Research article Special Issues

On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions

  • This paper is concerned with the study of a new class of boundary value problems involving a right Caputo fractional derivative and mixed Riemann-Liouville fractional integral operators, and a nonlocal multipoint version of the closed boundary conditions. The proposed problem contains the usual and mixed Riemann-Liouville integrals type nonlinearities. We obtain the existence and uniqueness results with the aid of the fixed point theorems. Examples are presented for illustrating the abstract results. Our results are not only new in the given configuration but also specialize to some interesting situations.

    Citation: Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi. On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions[J]. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593

    Related Papers:

    [1] Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463
    [2] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [3] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [4] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
    [5] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
    [6] Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750
    [7] Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas . A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078
    [8] Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon . Nonlocal integro-multistrip-multipoint boundary value problems for $ \overline{\psi}_{*} $-Hilfer proportional fractional differential equations and inclusions. AIMS Mathematics, 2023, 8(6): 14086-14110. doi: 10.3934/math.2023720
    [9] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
    [10] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
  • This paper is concerned with the study of a new class of boundary value problems involving a right Caputo fractional derivative and mixed Riemann-Liouville fractional integral operators, and a nonlocal multipoint version of the closed boundary conditions. The proposed problem contains the usual and mixed Riemann-Liouville integrals type nonlinearities. We obtain the existence and uniqueness results with the aid of the fixed point theorems. Examples are presented for illustrating the abstract results. Our results are not only new in the given configuration but also specialize to some interesting situations.



    The topic of boundary value problems is an interesting area of research in view of its applications in applied and technical sciences. In the recent years, the class of nonlocal fractional order boundary value problems involving different fractional derivatives (such as Riemann-Liouville, Caputo, etc.) received an overwhelming interest from many researchers. For the details of a variety of nonlocal single-valued and multivalued boundary value problems involving different types of fractional order derivative operators, we refer the reader to the text [1], articles [2,3,4,5,6,7] and the references cited therein. There has been shown a great enthusiasm in developing the existence theory for Hilfer, ψ-Hilfer and (k,ψ) Hilfer type fractional differential equations equipped with different types of boundary conditions, for instance, see [8,9,10,11,12,13,14,15,16].

    Nonlocal boundary conditions are found to be more plausible and practical in contrast to the classical boundary conditions in view of their applicability to describe the changes happening within the given domain. Closed boundary conditions are found to be of great help in describing the situation when there is no fluid flow along the boundary or through it. The free slip condition is also a type of the closed boundary conditions which describes the situation when there is a flow along the boundary, but there is no flow perpendicular to it. Such conditions are also useful in the study of sandpile model [17,18], honeycomb lattice [19], deblurring problems [20], closed-aperture wavefield decomposition in solid media [21], vibration analysis of magneto-electro-elastic cylindrical composite panel [22], etc.

    Now we review some works on the boundary value problems with closed boundary conditions. In [23], the authors studied the single-valued and multivalued fractional boundary value problems with open and closed boundary conditions. A three-dimensional Neumann boundary value problem with a generalized boundary condition in a domain with a smooth closed boundary was discussed in [24]. For some interesting results on impulsive fractional differential equations with closed boundary conditions, see the articles [25,26].

    The objective of the present work is to investigate a new class of mixed nonlinear boundary value problems involving a right Caputo fractional derivative, mixed Riemann-Liouville fractional integral operators, and multipoint variant of closed boundary conditions. In precise terms, we consider the following fractional order nonlocal and nonlinear problem:

    CDαTy(t)+λIρTIσ0+h(t,y(t))=f(t,y(t)),tJ:=[0,T], (1.1)
    y(T)=mı=1(piy(ξi)+Tqiy(ξi)),Ty(T)=mı=1(riy(ξi)+Tviy(ξi)), (1.2)

    where CDαT denote the right Caputo fractional derivative of order α(1,2], IρT and Iσ0+ represent the right and left Riemann-Liouville fractional integral operators of orders ρ,σ>0 respectively, f,h:[0,T]×RR are given continuous functions and λ,pi,qi,ri,viR,i{1,2,3,...,m}, and ξi(0,T). Notice that the integro-differential Eq (1.1) contains the usual and mixed Riemann-Liouville integrals type nonlinearities. The boundary conditions (1.2) can be interpreted as the values of the unknown function and its derivative at the right end-point T of the interval [0,T] are proportional to a linear combination of these values at arbitrary nonlocal positions ξi(0,T). Physically, the nonlocal multipoint closed boundary conditions provide a flexible mechanism to close the boundary at arbitrary positions in the given domain instead of the left end-point of the domain.

