This paper is concerned with the study of a new class of boundary value problems involving a right Caputo fractional derivative and mixed Riemann-Liouville fractional integral operators, and a nonlocal multipoint version of the closed boundary conditions. The proposed problem contains the usual and mixed Riemann-Liouville integrals type nonlinearities. We obtain the existence and uniqueness results with the aid of the fixed point theorems. Examples are presented for illustrating the abstract results. Our results are not only new in the given configuration but also specialize to some interesting situations.
Citation: Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi. On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions[J]. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
This paper is concerned with the study of a new class of boundary value problems involving a right Caputo fractional derivative and mixed Riemann-Liouville fractional integral operators, and a nonlocal multipoint version of the closed boundary conditions. The proposed problem contains the usual and mixed Riemann-Liouville integrals type nonlinearities. We obtain the existence and uniqueness results with the aid of the fixed point theorems. Examples are presented for illustrating the abstract results. Our results are not only new in the given configuration but also specialize to some interesting situations.
[1] | B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, World Scientific, 2021. https://doi.org/10.1142/12102 |
[2] | R. Agarwal, S. Hristova, D. O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, AIMS Math., 7 (2022), 2973–2988. https://doi.org/10.3934/math.2022164 doi: 10.3934/math.2022164 |
[3] | J. J. Nieto, Fractional Euler numbers and generalized proportional fractional logistic differential equation, Fract. Calc. Appl. Anal., 25 (2022), 876–886. https://doi.org/10.1007/s13540-022-00044-0 doi: 10.1007/s13540-022-00044-0 |
[4] | L. Peng, Y. Zhou, The existence of mild and classical solutions for time fractional Fokker-Planck equations, Monatsh. Math., 199 (2022), 377–410. https://doi.org/10.1007/s00605-022-01710-4 doi: 10.1007/s00605-022-01710-4 |
[5] | M. Kirane, A. Abdeljabbar, Nonexistence of global solutions of systems of time fractional differential equations posed on the Heisenberg group, Math. Method. Appl. Sci., 45 (2022), 7336–7345. https://doi.org/10.1002/mma.8243 doi: 10.1002/mma.8243 |
[6] | A. Alsaedi, M. Alghanmi, B. Ahmad, B. Alharbi, Uniqueness results for a mixed $p$-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function, Electron. Res. Arch., 31 (2023), 367–385. https://doi.org/10.3934/era.2023018 doi: 10.3934/era.2023018 |
[7] | A. Samadi, S. K. Ntouyas, J. Tariboon, On a nonlocal coupled system of Hilfer generalized proportional fractional differential equations, Symmetry, 14 (2022), 738. https://doi.org/10.3390/sym14040738 doi: 10.3390/sym14040738 |
[8] | R. P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 125. https://doi.org/10.1007/s12346-022-00650-6 doi: 10.1007/s12346-022-00650-6 |
[9] | A. Wongcharoen, S. K. Ntouyas, P. Wongsantisuk, J. Tariboon, Existence results for a nonlocal coupled system of sequential fractional differential equations involving $\psi$-Hilfer fractional derivatives, Adv. Math. Phys., 2021 (2021), 5554619. https://doi.org/10.1155/2021/5554619 doi: 10.1155/2021/5554619 |
[10] | K. D. Kucche, A. D. Mali, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335 |
[11] | I. Bouacida, M. Kerboua, S. Segni, Controllability results for Sobolev type $ \psi$-Hilfer fractional backward perturbed integro-differential equations in Hilbert space, Evol. Equ. Control The., 12 (2023), 213–229. https://doi.org/10.3934/eect.2022028 doi: 10.3934/eect.2022028 |
[12] | A. P. Selvam, V. Govindaraj, Reachability of fractional dynamical systems with multiple delays in control using $\psi$-Hilfer pseudo-fractional derivative, J. Math. Phys., 63 (2022), 102706. https://doi.org/10.1063/5.0049341 doi: 10.1063/5.0049341 |
[13] | Q. Yang, C. Bai, D. Yang, Finite-time stability of nonlinear stochastic $\psi$-Hilfer fractional systems with time delay, AIMS Math., 7 (2022), 18837–18852. https://doi.org/10.3934/math.20221037 doi: 10.3934/math.20221037 |
