcal{T}) has a unique common fixed point, and \rho_{bcpms}(\varphi^{*}, \varphi^{*}) = 0 .

    Inspired by Theorem 2.11, here we prove coupled fixed point theorems on a bicomplex partial metric space with an application.

    Theorem 3.1. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} satisfies the following contractive condition:

    \begin{equation*} \rho_{bcpms}(\mathcal{S}(\varphi , \zeta), \mathcal{S}(\nu, \mu)) \preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\varphi, \zeta) , \varphi )+ \mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu), \end{equation*}

    for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where \lambda, \mathfrak{l} are nonnegative constants with \lambda+\mathfrak{l} < 1 . Then, \mathcal{S} has a unique coupled fixed point.

    Proof. Choose \nu_{0}, \mu_{0}\in \mathcal{U} and set \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) . Continuing this process, set \nu_{\tau+1} = \mathcal{S}(\nu_{\tau}, \mu_{\tau}) and \mu_{\tau+1} = \mathcal{S}(\mu_{\tau}, \nu_{\tau}) . Then,

    \begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})& = \rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \mathcal{S}(\nu_{\tau}, \mu_{\tau}))\\ &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \nu_{\tau-1})+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu_{\tau}, \mu_{\tau}), \nu_{\tau})\\ & = \lambda\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\mathfrak{l}\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau})\\ \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})&\preceq_{i_{2}} \frac{\lambda}{1-\mathfrak{l}}\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1}), \end{align*}

    which implies that

    \begin{align} \lvert\lvert\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})\rvert \rvert\leq \mathfrak{z} \lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert \end{align} (3.1)

    where \mathfrak{z} = \frac{\lambda}{1-\mathfrak{l}} < 1 . Similarly, one can prove that

    \begin{align} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\leq \mathfrak{z}\lvert \lvert\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})\rvert\rvert. \end{align} (3.2)

    From (3.1) and (3.2), we get

    \begin{align*} \lvert\lvert\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})\rvert\rvert+ ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq \mathfrak{z} (\lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert\\ &+\lvert\lvert \rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||), \end{align*}

    where \mathfrak{z} < 1 .

    Also,

    \begin{align} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||\leq \mathfrak{z}||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})|| \end{align} (3.3)
    \begin{align} ||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||\leq \mathfrak{z}||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||. \end{align} (3.4)

    From (3.3) and (3.4), we get

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||+||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||&\leq \mathfrak{z}(||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||\\ &+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||). \end{align*}

    Repeating this way, we get

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq \mathfrak{z}(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ &\leq \mathfrak{z}^{2}(||\rho_{bcpms}(\mu_{\tau-2}, \mu_{\tau-1})||\\ &+||\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-1})||)\\ &\leq \dots \leq \mathfrak{z}^{\tau}(||\rho_{bcpms}(\mu_{0}, \mu_{1})||\\ &+||\rho_{bcpms}(\nu_{0}, \nu_{1})||). \end{align*}

    Now, if ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| = \gamma_{\tau} , then

    \begin{align} \gamma_{\tau}\leq \mathfrak{z} \gamma_{\tau-1} \leq \dots \leq \mathfrak{z}^\tau\gamma_{0}. \end{align} (3.5)

    If \gamma_{0} = 0 , then ||\rho_{bcpms}(\nu_{0}, \nu_{1})||+||\rho_{bcpms}(\mu_{0}, \mu_{1})|| = 0 . Hence, \nu_{0} = \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{0} = \mu_{1} = \mathcal{S}(\mu_{0}, \mu_{0}) , which implies that (\nu_{0}, \mu_{0}) is a coupled fixed point of \mathcal{S} . Let \gamma_{0} > 0 . For each \tau\geq \upsilon , we have

    \begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})&\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})-\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-1})\\ &+\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-3})+\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-4})-\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-3})\\ &+\dots +\rho_{bcpms}(\nu_{\upsilon+2}, \nu_{\upsilon+1})+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})-\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon+1})\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})+\dots+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon}), \end{align*}

    which implies that

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||&\leq ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})||. \end{align*}

    Similarly, one can prove that

    \begin{align*} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq ||\rho_{bcpms}({\mu_{\tau}, \mu_{\tau-1}})||+||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau-2})||\\ &+\dots +||\rho_{bcpms}(\mu_{\upsilon+1}, \mu_{\upsilon})||. \end{align*}