    Here we emphasize that much of the literature on fractional differential equations contains the left-sided fractional derivatives and there are a few works dealing with the right-sided fractional derivatives. For instance, the authors in [27,28] studied the problems involving the right-handed Riemann–Liouville fractional derivative operators, while a problem containing the right-handed Caputo fractional derivative was considered in [29]. The problem studied in the present paper is novel in the sense that it solves an integro-differential equation with a right Caputo fractional derivative and mixed nonlinearities complemented with a new concept of nonlocal multipoint closed boundary conditions. The results accomplished for the problems (1.1) and (1.2) will enrich the literature on boundary value problems involving the right-sided fractional derivative operators. The present work is also significant as it produces several new results as special cases as indicated in the last section.

    The rest of the paper is arranged as follows. In Section 2, we present an auxiliary lemma which is used to transform the given nonlinear problem into a fixed-point problem. Section 3 contains the main results and illustrative examples. Some interesting observations are presented in the last Section 4.

    Let us begin this section with some definitions [30].

    Definition 2.1. The left and right Riemann-Liouville fractional integrals of order β>0 for gL1[a,b], existing almost everywhere on [a,b], are respectively defined by

    Iβa+g(t)=ta(ts)β1Γ(β)g(s)dsandIβbg(t)=bt(st)β1Γ(β)g(s)ds.

    Definition 2.2. For gACn[a,b], the right Caputo fractional derivative of order β(n1,n],nN, existing almost everywhere on [a,b], is defined by

    CDβbg(t)=(1)nbt(st)nβ1Γ(nβ)g(n)(s)ds.

    In the following lemma, we solve a linear variant of the fractional integro-differential equation (1.1) supplemented with multipoint closed boundary conditions (1.2).

    Lemma 2.1. Let H,FC[0,T] and Δ0. Then the linear problem

    {CDαTy(t)+λIρTIσ0+H(t)=F(t),tJ:=[0,T],y(T)=mı=1(piy(ξi)+Tqiy(ξi)),Ty(T)=mı=1(riy(ξi)+Tviy(ξi)),0<ξi<T, (2.1)

    is equivalent to the integral equation

    y(t)=Tt(st)α1Γ(α)[F(s)λIρTIσ0+H(s)]ds+b1(t){mı=1piTξi(sξi)α1Γ(α)[F(s)λIρTIσ0+H(s)]dsTmı=1qiTξi(sξ)α2Γ(α1)[F(s)λIρTIσ0+H(s)]ds}+b2(t){mı=1riTξi(sξi)α1Γ(α)[F(s)λIρTIσ0+H(s)]dsTmi=1viTξi(sξi)α2Γ(α1)[F(s)λIρTIσ0+H(s)]ds}, (2.2)

    where

    b1(t)=1Δ(tS6S7TS9+T),b2(t)=1Δ[(1S1)t+S2+TS4T],Δ=(S11)(S7+TS9T)S6(S2+TS4T),S1=mı=1pi,S2=mı=1piξi,S3=mı=1piAi,S4=mı=1qi,S5=mı=1qiBi,S6=mı=1ri,S7=mı=1riξi,S8=mı=1riAi,S9=mı=1vi,S10=mı=1viBi,Ai=IαT[F(ξi)λIρTIσ0+H(ξi)],Bi=Iα1T[F(ξi)λIρTIσ0+H(ξi)]. (2.3)

    Proof. Applying the right fractional integral operator IαT to the integro-differential equation in (2.1), we get

    y(t)=IαTF(t)λIα+ρTIσ0+H(t)c0c1t, (2.4)

    where c0 and c1 are unknown arbitrary constants. Using (2.4) in the nonlocal closed boundary conditions of (2.1), we obtain

    {(S11)c0+(S2+TS4T)c1=S3+TS5,S6c0+(S7+TS9T)c1=S8+TS10, (2.5)

    where Si,i=1,,10, are given in (2.3).

    Solving the system (2.5) for c0 and c1, we find that

    c0=1Δ[(S7+TS9T)(S3+TS5)(S2+TS4T)(S8+TS10)],c1=1Δ[S6(S3+TS5)+(S11)(S8+TS10)],

    where Δ is given in (2.3). Substituting the above values of c0 and c1 in (2.4) together with the notation (2.3), we obtain the solution (2.2). The converse of this lemma can be obtained by direct computation. This completes the proof.

    This section is devoted to our main results concerning the existence and uniqueness of solutions for the problems (1.1) and (1.2).

    In order to convert the problems (1.1) and (1.2) into a fixed point problem, we define an operator V:XX by using Lemma 2.1 as follows:

    Vy(t)=Tt(st)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds+b1(t){mı=1piTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]dsTmı=1qiTξi(sξ)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds}+b2(t){mı=1riTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]dsTmi=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds},tJ, (3.1)

    where X=C([0,T],R) denotes the Banach space of all continuous functions from [0,T]R equipped with the norm y=sup{|y(t)|:t[0,T]}. Notice that the fixed point problem Vy(t)=y(t) is equivalent to the boundary value problems (1.1) and (1.2) and the fixed points of the operator V are its solutions.