[14] | A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Initial value problem for hybrid $\psi $-Hilfer fractional implicit differential equations, J. Fix. Point Theory A., 24 (2022), 7. https://doi.org/10.1007/s11784-021-00920-x doi: 10.1007/s11784-021-00920-x |
[15] | S. K. Ntouyas, B. Ahmad, C. Nuchpong, J. Tariboon, On $(k, \psi)$-Hilfer fractional differential equations and inclusions with mixed $(k, \psi)$-derivative and integral boundary conditions, Axioms, 11 (2022), 403. https://doi.org/10.3390/axioms11080403 doi: 10.3390/axioms11080403 |
[16] | S. K. Ntouyas, B. Ahmad, J. Tariboon, M. S. Alhodaly, Nonlocal integro-multi-point $(k, \psi)$-Hilfer type fractional boundary value problems, Mathematics, 10 (2022), 2357. https://doi.org/10.3390/math10132357 doi: 10.3390/math10132357 |
[17] | E. V. Ivashkevich, Boundary height correlations in a two-dimensional Abelian sandpile, J. Phys. A Math. Gen., 27 (1994), 3643. https://doi.org/10.1088/0305-4470/27/11/014 doi: 10.1088/0305-4470/27/11/014 |
[18] | G. Piroux, P. Ruelle, Boundary height fields in the Abelian sandpile model, J. Phys. A Math. Gen., 38 (2005), 1451. https://doi.org/10.1088/0305-4470/38/7/004 doi: 10.1088/0305-4470/38/7/004 |
[19] | N. Azimi-Tafreshi, H. Dashti-Naserabadi, S. Moghimi-Araghi, P. Ruelle, The Abelian sandpile model on the honeycomb lattice, J. Stat. Mech., 2010 (2010), P02004. https://doi.org/10.1088/1742-5468/2010/02/P02004 doi: 10.1088/1742-5468/2010/02/P02004 |
[20] | M. Donatelli, S. Serra-Capizzano, Antireflective boundary conditions for deblurring problems, J. Electr. Comput. Eng., 2010 (2010), 241467. https://doi.org/10.1155/2010/241467 doi: 10.1155/2010/241467 |
[21] | X. Li, J. Robertsson, A. Curtis, D. van Manen, Internal absorbing boundary conditions for closed-aperture wavefield decomposition in solid media with unknown interiors, J. Acoust. Soc. Am., 152 (2022), 313–329. https://doi.org/10.1121/10.0012578 doi: 10.1121/10.0012578 |
[22] | M. Mohammadimehr, S. V. Okhravi, S. M. A. Alavi, Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT, J. Vib. Control, 24 (2018), 1551–1569. https://doi.org/10.1177/1077546316664022 doi: 10.1177/1077546316664022 |
[23] | B. Ahmad, J. J. Nieto, J. Pimentel, Some boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., 62 (2011), 1238–1250. https://doi.org/10.1016/j.camwa.2011.02.035 doi: 10.1016/j.camwa.2011.02.035 |
[24] | A. V. Setukha, On the three-dimensional Neumann boundary value problem with a generalized boundary condition in a domain with a smooth closed boundary, Diff. Equat., 41 (2005), 1237–1252. https://doi.org/10.1007/s10625-005-0273-4 doi: 10.1007/s10625-005-0273-4 |
[25] | G. Wang, B. Ahmad, L. Zhang, Existence results for nonlinear fractional differential equations with closed boundary conditions and impulses, Adv. Differ. Equ., 2012 (2012), 169. https://doi.org/10.1186/1687-1847-2012-169 doi: 10.1186/1687-1847-2012-169 |
[26] | H. Ergoren, A. Kilicman, Some existence results for impulsive nonlinear fractional differential equations with closed boundary conditions, Abstr. Appl. Anal., 2012 (2012), 387629. https://doi.org/10.1155/2012/387629 doi: 10.1155/2012/387629 |
[27] | L. Zhang, B. Ahmad, G. Wang, The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative, Appl. Math. Lett., 31 (2014), 1–6. https://doi.org/10.1016/j.aml.2013.12.014 doi: 10.1016/j.aml.2013.12.014 |
[28] | T. Jankowski, Boundary problems for fractional differential equations, Appl. Math. Lett., 28 (2014), 14–19. https://doi.org/10.1016/j.aml.2013.09.004 doi: 10.1016/j.aml.2013.09.004 |
[29] | B. Ahmad, M. Alnahdi, S. K. Ntouyas, Existence results for a differential equation involving the right Caputo fractional derivative and mixed nonlinearities with nonlocal closed boundary conditions, Fractal Fract., 7 2023, 129. https://doi.org/10.3390/fractalfract7020129 doi: 10.3390/fractalfract7020129 |
[30] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5 |
[31] | M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk., 10 (1995), 123–127. |
[32] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2005. https://doi.org/10.1007/978-0-387-21593-8 |