    Thus,

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq \gamma_{\tau-1}+\gamma_{\tau-2}+\gamma_{\tau-3}+\dots +\gamma_{\upsilon}\\ &\leq (\mathfrak{z}^{\tau-1}+\mathfrak{z}^{\tau-2}+\dots +\mathfrak{z}^{\upsilon})\gamma_{0}\\ &\leq \frac{\mathfrak{z}^{\upsilon}}{1-\mathfrak{z}}\gamma_{0}\rightarrow 0\, \, \text{as}\, \, \upsilon\rightarrow \infty, \end{align*}

    which implies that \{\nu_{\tau}\} and \{\mu_{\tau}\} are Cauchy sequences in (\mathcal{U}, \rho_{bcpms}) . Since the bicomplex partial metric space (\mathcal{U}, \rho_{bcpms}) is complete, there exist \nu, \mu\in \mathcal{U} such that \{\nu_{\tau}\}\rightarrow \nu and \{\mu_{\tau}\}\rightarrow \mu as \tau \rightarrow \infty , and

    \begin{align*} \rho_{bcpms}(\nu, \nu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\nu, \nu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon}) = 0, \\ \rho_{bcpms}(\mu, \mu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\mu, \mu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon}) = 0. \end{align*}

    We now show that \nu = \mathcal{S}(\nu, \mu) . We suppose on the contrary that \nu\neq \mathcal{S}(\nu, \mu) and \mu\neq \mathcal{S} (\mu, \nu) , so that 0\prec_{i_{2}} \rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu)) = \mathfrak{l}_{1} and 0\prec_{i_{2}}\rho_{bcpms}(\mu, \mathcal{S}(\mu, \nu)) = \mathfrak{l}_{2} . Then,

    \begin{align*} \mathfrak{l}_{1} = \rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu))&\preceq_{i_{2}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\rho_{bcpms}(\nu_{\tau+1}, \mathcal{S}(\nu, \mu))\\ & = \rho_{bcpms}(\nu, \nu_{\tau+1})+\rho_{bcpms}(\mathcal{S}(\nu_{\tau}, \mu_{\tau}), \mathcal{S}(\nu, \mu))\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\lambda\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)\\ &\preceq_{i_{2}}\frac{1}{1-\mathfrak{l}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\frac{\lambda}{1-\mathfrak{l}}\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau}), \end{align*}

    which implies that

    \begin{align*} \lvert \lvert\mathfrak{l}_{1}\rvert\rvert\leq \frac{1}{1-\mathfrak{l}} \lvert\lvert\rho_{bcpms}(\nu, \nu_{\tau+1})\rvert\rvert+\frac{\lambda}{1-\mathfrak{l}}\lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert. \end{align*}

    As \tau\rightarrow \infty , \lvert\lvert \mathfrak{l}_{1}\rvert\rvert\leq 0 . This is a contradiction, and therefore \lvert\lvert\rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu))\rvert\rvert = 0 implies \nu = \mathcal{S}(\nu, \mu) . Similarly, we can prove that \mu = \mathcal{S}(\mu, \nu) . Thus (\nu, \mu) is a coupled fixed point of \mathcal{S} . Now, if (\mathfrak{g}, \mathfrak{h}) is another coupled fixed point of \mathcal{S} , then

    \begin{align*} \rho_{bcpms}(\nu, \mathfrak{g}) = \rho_{bcpms}(\mathcal{S}(\nu, \mu), \mathcal{S}(\mathfrak{g}, \mathfrak{h})) &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\mathfrak{g}, \mathfrak{h}), \mathfrak{g})\\ & = \lambda\rho_{bcpms}(\nu, \nu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{g}, \mathfrak{g}) = 0. \end{align*}

    Thus, we have \mathfrak{g} = \nu . Similarly, we get \mathfrak{h} = \mu . Therefore \mathcal{S} has a unique coupled fixed point.

    Corollary 3.2. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U} \to \mathcal{U} satisfies the following contractive condition:

    \begin{equation} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda(\rho_{bcpms}(\mathcal{S}(\varphi, \zeta) , \varphi)+\rho_{bcpms}( \mathcal{S}(\nu, \mu), \nu)), \end{equation} (3.6)

    for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq \lambda < \frac{1 }{2} . Then, \mathcal{S} has a unique coupled fixed point.

    Theorem 3.3. Let (\mathcal{U}, \rho_{bcpms}) be a complete complex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} satisfies the following contractive condition:

    \begin{equation*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda\rho_{bcpms}(\varphi, \nu)+\mathfrak{l}\rho_{bcpms}(\zeta, \mu), \end{equation*}

    for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where \lambda, \mathfrak{l} are nonnegative constants with \lambda+\mathfrak{l} < 1 . Then, \mathcal{S} has a unique coupled fixed point.

    Proof. Choose \nu_{0}, \mu_{0}\in \mathcal{U} and set \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) . Continuing this process, set \nu_{\tau+1} = \mathcal{S}(\nu_{\tau}, \mu_{\tau}) and \mu_{\tau+1} = \mathcal{S}(\mu_{\tau}, \nu_{\tau}) . Then,

    \begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})& = \rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \mathcal{S}(\nu_{\tau}, \mu_{\tau}))\\ &\preceq_{i_{2}} \lambda\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})+\mathfrak{l}\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau}), \end{align*}

    which implies that

    \begin{align} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||\leq \lambda||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||+\mathfrak{l}||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||. \end{align} (3.7)

    Similarly, one can prove that

    \begin{align} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\leq \lambda||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||+\mathfrak{l}||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||. \end{align} (3.8)

    From (3.7) and (3.8), we get

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq (\lambda+\mathfrak{l})(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ & = \alpha(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||), \end{align*}

    where \alpha = \lambda+\mathfrak{l} < 1 . Also,

    \begin{align} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||\leq \lambda||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+\mathfrak{l}||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| \end{align} (3.9)
    \begin{align} ||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||\leq \lambda||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||+\mathfrak{l}||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||. \end{align} (3.10)

    From (3.9) and (3.10), we get

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||+||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||&\leq (\lambda+\mathfrak{l})(||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\\ &+||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||)\\ & = \alpha(||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\\ &+||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||). \end{align*}

    Repeating this way, we get

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{n+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq\alpha(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ &\leq \alpha^{2}(||\rho_{bcpms}(\mu_{\tau-2}, \mu_{\tau-1})||\\ &+||\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-1})||)\\ &\leq \dots \leq \alpha^{\tau}(||\rho_{bcpms}(\mu_{0}, \mu_{1})||\\ &+||\rho_{bcpms}(\nu_{0}, \nu_{1})||). \end{align*}

    Now, if ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| = \gamma_{\tau} , then

    \begin{align} \gamma_{\tau}\leq \alpha \gamma_{\tau-1} \leq \dots \leq \alpha^{\tau}\gamma_{0}. \end{align} (3.11)

    If \gamma_{0} = 0 , then ||\rho_{bcpms}(\nu_{0}, \nu_{1})||+||\rho_{bcpms}(\mu_{0}, \mu_{1})|| = 0 . Hence, \nu_{0} = \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{0} = \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) , which implies that (\nu_{0}, \mu_{0}) is a coupled fixed point of \mathcal{S} . Let \gamma_{0} > 0 . For each \tau\geq \upsilon , we have

    \begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})&\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})-\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-1})\\ &+\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-3})+\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-4})-\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-3})\\ &+\dots +\rho_{bcpms}(\nu_{\upsilon+2}, \nu_{\upsilon+1})+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})-\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon+1})\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})+\dots+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon}), \end{align*}

    which implies that

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||&\leq ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})||. \end{align*}

    Similarly, one can prove that

    \begin{align*} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq ||\rho_{bcpms}({\mu_{\tau}, \mu_{\tau-1}})||+||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\mu_{\upsilon+1}, \mu_{\upsilon})||. \end{align*}

    Thus,

    \begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq \gamma_{\tau-1}+\gamma_{\tau-2}+\gamma_{\tau-3}+\dots +\gamma_{\upsilon}\\ &\leq (\alpha^{\tau-1}+\alpha^{\tau-2}+\dots +\alpha^{\upsilon})\gamma_{0}\\ &\leq \frac{\alpha^{\upsilon}}{1-\alpha}\gamma_{0}\, \, {\rm{as}}\, \, \tau\to \infty, \end{align*}

    which implies that \{\nu_{\tau}\} and \{\mu_{\tau}\} are Cauchy sequences in (\mathcal{U}, \rho_{bcpms}) . Since the bicomplex partial metric space (\mathcal{U}, \rho_{bcpms}) is complete, there exist \nu, \mu\in \mathcal{U} such that \{\nu_{\tau}\}\rightarrow \nu and \{\mu_{\tau}\}\rightarrow \mu as \tau \rightarrow \infty , and

    \begin{align*} \rho_{bcpms}(\nu, \nu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\nu, \nu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon}) = 0, \\ \rho_{bcpms}(\mu, \mu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\mu, \mu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon}) = 0. \end{align*}

    Therefore,

    \begin{align*} \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)&\leq \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu_{\tau+1})+\rho_{bcpms}(\nu_{\tau+1}, \nu)-\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+1}), \\ &\leq \rho_{bcpms}(\mathcal{S}(\nu, \mu)), \mathcal{S}(\nu_{\tau}, \mu_{\tau})+\rho_{bcpms}(\nu_{\tau+1}, \nu)\\ &\leq \lambda\rho_{bcpms}(\nu_{\tau}, \nu)+\mathfrak{l}\rho_{bcpms}(\mu_{\tau}, \mu)+\rho_{bcpms}(\nu_{\tau+1}, \nu). \end{align*}

    As \tau \rightarrow \infty , from (3.6) and (3.12) we obtain \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu) = 0 . Therefore \mathcal{S}(\nu, \mu) = \nu . Similarly, we can prove \mathcal{S}(\mu, \nu) = \mu , which implies that (\nu, \mu) is a coupled fixed point of \mathcal{S} . Now, if (\mathfrak{g}_{1}, \mathfrak{h}_{1}) is another coupled fixed point of \mathcal{S} , then

    \begin{align*} \rho_{bcpms}(\mathfrak{g}_{1}, \nu) = \rho_{bcpms}(\mathcal{S}(\mathfrak{g}_{1}, \mathfrak{h}_{1}), \mathcal{S}(\nu, \mu)) &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathfrak{g}_{1}, \nu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{h}_{1}, \mu), \\ \rho_{bcpms}(\mathfrak{h}_{1}, \mu) = \rho_{bcpms}(\mathcal{S}(\mathfrak{h}_{1}, \mathfrak{g}_{1}), \mathcal{S}(\mu, \nu))&\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathfrak{h}_{1}, \mu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{g}_{1}, \nu), \end{align*}

    which implies that

    \begin{align} \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert&\leq \lambda\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\mathfrak{l}\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert, \end{align} (3.12)
    \begin{align} \lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert&\leq \lambda\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert+\mathfrak{l}\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert. \end{align} (3.13)

    From (3.12) and (3.13), we get

    \begin{align*} \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert\leq (\lambda+\mathfrak{l})[\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert]. \end{align*}

    Since \lambda+\mathfrak{l} < 1 , this implies that \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert = 0 . Therefore, \nu = \mathfrak{g}_{1} and \mu = \mathfrak{h}_{1} . Thus, \mathcal{S} has a unique coupled fixed point.

    Corollary 3.4. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U} \to \mathcal{U} satisfies the following contractive condition:

    \begin{equation} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)), \end{equation} (3.14)

    for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq \lambda < \frac{1 }{2} . Then, \mathcal{S} has a unique coupled fixed point.

    Example 3.5. Let \mathcal{U} = [0, \infty) and define the bicomplex partial metric \rho_{bcpms} :\mathcal{U}\times\mathcal{U}\to \mathscr{C}_{2}^{+} defined by

    \begin{align*} \rho_{bcpms}(\varphi, \zeta) = \max\{\varphi, \zeta\}e^{i_{2}\theta}, \, \, 0\leq\theta\leq\frac{\pi}{2}. \end{align*}

    We define a partial order \preceq in \mathscr{C}_{2}^{+} as \varphi \preceq \zeta iff \varphi \leq \zeta . Clearly, (\mathcal{U}, \rho_{bcpms}) is a complete bicomplex partial metric space.

    Consider the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U } defined by

    \begin{align*} \mathcal{S}(\varphi, \zeta) = \frac{\varphi+\zeta}{4}\, \, \, \forall \varphi, \zeta\in \mathcal{U}. \end{align*}

    Now,

    \begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))& = \rho_{bcpms} \bigg(\frac{\varphi+\zeta}{4}, \frac{\nu+\mu}{4}\bigg) \\ & = \frac{1}{4}\max\{\varphi+\zeta, \nu+\mu\} e^{i_{2}\theta} \\ &\preceq_{i_{2}}\frac{1}{4}\bigg[\max\{\varphi, \nu\}+\max\{\zeta, \mu\}\bigg] e^{i_{2}\theta} \\ & = \frac{1}{4}\bigg[\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)\bigg] \\ & = \lambda\bigg(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)\bigg), \end{align*}

    for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq\lambda = \frac{1 }{4} < \frac{1}{2} . Therefore, all the conditions of Corollary 3.4 are satisfied, then the mapping \mathcal{S} has a unique coupled fixed point (0, 0) in \mathcal{U} .