    In the forthcoming analysis, we use the following estimates:

    Tt(st)α+ρ1Γ(α+ρ)Iσ0+ds=Tt(st)α+ρ1Γ(α+ρ)s0(su)σ1Γ(σ)dudsTσ(Tt)α+ρΓ(σ+1)Γ(α+ρ+1),Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds=Tξi(sξi)α+ρ1Γ(α+ρ)s0(su)σ1Γ(σ)dudsTσ(Tξi)α+ρΓ(σ+1)Γ(α+ρ+1),

    where we have used uσTσ,ρ,σ>0.

    In the sequel, we set

    Ω1=1Γ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]},Ω2=|λ|TσΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}, (3.2)

    where

    ¯b1=maxt[0,T]|b1(t)|,¯b2=maxt[0,T]|b2(t)|.

    In the following, Krasnosel'skii's fixed point theorem [31] is applied to prove our first existence result for the problems (1.1) and (1.2).

    Theorem 3.1. Assume that:

    (H1) There exists L>0 such that |f(t,x)f(t,y)|L|xy|,t[0,T],x,yR;

    (H2) There exists K>0 such that |h(t,x)h(t,y)|K|xy|,t[0,T],x,yR;

    (H3) |f(t,y)|δ(t) and |h(t,y)|θ(t), where δ,θC([0,T],R+).

    Then, the problems (1.1) and (1.2) has at least one solution on [0,T] if Lγ1+Kγ2<1, where

    γ1=TαΓ(α+1),γ2=|λ|Tα+ρ+σΓ(σ+1)Γ(α+ρ+1). (3.3)

    Proof. Introduce the ball Bη={yX:yη}, with

    ηδΩ1+θΩ2. (3.4)

    Now we verify the hypotheses of Krasnosel'skii's fixed point theorem in three steps by splitting the operator V:XX defined by (3.1) on Bη as V=V1+V2, where

    V1y(t)=Tt(st)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds,tJ,V2y(t)=b1(t){mı=1piTξi(sξi)α1Γ(α)[f(s,y(s))dsλIρTIσ0+h(s,y(s))]dsTmı=1qiTξi(sξ)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds}+b2(t){mı=1riTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]dsTmi=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds},tJ.

    (i) For y,xBη, we have

    V1y+V2xsupt[0,T]{Tt(st)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+|b1(t)|{mı=1|pi|Tξi(sξi)α1Γ(α)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds}+|b2(t)|{mı=1|ri|Tξi(sξi)α1Γ(α)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)[|f(s,x(s))|+|λ|IρTIσ0+|h(s,x(s))|]ds}}δsupt[0,T]{Tt(st)α1Γ(α)ds+|b1(t)|[mı=1|pi|Tξi(sξi)α1Γ(α)ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α1Γ(α)ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)ds]}+θ|λ|supt[0,T]{Tt(st)α+ρ1Γ(α+ρ)Iσ0+ds+|b1(t)|[mı=1Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|vi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]}δsupt[0,T]{(Tt)αΓ(α+1)+|b1(t)|[mı=1|pi|(Tξi)αΓ(α+1)+Tmı=1|qi|(Tξi)α1Γ(α)]+|b2(t)|[mı=1|ri|(Tξi)αΓ(α+1)+Tmı=1|vi|(Tξi)α1Γ(α)]}+θ|λ|TσΓ(σ+1)supt[0,T]{(Tt)α+ρΓ(α+ρ+1)ds+|b1(t)|[mı=1(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|qi|(Tξi)α+ρ1Γ(α+ρ)]+|b2(t)|[mı=1|ri|(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|vi|(Tξi)α+ρ1Γ(α+ρ)]}δΓ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+θ|λ|TσΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}βΩ1+θΩ2<η,

    where we used (3.4). Thus V1y+V2xBη.

    (ii) Using (H1) and (H2), it is easy to show that

    V1yV1xsupt[0,T]{Tt(st)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tt(st)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds}(Lγ1+Kγ2)yx,

    which, in view of the condition Lγ1+Kγ2<1, implies that the operator V1 is a contraction.

    (iii) Continuity of the functions f,h implies that the operator V2 is continuous. In addition, V2 is uniformly bounded on Bη as

    V2ysupt[0,T]{|b1(t)|[mı=1|pi|Tξi(sξi)α1Γ(α)|f(s,y(s))|ds+|λ|mı=1|pi|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))|ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)|f(s,y(s))|ds+|λ|Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+|h(s,y(s))|ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α1Γ(α)|f(s,y(s))|+|λ|mı=1|ri|Tξi(sξi)α+ρ1(α+ρ)Iσ0+|h(s,y(s))|ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)|f(s,y(s))|ds+|λ|Tmı=1|vi|Tξi(sξi)α+ρ2)Γ(α+ρ1)|h(s,y(s))|ds]}δsupt[0,T]{|b1(t)|[mı=1|pi|Tξi(sξi)α1Γ(α)ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α1Γ(α)ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)ds]}+|λ|θsupt[0,T]{|b1(t)|[mı=1|pi|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]+|b2(t)|[mı=1|ri|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|vi|Tξi(sξi)α+ρ2)Γ(α+ρ1)Iσ0+ds]}δsupt[0,T]{|b1(t)|[mı=1|pi|(Tξi)αΓ(α+1)+Tmı=1|qi|(Tξi)α1Γ(α)]+|b2(t)|[mı=1|ri|(Tξi)αΓ(α+1)+Tmı=1|vi|(Tξi)α1Γ(α)]+|λ|θTσΓ(σ+1)supt[0,T]{|b1(t)|[mı=1|pi|(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|qi|(Tξi)α+ρ1Γ(α+ρ)]+|b2(t)|[mı=1|ri|(Tξi)α+ρΓ(α+ρ+1)+Tmı=1|vi|(Tξi)α+ρ1)Γ(α+ρ)]}δ(Ω1γ1)+θ(Ω2γ2),

    where Ωi, and γi, i=1,2, are defined in (3.2) and (3.3), respectively. To show the compactness of V2, we fix sup(t,y)[0,T]×Bη|f(t,y)|=¯f, sup(t,y)[0,T]×Bη|h(t,y)|=¯h. Then, for 0<t1<t2<T, we have

    |(V2y)(t2)(V2y)(t1)||b1(t2)b1(t1)|{mı=1|pi|Tξi(sξi)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}+|b2(t2)b2(t1)|{mı=1|ri|Tξ(sξ)α1Γ(α)[|f(s,y(s))|+λ|IρTIσ0+|h(s,y(s))|ds]+Tmı=1|vi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}|S6||t2t1||Δ|{¯fΓ(α+1)[mı=1|pi|(Tξi)α+αTmi=1|qi|(Tξi)α1]+¯h|λ|TσΓ(σ+1)Γ(α+ρ+1)[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmi=1|qi|(Tξi)α+ρ1]}+|S11||t2t1||Δ|{¯fΓ(α+1)[mı=1|ri|(Tξi)α+αTmi=1|vi|(Tξi)α1]+¯h|λ|TσΓ(σ+1)Γ(α+ρ+1)[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmi=1|vi|(Tξi)α+ρ1]},

    which tends to zero, independent of y, as t2t1. This shows that V2 is equicontinuous. It is clear from the foregoing arguments that the operator V2 is relatively compact on Bη. Hence, by the Arzelá-Ascoli theorem, V2 is compact on Bη.

    In view of the foregoing arguments (i)–(iii), the hypotheses of the Krasnosel'skii's fixed point theorem [31] are satisfied. Hence, the operator V1+V2=V has a fixed point, which implies that the problems (1.1) and (1.2) has at least one solution on [0,T]. The proof is finished.

    Remark 3.1. Interchanging the roles of the operators V1 and V2 in the previous result, the condition Lγ1+Kγ2<1 changes to the following one:

    L(Ω1γ1)+K(Ω2γ2)<1,

    where Ω1,Ω2 and γ1,γ2 are defined in (3.2) and (3.3) respectively.

    The following existence result relies on Leray-Schauder nonlinear alternative [32].

    Theorem 3.2. Suppose that the following conditions hold:

    (H4) There exist continuous nondecreasing functions ϕ1,ϕ2:[0,)(0,) such that (t,y)[0,1]×R, |f(t,y)|ω1(t)ϕ1(y) and |h(t,y)|ω2(t)ϕ2(y), where ω1,ω2C([0,T],R+);

    (H5)There exists a constant M>0 such that

    Mω1ϕ1(M)Ω1+ω2ϕ2(M)Ω2>1.

    Then, the problems (1.1) and (1.2) has at least one solution on [0,T].

    Proof. We firstly show that the operator V:XX defined by (3.1) is completely continuous.

    (i) V maps bounded sets into bounded sets in X.

    Let yBr={yX:yr}, where r is a fixed number. Then, using the strategy employed in the proof of Theorem 3.1, we obtain

    Vyω1ϕ1(r)Γ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+|λ|Tσω2ϕ2(r)Γ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}=ω1ϕ1(r)Ω1+ω2ϕ2(r)Ω2<.

    (ii) V maps bounded sets into equicontinuous sets.

    Let 0<t1<t2<T and yBr. Then, we obtain

    |Vy(t2)Vy(t1)||Tt2(st2)α1(st1)α1Γ(α)f(s,y(s))ds+t2t1(st1)α1Γ(α)f(s,y(s))dsλTt2(st2)α+ρ1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))dsλt2t1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))ds|+|b1(t2)b1(t1)|{|mı=1piTξi(sξ)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1qiTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}+|b2(t2)b2(t1)|{|mı=1riTξi(sξ)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}|Tt2(st2)α1(st1)α1Γ(α)f(s,y(s))ds+t2t1(st1)α1Γ(α)f(s,y(s))ds|+|λTt2(st2)α+ρ1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))ds+λt2t1(st1)α+ρ1Γ(α+ρ)Iσ0+h(s,y(s))ds|+|S6||t2t1|Δ|{|mı=1piTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1qiTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}+|S11||t2t1|Δ{|mı=1riTξi(sξi)α1Γ(α)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|+|Tmı=1viTξi(sξi)α2Γ(α1)[f(s,y(s))λIρTIσ0+h(s,y(s))]ds|}ω1(t)Φ1(r)Γ(α+1){|(Tt2)α(Tt1)α|+2|(t2t1)α|+|t2t1||Δ|[|S6|(mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1)+|S11|(mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1)]}+|λ|Tσω2(t)ϕ2(r)Γ(σ+1)Γ(α+ρ+1){|(Tt2)α+ρ(Tt1)α+ρ+2|t2t1|α+ρ+|t2t1||Δ|[|S6|(mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1)+|S11|(mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1)]}.

    Notice that the right-hand side of the above inequality tends to 0 as t2t1, independent of yBr. Thus, it follows by the Arzelá–Ascoli theorem that the operator V:XX is completely continuous.

    The conclusion of the Leray-Schauder nonlinear alternative [32] will be applicable once it is shown that there exists an open set UC([0,T],R) with yνVy for ν(0,1) and yU. Let yC([0,T],R) be such that y=νVy for ν(0,1). As argued in proving that the operator V is bounded, one can obtain that

    |y(t)|=|νVy(t)||ω1(t)|ϕ(y)Ω1+|ω2(t)|ψ(y)Ω2,

    which can be written as

    yω1ϕ(y)Ω1+ω2ψ(y)Ω21.

    On the other hand, we can find a positive number M such that yM by assumption (H5). Let us set

    W={yX:y<M}.

    Clearly, W contains a solution only when y=M. In other words, we cannot find a solution yW satisfying y=νVy for some ν(0,1). In consequence, the operator V has a fixed point y¯W, which is a solution of the problems (1.1) and (1.2). The proof is finished.

    Here we apply Banach contraction mapping principle to establish the uniqueness of solutions for the problems (1.1) and (1.2).

    Theorem 3.3. If the conditions (H1) and (H2) hold, then the problems (1.1) and (1.2) has a unique solution on [0,T] if

    LΩ1+KΩ2<1, (3.5)

    where Ω1 and Ω2 are defined in (3.2).

    Proof. In the first step, we show that VBκBκ, where Bκ={yX:yκ} with

    κf0Ω1+h0Ω21(LΩ1+KΩ2),f0=supt[0,T]|f(t,0)|,h0=supt[0,T]|h(t,0)|.

    For yBκ and using the condition (H1), we have

    |f(t,y)|=|f(t,y)f(t,0)+f(t,0)||f(t,y)f(t,0)|+|f(t,0)|Ly+f0Lr+f0. (3.6)

    Similarly, using (H2), we get

    |h(t,y)|Kr+h0. (3.7)

    In view of (3.6) and (3.7), we obtain

    Vysupt[0,T]|Vy(t)|supt[0,T]{Tt(st)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+|b1(t)|{mı=1piTξi(sξi)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}+|b2(t)|{mı=1riTξi(sξi)α1Γ(α)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds+Tmi=1|vi|Tξi(sξi)α2Γ(α1)[|f(s,y(s))|+|λ|IρTIσ0+|h(s,y(s))|]ds}}(Lr+f0)supt[0,T]{Tt(st)α1Γ(α)ds+|b1(t)|[mi=1|pi|Tξi(sξi)α1Γ(α)ds+Tmı=1|qi|Tξi(sξi)α2Γ(α1)ds]+|b2(t)|[mi=1|ri|Tξi(sξi)α1Γ(α)ds+Tmı=1|vi|Tξi(sξi)α2Γ(α1)ds]}+|λ|(Kr+h0)supt[0,T]{Tt(st)α+ρ1Γ(α+ρ)Iσ0+ds+|b1(t)|[mi=1|pi|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|qi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]+|b2(t)|[mi=1|ri|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+ds+Tmı=1|vi|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+ds]}(Lr+f0)Γ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+Tσ|λ|(Kr+h0)Γ(σ)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}=(Lr+f0)Ω1+(Kr+h0)Ω2<κ,

    which implies that VyBκ, for any yBκ. Therefore, VBκBκ.

    Next, we prove that V is a contraction. For that, let x,yX and t[0,T]. Then, by the conditions (H1) and (H2), we obtain

    VyVx=supt[0,T]|(Vy)(t)(Vx)(t)|supt[0,T]{Tt(st)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tt(st)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds+|b1(t)|[mı=1|pi|(Tξi(sξi)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds)+Tmı=1|qi|(Tξi(sξi)α2Γ(α1)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+|h(s,y(s))h(s,x(s))|ds)]+|b2(t)|[mı=1|ri|(Tξi(sξi)α1Γ(α)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ1Γ(α+ρ)Iσ0+|h(s,y(s))h(s,x(s))|ds)+Tmı=1|vi|(Tξi(sξi)α2Γ(α1)|f(s,y(s))f(s,x(s))|ds+|λ|Tξi(sξi)α+ρ2Γ(α+ρ1)Iσ0+|h(s,y(s))h(s,x(s))|ds)]}LΓ(α+1){Tα+¯b1[mı=1|pi|(Tξi)α+αTmı=1|qi|(Tξi)α1]+¯b2[mı=1|ri|(Tξi)α+αTmı=1|vi|(Tξi)α1]}+Tσ|λ|KΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[mı=1|pi|(Tξi)α+ρ+(α+ρ)Tmı=1|qi|(Tξi)α+ρ1]+¯b2[mı=1|ri|(Tξi)α+ρ+(α+ρ)Tmı=1|vi|(Tξi)α+ρ1]}yx=(LΩ1+KΩ2)yx,

    which shows that V is a contraction in view of the condition (3.5). Therefore, we deduce by Banach contraction mapping principle that there exists a unique fixed point for the operator V, which corresponds to a unique solution for the problems (1.1) and (1.2) on [0,T]. The proof is completed.

    In this subsection, we construct examples for illustrating the abstract results derived in the last two subsections. Let us consider the following problem:

    {D9/81y(t)+3I7/31I3/40+h(t,y(t))=f(t,y(t)), tJ:=[0,1],y(T)=3ı=1piy(ξi)+3ı=1qiy(ξi),y(T)=3ı=1riy(ξi)+3ı=1viy(ξi),,0<ξi<1. (3.8)

    Here α=9/8,ρ=7/3,σ=3/4,λ=3,ξ1=3/7,ξ2=2/3,ξ3=4/5,p1=1/2,p2=1/3,p3=1/4,q1=2,q2=3,q3=4,r1=1,r2=1,r3=3,v1=2/7,v2=3/7,v3=4/7. Using the given data, it is found that

    ¯b1=maxt[0,1]|b1(t)|=|b1(t)|t=10.1112461491,¯b2=maxt[0,1]|b2(t)|=|b2(t)|t=10.3364235041.

    In consequence, we get Ω12.517580993,Ω20.3543113654 (Ω1, Ω2 are defined in (3.2)).

    (i) For illustrating Theorem 3.1, we consider the functions

    f(t,y)=m12t+25(y21+y2+cos3t+1),h(t,y)=m23t2+64(2tan1y+sint+et/2), (3.9)

    where m1 and m2 are finite positive real numbers. Observe that

    |f(t,y)|δ(t)=m1(2+cos3t)2t+25,|h(t,y)|θ(t)=m2(π+sint+et/2)3t2+64,

    and f(t,y) and h(t,y) respectively satisfy the conditions (H1) and (H2) with L=2m1/25 and K=m2/24. Moreover, γ10.9438765902 and γ20.2972831604. By the condition Lγ1+Kγ2<1, we get

    0.0755101272m1+0.0123867984m2<1 (3.10)

    For the values of m1 and m2 satisfying the inequality (3.10), the hypothesis of Theorem 3.1 is satisfied. Hence, it follows by the conclusion of Theorem 3.1 that the problem (3.8) with f(t,y) and h(t,y) given in (3.9) has at least one solution on [0,1]. If the values m1 and m2 do not satisfy the inequality (3.10), then Theorem 3.1 does not guarantee the existence of at least one solution to the problem (3.8) with f(t,y) and h(t,y) given in (3.9) for such values of m1 and m2.

    (ii) In order to illustrate Theorem 3.2, we take the following functions (instead of (3.9)) in the problem (3.8):

    f(t,y)=e3tt2+3[siny+1/5],h(t,y)=27t3+1(|y|1+|y||y|+π/4). (3.11)

    Observe that the assumption (H4) is satisfied as |f(t,y)|ω1(t)ϕ1(y) and |h(t,y)|ω2(t)ϕ2(y), where ω1(t)=e3t/(t2+3), ϕ1(y)=(y+1/5), ω2(t)=2/(7t3+1), ϕ2(y)=(y+π/4). It is easy to see that ω1=1/3 and ω2=2/7. By the condition (H5), we find that M>4.151876169. Thus, all the conditions of Theorem 3.2 are satisfied and hence the problem (3.8) with f(t,y) and h(t,y) given by (3.11) has at least one solution on [0,1].

    (iii) The conditions (H1) and (H2) are respectively satisfied by f(t,y) and h(t,y) defined in (3.9) with L=2m1/25 and K=m2/24. By the condition (3.5), we have

    0.20140647944m1+0.0147629736m2<1. (3.12)

    Clearly, all the assumptions of Theorem 3.3 hold true with the values of m1 and m2 satisfying the inequality (3.12). In consequence, the problem (3.8) with f(t,y) and h(t,y) given in (3.11) has a unique solution on [0,1]. In case, we take m1=m2=m in (3.9), then the condition (3.12) implies the existence of a unique solution for the problem at hand for m<4.62600051. One can notice that Theorem 3.1 does not guarantee the existence of a unique solution to the problem (3.8) with f(t,y) and h(t,y) given in (3.9) for the values of m1 and m2, which do not satisfy the inequality (3.12).

    In this study, we discussed the existence and uniqueness of solutions under different assumptions for a boundary value problem involving a right Caputo fractional derivative with usual and mixed Riemann-Liouville integrals type nonlinearities, equipped with nonlocal multipoint version of the closed boundary conditions. Our results are not only new in the given configuration, but also yield some new results as special cases. Here are some examples.

    ● If λ=0 in (1.1), then our results correspond to the fractional differential equation CDαTy(t)=f(t,y(t)) with the boundary conditions (1.2).

    ● In case, we take qi=0,ri=0,i=1,,m in the results of this paper, we obtain the ones for the Eq (1.1) supplemented with boundary conditions: y(T)=mı=1piy(ξi),y(T)=mı=1viy(ξi).

    ● We get the results for the Eq (1.1) complemented with boundary conditions: y(T)=Tmı=1qiy(ξi),Ty(T)=mı=1riy(ξi) by taking pi=0,vi=0,i=1,,m in the obtained results.

    The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, has funded this project under grant No. (KEP-PhD: 35-130-1443).

    The authors declare no conflict of interest.



    [1] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, World Scientific, 2021. https://doi.org/10.1142/12102
    [2] R. Agarwal, S. Hristova, D. O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, AIMS Math., 7 (2022), 2973–2988. https://doi.org/10.3934/math.2022164 doi: 10.3934/math.2022164
    [3] J. J. Nieto, Fractional Euler numbers and generalized proportional fractional logistic differential equation, Fract. Calc. Appl. Anal., 25 (2022), 876–886. https://doi.org/10.1007/s13540-022-00044-0 doi: 10.1007/s13540-022-00044-0
    [4] L. Peng, Y. Zhou, The existence of mild and classical solutions for time fractional Fokker-Planck equations, Monatsh. Math., 199 (2022), 377–410. https://doi.org/10.1007/s00605-022-01710-4 doi: 10.1007/s00605-022-01710-4
    [5] M. Kirane, A. Abdeljabbar, Nonexistence of global solutions of systems of time fractional differential equations posed on the Heisenberg group, Math. Method. Appl. Sci., 45 (2022), 7336–7345. https://doi.org/10.1002/mma.8243 doi: 10.1002/mma.8243
    [6] A. Alsaedi, M. Alghanmi, B. Ahmad, B. Alharbi, Uniqueness results for a mixed p-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function, Electron. Res. Arch., 31 (2023), 367–385. https://doi.org/10.3934/era.2023018 doi: 10.3934/era.2023018
    [7] A. Samadi, S. K. Ntouyas, J. Tariboon, On a nonlocal coupled system of Hilfer generalized proportional fractional differential equations, Symmetry, 14 (2022), 738. https://doi.org/10.3390/sym14040738 doi: 10.3390/sym14040738
    [8] R. P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 125. https://doi.org/10.1007/s12346-022-00650-6 doi: 10.1007/s12346-022-00650-6
    [9] A. Wongcharoen, S. K. Ntouyas, P. Wongsantisuk, J. Tariboon, Existence results for a nonlocal coupled system of sequential fractional differential equations involving ψ-Hilfer fractional derivatives, Adv. Math. Phys., 2021 (2021), 5554619. https://doi.org/10.1155/2021/5554619 doi: 10.1155/2021/5554619
    [10] K. D. Kucche, A. D. Mali, On the nonlinear (k,ψ)-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
    [11] I. Bouacida, M. Kerboua, S. Segni, Controllability results for Sobolev type ψ-Hilfer fractional backward perturbed integro-differential equations in Hilbert space, Evol. Equ. Control The., 12 (2023), 213–229. https://doi.org/10.3934/eect.2022028 doi: 10.3934/eect.2022028
    [12] A. P. Selvam, V. Govindaraj, Reachability of fractional dynamical systems with multiple delays in control using ψ-Hilfer pseudo-fractional derivative, J. Math. Phys., 63 (2022), 102706. https://doi.org/10.1063/5.0049341 doi: 10.1063/5.0049341
    [13] Q. Yang, C. Bai, D. Yang, Finite-time stability of nonlinear stochastic ψ-Hilfer fractional systems with time delay, AIMS Math., 7 (2022), 18837–18852. https://doi.org/10.3934/math.20221037 doi: 10.3934/math.20221037
    [14] A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations, J. Fix. Point Theory A., 24 (2022), 7. https://doi.org/10.1007/s11784-021-00920-x doi: 10.1007/s11784-021-00920-x
    [15] S. K. Ntouyas, B. Ahmad, C. Nuchpong, J. Tariboon, On (k,ψ)-Hilfer fractional differential equations and inclusions with mixed (k,ψ)-derivative and integral boundary conditions, Axioms, 11 (2022), 403. https://doi.org/10.3390/axioms11080403 doi: 10.3390/axioms11080403
    [16] S. K. Ntouyas, B. Ahmad, J. Tariboon, M. S. Alhodaly, Nonlocal integro-multi-point (k,ψ)-Hilfer type fractional boundary value problems, Mathematics, 10 (2022), 2357. https://doi.org/10.3390/math10132357 doi: 10.3390/math10132357
    [17] E. V. Ivashkevich, Boundary height correlations in a two-dimensional Abelian sandpile, J. Phys. A Math. Gen., 27 (1994), 3643. https://doi.org/10.1088/0305-4470/27/11/014 doi: 10.1088/0305-4470/27/11/014
    [18] G. Piroux, P. Ruelle, Boundary height fields in the Abelian sandpile model, J. Phys. A Math. Gen., 38 (2005), 1451. https://doi.org/10.1088/0305-4470/38/7/004 doi: 10.1088/0305-4470/38/7/004
    [19] N. Azimi-Tafreshi, H. Dashti-Naserabadi, S. Moghimi-Araghi, P. Ruelle, The Abelian sandpile model on the honeycomb lattice, J. Stat. Mech., 2010 (2010), P02004. https://doi.org/10.1088/1742-5468/2010/02/P02004 doi: 10.1088/1742-5468/2010/02/P02004
    [20] M. Donatelli, S. Serra-Capizzano, Antireflective boundary conditions for deblurring problems, J. Electr. Comput. Eng., 2010 (2010), 241467. https://doi.org/10.1155/2010/241467 doi: 10.1155/2010/241467
    [21] X. Li, J. Robertsson, A. Curtis, D. van Manen, Internal absorbing boundary conditions for closed-aperture wavefield decomposition in solid media with unknown interiors, J. Acoust. Soc. Am., 152 (2022), 313–329. https://doi.org/10.1121/10.0012578 doi: 10.1121/10.0012578
    [22] M. Mohammadimehr, S. V. Okhravi, S. M. A. Alavi, Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT, J. Vib. Control, 24 (2018), 1551–1569. https://doi.org/10.1177/1077546316664022 doi: 10.1177/1077546316664022
    [23] B. Ahmad, J. J. Nieto, J. Pimentel, Some boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., 62 (2011), 1238–1250. https://doi.org/10.1016/j.camwa.2011.02.035 doi: 10.1016/j.camwa.2011.02.035
    [24] A. V. Setukha, On the three-dimensional Neumann boundary value problem with a generalized boundary condition in a domain with a smooth closed boundary, Diff. Equat., 41 (2005), 1237–1252. https://doi.org/10.1007/s10625-005-0273-4 doi: 10.1007/s10625-005-0273-4
    [25] G. Wang, B. Ahmad, L. Zhang, Existence results for nonlinear fractional differential equations with closed boundary conditions and impulses, Adv. Differ. Equ., 2012 (2012), 169. https://doi.org/10.1186/1687-1847-2012-169 doi: 10.1186/1687-1847-2012-169
    [26] H. Ergoren, A. Kilicman, Some existence results for impulsive nonlinear fractional differential equations with closed boundary conditions, Abstr. Appl. Anal., 2012 (2012), 387629. https://doi.org/10.1155/2012/387629 doi: 10.1155/2012/387629
    [27] L. Zhang, B. Ahmad, G. Wang, The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative, Appl. Math. Lett., 31 (2014), 1–6. https://doi.org/10.1016/j.aml.2013.12.014 doi: 10.1016/j.aml.2013.12.014
    [28] T. Jankowski, Boundary problems for fractional differential equations, Appl. Math. Lett., 28 (2014), 14–19. https://doi.org/10.1016/j.aml.2013.09.004 doi: 10.1016/j.aml.2013.09.004
    [29] B. Ahmad, M. Alnahdi, S. K. Ntouyas, Existence results for a differential equation involving the right Caputo fractional derivative and mixed nonlinearities with nonlocal closed boundary conditions, Fractal Fract., 7 2023, 129. https://doi.org/10.3390/fractalfract7020129 doi: 10.3390/fractalfract7020129
    [30] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [31] M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk., 10 (1995), 123–127.
    [32] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2005. https://doi.org/10.1007/978-0-387-21593-8
  • This article has been cited by:

    1. Bashir Ahmad, Muhammed Aldhuain, Ahmed Alsaedi, Existence Results for a Right-Caputo Type Fractional Differential Equation with Mixed Nonlinearities and Nonlocal Multipoint Sub-strips Type Closed Boundary Conditions, 2024, 45, 1995-0802, 6457, 10.1134/S1995080224606969
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1713) PDF downloads(77) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog