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1. Introduction

Most physical or chemical phenomena are governed by partial differential equations that describe
the evolution of the constituents of the problem under study. If all the parameters of the system are
known (the geometry of the domain, the boundary and initial conditions, and the coefficients of the
equations), the model to be solved is a direct problem. On the other hand, if certain parameters in
the equation are unknown, these parameters can be determined from experimental data or from the
values at the final time in an evolution problem. The identification of such a parameter in the partial
differential equation represents an inverse problem.

When experimental measurements are made on the boundary to determine a coefficient in a
partial differential equation, there is always measurement error, which can mean a very large error
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in identification. For this reason, most inverse problems are ill-posed (we refer the reader to [1], for
further details on the results found and the methods developed).

Many papers in this area deal with elliptic problems, see for example [2–5]. On the other hand, the
literature on applications governed by elliptic, parabolic and hyperbolic, linear and nonlinear systems
is rather limited. Theoretical results for the latter case can be found, for example, in [6–8].

We are interested in studying the state-constrained optimal control problem of the steady-state
Navier-Stokes equations. In this area, several applications have been proposed to solve optimal control
problems [9–12]. The elliptic optimization problem was first discussed theoretically by Reyes and R.
Griesse [13]. Research on numerical methods for optimal control of the Navier-Stokes equations has
made significant advancements over the years. The initial approaches for optimal control of the Navier-
Stokes equations employed classical optimization methods such as the conjugate gradient method,
quasi-Newton method, or augmented Lagrangian method. These methods yielded promising results,
but they were often limited by the nonlinearity of the Navier-Stokes equations and the presence of
constraints. Then came the domain decomposition methods, which are used to divide the computational
domain into smaller subdomains in order to solve the Navier-Stokes equations more efficiently. In the
context of optimal control, these methods help reduce the problem size by partitioning the domain
into regions that can be solved independently. This facilitates parallel computations and leads to
faster results [14]. The adjoint-based optimization methods, on the other hand, are commonly used
to solve optimal control problems. These methods leverage the principle of dynamic programming by
calculating an adjoint variable that provides information about the system’s sensitivity with respect to
the control. This information is then used to adjust the control optimally. Adjoint-based optimization
methods have been successfully applied to the Navier-Stokes equations, enabling the solution of
complex optimal control problems [15, 16]. Also worth mentioning are the methods based on genetic
algorithms, which are optimization methods inspired by principles of natural selection. In the context
of the Navier-Stokes equations, these methods have been used to solve optimal control problems by
generating a population of potential solutions and evolving them over generations. Genetic algorithms
have the advantage of being able to explore a larger search space, but they may require a large number
of iterations to converge to an optimal solution. It should be noted that the comparison of different
approaches will depend on the specific context of the optimal control problem for the Navier-Stokes
equations. Each method has its own advantages and limitations, and the choice of method will depend
on computational constraints, control objectives and available resources [17]. The approach presented
in this paper is a powerful technique for solving this and many other such nonlinear problems. We
have applied a new method to construct a new family of numerical schemes that convert the inverse
problem into a direct problem, which helps us to solve numerical problems easily. We construct an
algorithm that can solve this problem. We use spectral methods to find approximate solutions through
the preconditioned GMRES method. The stability and convergence of the method are analyzed [18,19].

The flow of an in-compressible viscous fluid in a domain Ω of R2 is characterized by two variables
velocity u and pressure p, given functions f = ( fx, fy) in (L2(Ω))2 and a control force g which is the
optimization variable.

The problem posed in this paper is to find a solution pair (u, g) solving the functional J defined by.

J(g) =
1
2

∫
Ω

|u(g) − ud|
2dx +

α

2

∫
Ω

|g|2dx, (Jg)
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where u is the solution to the problem

−ν∆u + (u.∇)u + ∇p = f + g in Ω ,

div u = 0 in Ω ,

u = 0 on Γ = ∂Ω,

(Pg)

where ud and f are the data and ν is the viscosity. Our work is based on a simple computation of the
gradient J which leads to the coupled problem which is the main subject of this study. This paper is
organized as follows:
• In Section 2, we introduce the optimal control problem under constraints (Pg) [20]. We also prove
the existence of a global optimal solution for the optimal control problem (S ) [21].
• In Section 3, after linearization, we study the existence and uniqueness of weak solutions of (Pn).
We prove the convergence of un solutions of (Pn) to the u solution of (Pg). We then derive an optimal
system of equations from which the optimal solution can be computed.
• In Section 4, We propose a numerical algorithm for solving coupled systems of equations, where the
numerical solution is generated by spectral methods [22, 23].

2. Optimal control problem

Let Ω be a bounded domain of R2 with Lipschitz-continuous boundary Γ. Additionally, V = {v ∈
X, div v = 0}, where X = H1

0(Ω)2 = {v ∈ H1(Ω)2; v|∂Ω = 0} .
We set M = L2

0(Ω) =
{
v ∈ L2(Ω);

∫
Ω

v dx = 0
}
, Y = X × M and W = V × M.

Remark 1. The symbol E ↪→ G denotes the continuous and dense embedding of E into G.
The symbol E ⇀ G denotes the weak convergence of E to G.
The symbol E → G denotes the strong convergence of E to G.

In this section, we are concerned with the following state-constrained optimal control problem. Find
(u∗, g∗) ∈ W × L2(Ω)2 which solves

min J(g) =
1
2

∫
Ω

|u(g) − ud|
2 dx +

γ

2

∫
Ω

|g|2 dx, such that

ν∆u + (u.∇)u + ∇p = f + g in Ω ,

div u = 0 in Ω ,

u = 0 on Γ ,

u ∈ C,

(S )

where the state u is sought in the spaceW = H2(Ω)2 ∩ V .

• C is a closed convex subset of C0(Ω) = {ω ∈ C(Ω̄); ω|Γ = 0}, the space of continuous functions
on Ω vanishing on Γ.
• g is a distributed control function.
• The function ud ∈ L2(Ω)2 denotes the desired state.
• The parameter γ > 0 stands for the control cost coefficient.
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State constraints are relevant in practical applications to suppress backward flow in channels. Next, we
derive necessary optimal conditions for (S ).

We have two types of constraint sets C. The first one is

C1 = {v ∈ C0; ya(x) ≤ v(x) ≤ yb(x),∀x ∈ Ω̃ ⊂ Ω},

which covers point-wise constraints on each component of the velocity vector field, i.e., v(x) ≤ yb(x)
gives vi(x) ≤ yb,i(x) for i = 1, ..., d, on a sub-domain Ω̃ ⊂ Ω.

The set of feasible solutions is defined as:

Tad = {(u, g) ∈ W × L2(Ω)2; u satisfies the state equation in (Pg) and u ∈ C}. (2.1)

The weak formulation of the first and third equations of (Pg) is defined as follows Find u ∈ V
knowing that ∫

Ω

∇u∇v dx +

∫
Ω

((u.∇)u) v dx =

∫
Ω

(f + g)v dx ∀v ∈ V. (2.2)

Before we study the problem of optimal control we start with the following proposition.

Proposition 2. [13] Let Ω be a bounded domain of R2 of class C2 and f and g ∈ L2(Ω)2. Then
every solution of (2.2) satisfies u ∈ H2(Ω)2 and p ∈ L2

0(Ω) ∩ H1(Ω) for the corresponding pressure.
Moreover, there exists a constant c(ν,Ω) > 0 such that

‖ u ‖H2(Ω)2 + ‖ ∇p ‖L2(Ω)2≤ c
(
1+ ‖ f ‖3L2(Ω)2 + ‖ g ‖3L2(Ω)2

)
. (2.3)

Theorem 3. If Tad is non-empty, then there exists a global optimal solution for the optimal control
problem (S ).

Proof. Since the problem has at least one feasible pair, and J is bounded by zero, we can take the
minimization sequence (uk, gk) in Tad. We obtain

γ

2
‖gk‖

2 ≤ J(uk, gk) < ∞,

which implies that {gk} is uniformly bounded in L2(Ω)2. Then we may extract a weakly convergent
sub-sequence, also denoted by {gk}, such that

gk ⇀ g∗ ∈ L2(Ω)2. (2.4)

Using 2.3, it follows that the sequence {uk} is also uniformly bounded in W and, consequently, we
may extract a weakly convergent sub-sequence, also denoted by {uk} such that

uk ⇀ u∗ ∈ W. (2.5)

In order to proof that (u∗, g∗) is a solution of the Navier-Stokes equations, the only problem is to pass
to the limit in the nonlinear form

∫
Ω

(uk.∇uk) v dx. Due to the compact embeddingW ↪→ V and the
continuity of

∫
Ω

(uk.∇uk) v dx, it follows that∫
Ω

(uk.∇uk) v dx→
∫

Ω

(u∗.∇u∗) v dx. (2.6)
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Consequently, taking into account the linearity and continuity of all terms involved, the limit (u∗, g∗)
satisfies the state equations.

Since C is convex and closed, it is weakly closed, so uk ⇀ u∗ inW and the embedding H2(Ω) ∩
(H1

0(Ω)) ↪→ C0(Ω) implies that u∗ ∈ C. Taking into consideration that J(g) is weakly lower semi-
continuous, the result follows via [13]. �

3. The linearized problems

3.1. Linearization

To solve (Pg), we construct a sequence of linear problems. Starting from an arbitrary u0 ∈ X, we
consider the iterative scheme

−ν∆un + (un−1 · ∇)un + ∇pn = f + gn in Ω,

div un = 0 in Ω,

u = 0 on Γ,

un ∈ C.

(Pn)

3.2. The convergence

The variational formulation of (Pn) is
Find (un, pn) ∈ Y such that

a0(un, v) + an(un, v) + b(pn, v) = 〈f + gn, v〉 ∀v ∈ V,
b(q,un) = 0 ∀q ∈ M.

(PVn)

The bilinear forms a0, an and b are given by ∀p ∈ M and v ∈ X

a0(u, v) = ν

∫
Ω

∇u∇v dx,

an(u, v) =

∫
Ω

(un−1 · ∇u) v dx,

b(p, v) =

∫
Ω

∇p v dx = −

∫
Ω

p div v dx,

(3.1)

with f ∈ H−1(Ω).
Using Green’s Theorem and div v = 0, we have b(p, v) = 0. Then, we associate with the problem

(PVn), the following problem

Find un ∈ V such that,
a0(un, v) + an(un, v) = 〈f + gn, v〉 ∀v ∈ V.

(PVn)

For each n and for f, gn ∈ L2(Ω)2, the problem (PVn) has a unique solution un ∈ V [13].
The sequence (un)n∈N satisfies the following inequality:

ν

2
‖un‖2X ≤ a(un,un) = L(un) =

∫
Ω

(f + gn) un dx.
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Using the continuity of the linear form L(.) and Schwarz’s inequality, we obtain the following
inequality

‖un‖X ≤
2
ν
‖f + gn‖L2(Ω)2 ∀n ≥ 1, (3.2)

which implies that the sequence (un)n∈N is bounded in X = (H1
0(Ω))2. Hence, there is a subsequence

that converges weakly to φ in X on the one hand. However, on the other hand, it converges strongly in
L2(Ω)2.

Lemma 4. If u0 ∈ H2(Ω)2 ∩ H1
0(Ω)2, f ∈ L2(Ω)2, and gn ∈ L2(Ω)2, then

lim
n→∞
‖∇un − ∇u‖L2(Ω)2 = 0.

Proof. If u0 ∈ H2(Ω)2 ∩ H1
0(Ω)2, f ∈ L2(Ω)2 and gn ∈ L2(Ω)2, then a regularity theorem gives: un and

φ are in H2(Ω)2 ∩ H1
0(Ω)2. Furthermore,

ν

2
‖∇un − ∇φ‖L2(Ω)2 ≤ a0(un − φ,un − φ), (3.3)

with
a0(un − φ,un − φ) = a0(un − φ,un) − a0(un − φ, φ), (3.4)

and

a0(un − φ,un) − a0(un − φ, φ) = ν

∫
Ω

∇un∇(un − φ) dx − ν
∫

Ω

∇φ∇(un − φ) dx, (3.5)

and

|a0(un − φ,un) − a0(un − φ, φ)| ≤ ν

∣∣∣∣∣∫
Ω

∆un(un − φ) dx
∣∣∣∣∣ + ν

∣∣∣∣∣∫
Ω

∆φ(un − φ) dx
∣∣∣∣∣

≤ ν‖∆un‖L2(Ω)2‖un − φ‖L2(Ω)2

+ ν‖∆φ‖L2(Ω)2‖un − φ‖L2(Ω)2

≤ ν‖un − φ‖L2(Ω)2(‖∆un‖L2(Ω)2 + ‖∆φ‖L2(Ω)2).

Using (3.3) we obtain

ν

2
‖∇un − ∇φ‖2L2(Ω)2 ≤ ν‖un − φ‖L2(Ω)2(‖∆un‖L2(Ω)2 + ‖∆φ‖L2(Ω)2 .

Then we increase the regularity of u using the method of singular perturbation, we conclude via [11]
that un is bounded in H2

0(Ω), then we extract a sequence still denoted by un, which converges weakly
to u in H2

0(Ω) since the injection of H2
0(Ω) into H1

0(Ω) is compact, there is a subsequence still denoted
by un which converges strongly to u in H1

0(Ω), we prove via [11]

lim
n→∞
‖∇un − ∇φ‖L2(Ω)2 = 0. (3.6)

�
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We need this result.

Lemma 5. 1) limn→∞ a0(un, v) = a0(φ, v).
2) limn→∞ an(un, v) = a∞(φ, v) =

∫
Ω

(φ · ∇)φ · v dx.

Proof. On the one hand, we have,

1) |a0(un, v) − a0(φ, v)| ≤
∫

Ω

|∇un − ∇φ| · ∇v dx ≤ ‖∇un − ∇φ‖L2(Ω)2‖∇v‖L2(Ω)2 . (3.7)

Using Lemma 4, we obtain the result.
2) On the other hand, we have

|an(un, v) − a∞(φ, v)| =
∫

Ω

{(un−1.∇)un − (φ.∇)φ}vdx. (3.8)

Setting
(un−1.∇)un − (φ.∇)φ = ((un−1 − φ).∇)un + (φ.∇)(un − φ). (3.9)

By using the continuity of the bi-linear form an(un, v), it gives the following

|an(un, v) − a∞(φ, v)| ≤ C(‖un−1 − φ‖X‖un‖X + ‖φ‖X‖un − φ‖X)‖v‖X. (3.10)

�

Theorem 6. The sequence (un)n∈N of solutions of problem (Pn) converges to the solution Φ of problem
(Pg).

Proof. It follows from Lemma 5 that

lim
n→∞

a0(un, v) + an(un, v) = a0(φ, v) + a∞(φ, v).

The problem (PVn) gives
a0(un, v) + an(un, v) = 〈f + gn, v〉 ∀v ∈ V, (3.11)

and we have γ

2‖g
n‖2 ≤ J(vn, gn) < ∞, which implies that gn is uniformly bounded in (L2(Ω))2. Hence,

we can extract a weakly convergent sub-sequence, denoted by gn, such that gn ⇀ ğ ∈ (L2(Ω))2.
Then, using Lemma 5, we obtain

a0(φ, v) + a∞(φ, v) = 〈f + ğ, v〉 ∀v ∈ V.

Here we used Rham’s Theorem. Let Ω be a bounded regular domain of R2 and L be a continuous
linear form on H1

0(Ω)2, then the linear formL vanishes on V if and only if there exists a unique function
ϕ ∈ L2(Ω)/R such that

∀v ∈ H1
0(Ω)2, L(v) =

∫
Ω

ϕ div v dx.

Now let L(v) = a0(φ, v) + a∞(φ, v) − 〈f + ğ, v〉, therefore the form L(v) = 0 for all v ∈ V , then
Rham’ theorem implies the existence of a unique function p ∈ L2(Ω)/R such that

a0(φ, v) + a∞(φ, v) − 〈f + ğ, v〉 =

∫
Ω

p div v dx ∀ v ∈ X, (3.12)
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which gives

ν

∫
Ω

∇φ∇v dx +

∫
Ω

(φ · ∇)φv dx −
∫

Ω

p div v dx =

∫
Ω

(f + ğ)v dx ∀ v ∈ X, (3.13)

∫
Ω

(−ν∆φ + (φ · ∇)φ + ∇p − (f + ğ)) v dx = 0 ∀ v ∈ X, (3.14)

then inD′(Ω):
− ν∆φ + (φ.∇)φ + ∇p − (f + ğ) = 0. (3.15)

Since φ ∈ V and (φ, ğ) satisfies Eqs (1) and (2) of (Pg), we conclude that φ is a solution of (Pg) and the
result follows.

�

3.3. Coupled problem and variational formulation

Consider the problem (S n), defined as follows

min J(gn), (un, gn) ∈ Uad, where (un, gn) solves (Pn), (S n)

where we define the functional

J(gn) =
1
2

∫
Ω

|un(gn) − ud|
2 dx + c

∫
Ω

|gn|2 dx.

The set of admissible solutions is defined as follows:

Uad = {(un, gn) ∈ W × L2(Ω)2; un satisfies the state equation in (Pn) and u ∈ C}.

The method to calculate the gradient is defined by

lim
ε→0

J(gn + εw) − J(gn)
ε

= (J’(gn),w) =

∫
J’(gn)wdx. (3.16)

By linearity, un(gn + εw) = un(gn)+εũn(w) with

−ν ∆ũn(w) + (un−1.∇)ũn + ∇q̃n(w) = w in Ω,

div ũn = 0 in Ω,

ũn = 0 on Γ.

(3.17)

Otherwise, ũn(w) = ((un (gn))
′

,w).
As J(gn) is quadratic, we obtain∫

J’(gn)wdx =

∫
((un(gn)−ud).ũn(w) + cgn.w)dx.

To simplify the expression of the gradient, we use the following system where p is defined as the
unique solution in H1

0(Ω)

AIMS Mathematics Volume 8, Issue 9, 21484–21500.
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−ν ∆pn − (un−1.∇)pn + ∇ηn = un − ud in Ω,

∇ pn = 0 in Ω,

pn = 0 on Γ.

(3.18)

Multiplying the first equation of (3.17) by pn and the first equation of (3.18) by ũn(w) and integrate
by parts, we obtain

ν

∫
Ω

∇pn.∇ũndx +

∫
Ω

((un−1.∇)ũn)pndx +

∫
Ω

q̃n ∇ pn =

∫
Ω

wpndx.

ν

∫
Ω

∇ũn.∇pndx −
∫

Ω

((un−1.∇)pn)ũndx +

∫
Ω

ηn ∇.ũn =

∫
Ω

(un − ud).ũndx.

As ∫
Ω

((un−1.∇)ũn)pndx = −

∫
Ω

((un−1.∇)pn)ũndx.

Indeed ∫
Ω

((un−1.∇)ũn)pndx =
∑

i

∑
j

∫
Ω

un−1
i

∂ũn
j

∂xi
pn

jdx

= −
∑

i

∑
j

∫
Ω

ũn
j

∂(un−1
i pn

j)

∂xi
dx

= −
∑

i

∑
j

∫
Ω

ũn
j

∂un−1
i

∂xi
pn

jdx −
∑

i

∑
j

∫
Ω

ũn−1
j

∂pn
j

∂xi
un−1

i dx

−

∫
Ω

(ũn.pn)∇2un−1dx −
∫

Ω

((un−1.∇)pn)ũndx

= −

∫
Ω

((un−1.∇)pn)ũndx

Hence, ∫
Ω

wpndx =

∫
Ω

(un − ud).ũndx.

Consequently ∫
J’(gn)wdx =

∫
Ω

(pn + cgn).wdx.

So J’(g) = pn + cgn = 0, implies pn = −cgn and ∆pn = −c∆gn, we then obtain the two systems
defined as follows

−ν∆un + (un−1.∇)un + divqn = f + gn in Ω

divun = 0 in Ω

un = 0 on Γ,

(3.19)
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cν ∆gn + c(un−1.∇)gn + ∇ηn = un − ud in Ω,

div gn = 0 in Ω,

gn = 0 on Γ.

(3.20)

We now consider the variational formulation related to both problems (3.19) and (3.20).
Find (un, qn, gn, ηn) in V × M × V × M such as:

∀ v ∈ V, ν
∫

Ω

∇un∇v dx +

∫
Ω

((un−1 · ∇)un) v dx −
∫

Ω

qn div v dx (3.21)

−

∫
Ω

v · gn dx = 〈f, v〉Ω ,

∀ φ ∈ M, −
∫

Ω

φ div un dx = 0,

∀ S ∈ V, cν
∫

Ω

∇gn∇S dx − c
∫

Ω

((un−1 · ∇)gn) S dx +

∫
Ω

ηn div S dx

+

∫
Ω

S · un dx = 〈ud,S〉Ω ,

∀ ϕ ∈ M,
∫

Ω

ϕ div gn dx = 0.

where 〈 〉Ω represents the duality product between H−1(Ω) and H1
0(Ω). The following result is a

consequence of the density of D(Ω) in L2(Ω) and H1
0(Ω).

Proposition 7. The problem S is equivalent to the problem (3.21) in the sense that for all triples (u, p, g)
in H1

0(Ω)2 × L2
0(Ω) × L2(Ω)2 is a solution of the system (S ) in the distribution sense if and only if it is a

solution of the problem (3.21).

3.4. Spectral discretization of the problem

We are now interested in the discretization of problem (PVn) in the case where Ω =] − 1, 1[2.

In dimension d = 2, for any integers n,m ≥ 0, we define Pl,m(Ω) as the the space of polynomials on
R.

We denote by Pl,m(Ω) the space of the restrictions of functions on Ω of the set Pl,m of degree ≤ l
respectively x and ≤ m y respectively.

In dimension d = 2, denoting by PN(Ω) the space of restrictions to ] − 1 1[2 of polynomials
with degree ≤ N. The space P0

N(Ω) which approximates H1
0(Ω) is the space of polynomials of PN(Ω)

vanishing at ∓1.
Setting ξ0 = −1 and ξN = 1, we introduce the N − 1 nodes ξ j, 1 ≤ j ≤ N − 1, and the N + 1 weights

ρ j , 0 ≤ j ≤ N, of the Gauss-Lobatto quadrature formula. We recall that the following equality holds∫ 1

−1
φ(ζ)dζ =

N∑
j=0

φ(ξ j)ρ j. (3.22)

We also recall ( [24], form. (13.20)) the following property, which is useful in what follows.

∀ ϕN ∈ PN(−1 , 1) ‖ϕN‖
2
L2(]−1 1[) ≤

N∑
j=0

ϕ2
N(ζ)ρ j ≤ 3‖ϕN‖

2
L2(]−1 1[). (3.23)
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Relying on this formula, we introduce the discrete product, defined for continuous functions u and
v by

(u, v)N =
{ ∑N

i=0
∑N

j=0 u(ξi, ξ j)v(ξi, ξ j)ρiρ j, si d = 2. (3.24)

It follows from (3.23) that this is a scalar product on PN(Ω).
Finally, let IN denote the Lagrange interpolation operator at the nodes ξi, 0 ≤ i ≤ N, with values in

PN(Ω).

3.4.1. Discrete spaces

To approximate L2
0(Ω), we consider the space

MN = L2
0(Ω) ∩ PN−2(Ω). (3.25)

The space that approximates H1
0(Ω) is

XN = (P0
N(Ω))2. (3.26)

We now assume that the functions f and gn are continuous on Ω. Thus, the discrete problem is
constructed from (PVn) by using the Galerkin method combined with numerical integration and is
defined as follows

Find (un
N , pn

N) ∈ XN ×MN such that

∀vN ∈ XN , (ν∇un
N ,∇vN)N + ((un−1

N .∇)un
N , vN)N − (∇vN , pn

N)N

= (fN + gn
N , vN)N

∀qN ∈ MN , −(∇un
N , qN) = 0

((PVn)N)

where fN = IN f .
The existence and uniqueness of the solution (un

N , pn
N) is proved in [25], see also Brezzi approach

and Rappaz Raviart for more details [26]. Thus, the discrete problem deduced from (3.21) is
Find (un

N , q
n
N , g

n
N , η

n
N) ∈ XN ×MN × XN ×MN such as

∀vN ∈ XN ,
(
ν∇un

N ,∇vN

)
N

+
((

un−1
N .∇

)
un

N , vN

)
N
− (∇vN , qN)N

−
(
gn

N , vN

)
N

= (fN , vN)N

∀φN ∈ MN , −
(
∇un

N , φN

)
N

= 0
∀SN ∈ XN , cν

(
∇gn

N ,∇SN

)
N
− c

((
un−1

N .∇
)

gn
N ,SN

)
N

+ (divSN , qN)N

+
(
un

N ,SN

)
N

= (udN ,SN)N

∀ϕN ∈ MN , −
(
∇gn

N , ϕN

)
N

= 0,

(3.27)

where INud = udN .

Proposition 8. The problem (3.27) has a unique solution (un
N , q

n
N , g

n
N , η

n
N) in XN ×MN × XN ×MN .
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4. Numerical results

In this part, we will implement some tests illustrating the effectiveness of the proposed algorithm.
We choose MATLAB as the programming tool for the numerical simulations.

The matrix system deduced from (3.21) and (3.27) has the following form

(νA + C)un + Bq − Idgn = f
BT un = 0

c(νA −C)gn + Bηn + Idun = ud

BT gn = 0,
Which can be represented as follows

(νA + C) B −Id 0
BT 0 0 0
Id 0 c(νA −C) −B
0 0 BT 0




un

qn

gn

ηn

 =


f
0
ud

0

 .
Therefore we obtain a linear system with the form EX = F, where E is a non-symmetric invertible

matrix. This linear system is solved by a preconditioned GMRES method. To simplify we assume
that c = ν = 1. In the first and second tests the pair (ud, p) is a solution of problem Pg with g = 0.
Theoretically, the solution u must be equal to ud and g must be zero in this case . Moreover, this case
is among the rare cases where the pair (u, g) can be provided and J(g) must be zero.
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Figure 1. Solution (u, g) of the first test.
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First test: Let ud =

(
0.5 sin(πx)2sin(2πy)
−0.5 sin(2πx)sin(πy)2

)
, an analytic function which vanishes on the edge ∂Ω

and p = x + y. In Figure 1, we present the graphs of the solutions u and g for N = 32. Note that J(g)
reaches 10−12 when N = 15 (N is the a number of nodes in the spectral discretization of the problem).

Second test: We now choose ud =

(
y(1 − x2)

7
2 (1 − y2)

5
2

−x(1 − x2)
5
2 (1 − y2)

7
2

)
, a singular function that vanishes on

the edge ∂Ω and p = y. cos(πx). In Figure 2, we present the graphs of solutions u and g (for N=32). In
Table 1, we illustrate the variation of J(g) with respect to the value of N.
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Figure 2. Solution (u, g) of second test.

Table 1. Variation of J(g) as a function of N.

N 10 14 18 24 32 36 40
J(g) 1.10−8 4.10−10 3.10−11 2.10−12 9.10−14 3.10−14 10−16

In both validation tests, u converges to ud and g converges to 0.
The convergence of J(g) is perfectly shown in the first case because of the choice of the function ud

which is an analytic function. However in the second case ud is a singular function. In this case, J(g)
reached a good convergence for N = 40.

In the third test, the solution (u, g) is unknown. We solve the problem (3.27) with ud =

AIMS Mathematics Volume 8, Issue 9, 21484–21500.
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(
1 − x2

)2 (
1 − y2

)
−x

(
1 − x2

) (
1 − y2

)2

 and f =
(

fx, fy

)
where fx = fy = 103xy2.

Figure 3 presents the solutions u and g. In Table 2, we give the approximate values of J(g) as a
function of the parameter N. This case shows that the algorithm converges. Without knowing the real
solution, we note that J(g) converges to a particular number every time N increases.
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Figure 3. Solution (u, g) of the third test.

Table 2. The value of J(g) concerning the value of N.

J(g) N
27.305410002457329 10
27.312223356317649 14
27.312231333141991 18
27.312231829834353 24
27.312231825367355 32
27.312231824107311 36
27.312231823788572 40

To better estimate this convergence, Figure 4 presents the difference between two successive values
of J(g) in the function of the average of two associated values of N.

AIMS Mathematics Volume 8, Issue 9, 21484–21500.



21498

10 15 20 25 30 35 40

  N

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

  
l
o
g 1
0
(
E
r
r
o
r
(
J
(
g
)
)
)

Figure 4. Error between two successive values of J(g) as a function of the average N.

5. Conclusions

The aim of this paper is to develop a numerical method that solves an optimal control problem
by transforming it into a coupled problem. We have tried to simplify the theoretical part as much as
possible, and we have even preferred not to add the part related to the discretization of the method
since it risks becoming too long. We have considered two examples to illustrate the efficiency of the
proposed algorithm. The results given show a good convergence of the algorithm, in particular, a
high degree of convergence of J(g) (thanks to the spectral method, which is known for its precision)
as a function of the variation of N. We can also use this method for other types of similar nonlinear
problems. However, it should be noted that one must always be careful when linearizing the nonlinear
term, for example, in our case, if we take the term (un+1.∇un) un instead of (un.∇)un or (un.∇)un+1, the
algorithm does not converge.
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18. C. Meyer, F. Tröltzsch, On an elliptic optimal control problem with pointwise mixed control-state
constraints, In: Recent advances in optimization, Berlin, Heidelberg: Springer, 2006, 187–204.
https://doi.org/10.1007/3-540-28258-0 12

19. O. Benedix, Adaptive numerical solution of state constrained optimal control problems,
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