    As an application of Theorem 3.3, we find an existence and uniqueness result for a type of the following system of nonlinear integral equations:

    \begin{align} \varphi (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \varphi (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \\ \zeta (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \zeta (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varphi (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \, \, \mu , \in \lbrack 0, \mathcal{M }], \mathcal{M}\geq1. \end{align} (4.1)

    Let \mathcal{U} = C([0, \mathcal{M}], \mathbb{R}) be the class of all real valued continuous functions on [0, \mathcal{M}] . We define a partial order \preceq in \mathscr{C}_{2}^{+} as x\preceq y iff x \leq y . Define \mathcal{S}:\mathcal{U}\times\mathcal{U}\to \mathcal{U} by

    \begin{align*} \mathcal{S}(\varphi, \zeta)(\mu) = \int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p} )[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))+\mathcal{G}_{2}( \mathfrak{p}, \zeta(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu). \end{align*}

    Obviously, (\varphi(\mu), \zeta(\mu)) is a solution of system of nonlinear integral equations (4.1) iff (\varphi(\mu), \zeta(\mu)) is a coupled fixed point of \mathcal{S} . Define \rho _{bcpms}:\mathcal{U} \times \mathcal{U}\rightarrow \mathscr{C}_{2} by

    \begin{equation*} \rho _{bcpms}(\varphi , \zeta ) = (|\varphi -\zeta |+1)e^{i_{2}\theta }, \end{equation*}

    for all \varphi, \zeta \in \mathcal{U} , where 0\leq \theta \leq \frac{\pi }{2} . Now, we state and prove our result as follows.

    Theorem 4.1. Suppose the following:

    1. The mappings \mathcal{G}_{1}:[0, \mathcal{M}]\times\mathbb{R}\to \mathbb{R} , \mathcal{G}_{2}:[0, \mathcal{M}]\times\mathbb{R}\to\mathbb{R} , \delta:[0, \mathcal{M}]\to \mathbb{R} and \kappa:[0, \mathcal{M}]\times \mathbb{R}\to [0, \infty) are continuous.

    2. There exists \eta > 0 , and \lambda, \mathfrak{l} are nonnegative constants with \lambda+ \mathfrak{l} < 1 , such that

    \begin{align*} |\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}( \mathfrak{p}, \zeta(\mathfrak{p}))|&\preceq_{i_{2}}\eta\lambda (|\varphi-\zeta|+1)-\frac{1}{2}, \\ |\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{ p}, \varphi(\mathfrak{p}))|&\preceq_{i_{2}}\eta\mathfrak{l} (|\zeta-\varphi|+1)-\frac{1}{2}. \end{align*}

    3. \int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} \preceq_{i_{2}}1 .

    Then, the integral equation (4.1) has a unique solution in \mathcal{U} .

    Proof. Consider

    \begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \varPhi))& = (|\mathcal{S}(\varphi, \zeta)-\mathcal{S}(\nu, \varPhi)|+1)e^{i_{2}\theta}\\ & = \bigg(|\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu)\\ &-\bigg(\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu)\bigg)|+1\bigg)e^{i_{2}\theta}\\ & = \bigg(|\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))\\ &+\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))] d\mathfrak{p}|+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int^{\mathcal{M}}_{0}|\kappa(\mu, \mathfrak{p})|[|\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))|\\ &+|\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))|] d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int^{\mathcal{M}}_{0}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(\eta\lambda (|\varphi-\nu|+1)-\frac{1}{2}\\ &+\eta\mathfrak{l} (|\zeta-\varPhi|+1)-\frac{1}{2})+1\bigg)e^{i_{2}\theta}\\ & = \bigg(\int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(\lambda (|\varphi-\nu|+1)\\ &+\mathfrak{l} (|\zeta-\varPhi|+1))\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \bigg(\lambda (|\varphi-\nu|+1)+\mathfrak{l} (|\zeta-\varPhi|+1)\bigg)e^{i_{2}\theta}\\ & = \lambda\rho_{bcpms}(\varphi, \nu)+\mathfrak{l}\rho_{bcpms}(\zeta, \varPhi) \end{align*}

    for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} . Hence, all the hypotheses of Theorem 3.3 are verified, and consequently, the integral equation (4.1) has a unique solution.

    Example 4.2. Let \mathcal{U} = C([0, 1], \mathbb{R}) . Now, consider the integral equation in \mathcal{U} as

    \begin{align} \varphi(\mu) = \int_{0}^{1}\frac{\mathfrak{\mu p}}{23(\mu+5)}\bigg[\frac{1}{ 1+\varphi(\mathfrak{p})}+\frac{1}{2+\zeta(\mathfrak{p})}\bigg]d\mathfrak{p}+ \frac{6\mu^{2}}{5} \\ \zeta(\mu) = \int_{0}^{1}\frac{ \mathfrak{\mu p}}{23(\mu+5)}\bigg[\frac{1}{ 1+\zeta(\mathfrak{p})}+\frac{1}{ 2+\varphi(\mathfrak{p})}\bigg]d\mathfrak{p}+ \frac{6\mu^{2}}{5}. \end{align} (4.2)

    Then, clearly the above equation is in the form of the following equation:

    \begin{align} \varphi (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \varphi (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \\ \zeta (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \zeta (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varphi (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \, \, \mu , \in \lbrack 0, \mathcal{M }], \end{align} (4.3)

    where \delta(\mu) = \frac{6\mu^{2}}{5} , \kappa(\mu, \mathfrak{p}) = \frac{ \mathfrak{\mu p}}{23(\mu+5)} , \mathcal{G}_{1}(\mathfrak{p}, \mu) = \frac{1}{ 1+\mu} , \mathcal{G}_{2}(\mathfrak{p}, \mu) = \frac{1}{2+\mu} and \mathcal{M} = 1 . That is, (4.2) is a special case of (4.1) in Theorem 4.1. Here, it is easy to verify that the functions \delta(\mu) , \kappa(\mu, \mathfrak{p}) , \mathcal{G}_{1}(\mathfrak{p}, \mu) and \mathcal{ G}_{2}(\mathfrak{p}, \mu) are continuous. Moreover, there exist \eta = 10 , \lambda = \frac{1}{3} and \mathfrak{l} = \frac{1}{4} with \lambda+\mathfrak{l } < 1 such that

    \begin{align*} |\mathcal{G}_{1}(\mathfrak{p}, \varphi)-\mathcal{G}_{1}(\mathfrak{p} , \zeta)|&\leq\eta\lambda (|\varphi-\zeta|+1)-\frac{1}{2}, \\ |\mathcal{G}_{2}(\mathfrak{p}, \zeta)-\mathcal{G}_{2}(\mathfrak{p} , \varphi)|&\leq\eta\mathfrak{l} (|\zeta-\varphi|+1)-\frac{1}{2} \end{align*}

    and \int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} = \int^{1}_{0}\frac{\eta\mu\mathfrak{p}}{23(\mu+5)}d\mathfrak{p} = \frac{\mu\eta }{23(\mu+5)} < 1 . Therefore, all the conditions of Theorem 3.3 are satisfied. Hence, system (4.2) has a unique solution (\varphi^{*}, \zeta^{*}) in \mathcal{U}\times\mathcal{U} .

    As an application of Corollary 3.4, we find an existence and uniqueness result for a type of the following system of Fredholm integral equations:

    \begin{align} \varphi (\mu )& = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{p}, \varphi ( \mathfrak{p}), \zeta (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ), \, \, \mu , \mathfrak{p}\in \mathcal{E}, \\ \zeta (\mu )& = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{p}, \zeta ( \mathfrak{p}), \varphi (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ), \, \, \mu , \mathfrak{p}\in \mathcal{E}, \end{align} (4.4)

    where \mathcal{E} is a measurable, \mathcal{G}:\mathcal{E}\times \mathcal{ E}\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R} , and \delta \in \mathcal{L}^{\infty }(\mathcal{E}) . Let \mathcal{U} = \mathcal{L}^{\infty }(\mathcal{E}) . We define a partial order \preceq in \mathscr{C}_{2}^{+} as x\preceq y iff x\leq y. Define \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} by

    \begin{align*} \mathcal{S}(\varphi, \zeta)(\mu) = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{ p}, \varphi (\mathfrak{p}), \zeta (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ). \end{align*}

    Obviously, (\varphi(\mu), \zeta(\mu)) is a solution of the system of Fredholm integral equations (4.4) iff (\varphi(\mu), \zeta(\mu)) is a coupled fixed point of \mathcal{S} . Define \rho _{bcpms}:\mathcal{U}\times \mathcal{U}\rightarrow \mathscr{C}_{2} by

    \begin{equation*} \rho _{bcpms}(\varphi , \zeta ) = (|\varphi -\zeta |+1)e^{i_{2}\theta }, \end{equation*}

    for all \varphi, \zeta \in \mathcal{U} , where 0\leq \theta \leq \frac{\pi }{2} . Now, we state and prove our result as follows.

    Theorem 4.3. Suppose the following:

    1. There exists a continuous function \kappa:\mathcal{E}\times\mathcal{E} \to \mathbb{R} such that

    \begin{align*} |\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))- \mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p} ))|&\preceq_{i_{2}} |\kappa(\mu, \mathfrak{p})|(|\varphi(\mathfrak{p})-\nu( \mathfrak{p})| \\ &+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2), \end{align*}

    for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} , \mu, \mathfrak{p}\in \mathcal{E} .

    2. \int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} \preceq_{i_{2}} \frac{1}{4}\preceq_{i_{2}}1 .

    Then, the integral equation (4.4) has a unique solution in \mathcal{U} .

    Proof. Consider

    \begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \varPhi))& = (|\mathcal{S}(\varphi, \zeta)-\mathcal{S}(\nu, \varPhi)|+1)e^{i_{2}\theta}\\ & = \bigg(|\int_{\mathcal{E}}\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))d\mathfrak{p}+\delta(\mu)\\ &-\bigg(\int_{\mathcal{E}}\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))d\mathfrak{p}+\delta(\mu)\bigg)|+1\bigg)e^{i_{2}\theta}\\ & = \bigg(|\int_{\mathcal{E}}\bigg(\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))\\ &-\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))\bigg)d\mathfrak{p}|+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))-\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))|d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2)d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2)+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \frac{1}{4}\bigg(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2+4\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \frac{1}{4}(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \varPhi))\\ & = \lambda(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \varPhi)), \end{align*}

    for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} , where 0\leq\lambda = \frac{1}{4} < \frac{1}{2} . Hence, all the hypotheses of Corollary 3.4 are verified, and consequently, the integral equation (4.4) has a unique solution.

    In this paper, we proved coupled fixed point theorems on a bicomplex partial metric space. An illustrative example and an application on a bicomplex partial metric space were given.

    The authors declare no conflict of interest.



    [1] V. Isakov, Inverse problems for partial differential equations, New York: Springer, 1998. https://doi.org/10.1007/978-1-4899-0030-2
    [2] M. Kern, Problèmes inverses aspects numériques, Engineering school. 1999 à 2002, École supérieure d'ingénieurs Léonard de Vinci, 2002, cel-00168393v2.
    [3] S. El Yacoubi, J. Sokołowski, Domain optimization problems for parabolic control systems, Appl. Math. Comput. Sci., 6 (1996), 277–289.
    [4] A. Henrot, J. Sokołowski, A shape optimization problem for the heat equation, In: Optimal control, Boston, MA: Springer, 1998,204–223. https://doi.org/10.1007/978-1-4757-6095-8_10
    [5] K. H. Hoffmann, J. Sokołowski, Interface optimization problems for parabolic equations, Control Cybernet, 23 (1994), 445–451.
    [6] J. Sokołowski, Shape sensitivity analysis of boundary optimal control problems for parabolic systems, SIAM J. Control Optim., 26 (1988), 763–787. https://doi.org/10.1137/0326045 doi: 10.1137/0326045
    [7] H. Harbrecht, J. Tausch, An efficient numerical method for a shape-identification problem arising from the heat equation, Inverse Probl., 27 (2001), 065013. https://doi.org/10.1088/0266-5611/27/6/065013 doi: 10.1088/0266-5611/27/6/065013
    [8] H. Harbrecht, J. Tausch, On shape optimization with parabolic state equation, In: Trends in PDE constrained optimization, Cham: Birkhäuser, 2014,213–229. https://doi.org/10.1007/978-3-319-05083-6_14
    [9] E. S. Baranovskii, Optimal boundary control of the Boussinesq approximation for polymeric fluids, J. Optim. Theory Appl., 189 (2021), 623–645. https://doi.org/10.1007/s10957-021-01849-4 doi: 10.1007/s10957-021-01849-4
    [10] A. Chierici, V. Giovacchini, S. Manservisi, Analysis and computations of optimal control problems for Boussinesq equations, Fluids, 7 (2022), 203. https://doi.org/10.3390/fluids7060203 doi: 10.3390/fluids7060203
    [11] S. Abidi, J. Satouri, Identification of the diffusion in a nonlinear parabolic problem and numerical resolution, ANZIAM J., 57 (2016), 1–38. https://doi.org/10.21914/anziamj.v57i0.8835 doi: 10.21914/anziamj.v57i0.8835
    [12] I. Neitzel, F. Tröltzsch, On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints, ESAIM: COCV, 15 (2019), 426–453. https://doi.org/10.1051/cocv:2008038 doi: 10.1051/cocv:2008038
    [13] J. C. De Los Reyes, R. Griesse, State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations, J. Math. Anal. Appl., 343 (2008), 257–272. https://doi.org/10.1016/j.jmaa.2008.01.029 doi: 10.1016/j.jmaa.2008.01.029
    [14] F. Troltzsch, Optimal control of partial differential equations: Theory, methods, and applications, American Mathematical Society, 2010. https://doi.org/10.1090/gsm/112
    [15] M. D. Gunzburger, Perspectives in flow control and optimization, SIAM, 2002. https://doi.org/10.1137/1.9780898718720
    [16] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE Constraints, Dordrecht: Springer, 2009. https://doi.org/10.1007/978-1-4020-8839-1
    [17] D. Whitley, S. Rana, J. Dzubera, K. E. Mathias, Evaluating evolutionary algorithms, Artif. Intell., 85 (1996), 245–276. https://doi.org/10.1016/0004-3702(95)00124-7 doi: 10.1016/0004-3702(95)00124-7
    [18] C. Meyer, F. Tröltzsch, On an elliptic optimal control problem with pointwise mixed control-state constraints, In: Recent advances in optimization, Berlin, Heidelberg: Springer, 2006,187–204. https://doi.org/10.1007/3-540-28258-0_12
    [19] O. Benedix, Adaptive numerical solution of state constrained optimal control problems, Universitätsbibliothek der TU München, 2011.
    [20] C. Jia, A note on the model reference adaptive control of linear parabolic systems with constant coefficients, J. Syst. Sci. Complex., 24 (2011), 1110–1117. https://doi.org/10.1007/s11424-011-0042-9 doi: 10.1007/s11424-011-0042-9
    [21] D. Bresch-Pietria, M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica, 50 (2014), 1407–1415. https://doi.org/10.1016/j.automatica.2014.02.040 doi: 10.1016/j.automatica.2014.02.040
    [22] K. Van de Doel, U. M. Ascher, On level set regularization for highly ill-posed distributed parameter systems, J. Comput. Phys., 216 (2006), 707–723. https://doi.org/10.1016/j.jcp.2006.01.022 doi: 10.1016/j.jcp.2006.01.022
    [23] M. Böhm, M. A. Demetriou, S. Reich, I. G. Rosen, Model reference adaptive control of distributed parameter systems, SIAM J. Control Optim., 36 (1998), 33–81. https://doi.org/10.1137/S0363012995279717 doi: 10.1137/S0363012995279717
    [24] C. Bernardi, Y. Maday, Spectral methods, Handbook of Numerical Analysis, 5 (1997), 209–485. https://doi.org/10.1016/S1570-8659(97)80003-8
    [25] R. Agroum, S. M. Aouadi, C. Bernardi, J. Satouri, Spectral discretization of the Navier-Stokes problem coupled with the heat equation, 2013, hal-00842939.
    [26] F. Brezzi, J. Rappaz, P. A. Raviart, Finite-dimensional approximation of nonlinear problems, Part I: branches of nonsingular solutions, Numer. Math., 36 (1980), 1–25. https://doi.org/10.1007/BF01395985 doi: 10.1007/BF01395985
  • This article has been cited by:

    1. Sunisa Theswan, Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann–Liouville and Hadamard-Type Iterated Integral Boundary Conditions, 2022, 14, 2073-8994, 1948, 10.3390/sym14091948
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1902) PDF downloads(116) Cited by(0)

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog