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1. Introduction

The topic of boundary value problems is an interesting area of research in view of its applications
in applied and technical sciences. In the recent years, the class of nonlocal fractional order boundary
value problems involving different fractional derivatives (such as Riemann-Liouville, Caputo, etc.)
received an overwhelming interest from many researchers. For the details of a variety of nonlocal
single-valued and multivalued boundary value problems involving different types of fractional order
derivative operators, we refer the reader to the text [1], articles [2—7] and the references cited therein.
There has been shown a great enthusiasm in developing the existence theory for Hilfer, y-Hilfer
and (k,y) Hilfer type fractional differential equations equipped with different types of boundary
conditions, for instance, see [8—16].
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Nonlocal boundary conditions are found to be more plausible and practical in contrast to the
classical boundary conditions in view of their applicability to describe the changes happening within
the given domain. Closed boundary conditions are found to be of great help in describing the situation
when there is no fluid flow along the boundary or through it. The free slip condition is also a type of
the closed boundary conditions which describes the situation when there is a flow along the boundary,
but there is no flow perpendicular to it. Such conditions are also useful in the study of sandpile
model [17, 18], honeycomb lattice [19], deblurring problems [20], closed-aperture wavefield
decomposition in solid media [21], vibration analysis of magneto-electro-elastic cylindrical
composite panel [22], etc.

Now we review some works on the boundary value problems with closed boundary conditions.
In [23], the authors studied the single-valued and multivalued fractional boundary value problems with
open and closed boundary conditions. A three-dimensional Neumann boundary value problem with a
generalized boundary condition in a domain with a smooth closed boundary was discussed in [24]. For
some interesting results on impulsive fractional differential equations with closed boundary conditions,
see the articles [25, 26].

The objective of the present work is to investigate a new class of mixed nonlinear boundary value
problems involving a right Caputo fractional derivative, mixed Riemann-Liouville fractional integral
operators, and multipoint variant of closed boundary conditions. In precise terms, we consider the
following fractional order nonlocal and nonlinear problem:

D% y(t) + ALY IS h(t,y(1)) = f(t,y(1)), t€J:=[0,T], (1.1)

+

WT) = (piv@&) + Tay'€)), Ty (T) = ) (riy&) + Tviy' ), (1.2)
=1 1=1

where “DS_ denote the right Caputo fractional derivative of order e € (1,2], I5_ and I{, represent the
right and left Riemann-Liouville fractional integral operators of orders p,o > 0 respectively, f,h :
[0,7] x R — R are given continuous functions and 4, p;,q;,r;,v; € R,i € {1,2,3,...,m}, and & €
(0, T). Notice that the integro-differential Eq (1.1) contains the usual and mixed Riemann-Liouville
integrals type nonlinearities. The boundary conditions (1.2) can be interpreted as the values of the
unknown function and its derivative at the right end-point 7" of the interval [0, T'] are proportional to a
linear combination of these values at arbitrary nonlocal positions &; € (0, T'). Physically, the nonlocal
multipoint closed boundary conditions provide a flexible mechanism to close the boundary at arbitrary
positions in the given domain instead of the left end-point of the domain.

Here we emphasize that much of the literature on fractional differential equations contains the
left-sided fractional derivatives and there are a few works dealing with the right-sided fractional
derivatives. For instance, the authors in [27, 28] studied the problems involving the right-handed
RiemannLiouville fractional derivative operators, while a problem containing the right-handed
Caputo fractional derivative was considered in [29]. The problem studied in the present paper is novel
in the sense that it solves an integro-differential equation with a right Caputo fractional derivative and
mixed nonlinearities complemented with a new concept of nonlocal multipoint closed boundary
conditions. The results accomplished for the problems (1.1) and (1.2) will enrich the literature on
boundary value problems involving the right-sided fractional derivative operators. The present work is
also significant as it produces several new results as special cases as indicated in the last section.
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The rest of the paper is arranged as follows. In Section 2, we present an auxiliary lemma which is
used to transform the given nonlinear problem into a fixed-point problem. Section 3 contains the main
results and illustrative examples. Some interesting observations are presented in the last Section 4.

2. A preliminary result

Let us begin this section with some definitions [30].

Definition 2.1. The left and right Riemann-Liouville fractional integrals of order B > 0 for g € L,[a, b],
existing almost everywhere on |a, b], are respectively defined by

t e -1 b _ \B-1
I.g(0) = %g(s)ds and I g(1) = f %gmd&

Definition 2.2. For g € AC"[a, b], the right Caputo fractional derivative of order B € (n—1,n],n € N,
existing almost everywhere on [a, b], is defined by

_ An—p-1
CDﬁ g =(=1) f —( ) g™ (s)ds.

In the following lemma, we solve a linear variant of the fractional integro-differential equation (1.1)
supplemented with multipoint closed boundary conditions (1.2).

Lemma 2.1. Let H, F € C[0,T] and A # 0. Then the linear problem
“D§_y() + AIL_IS H(t) = F(t), t€J:=[0,T],
m m 2.1)
YT = Y (py&) + Tay'€), TY(T) = Y (ry(&) + Tviy'(€)), 0< & < T,

1=1 1=1

is equivalent to the integral equation
¥(1) F( ) [F(s)— ALy _I§ H(s)|ds

+b1(2) Z pi ' w[F(s) — AI°_I7,.H(s)|ds
1 l 5 I-'(a,) T-"0+

_ a2
_TZ f (k7 ) F(s) —/U;_Igﬂ(s)]ds} (2.2)
1=1 &

+by(1) Zml ri M[F(s) — AI°_IS.H(s)|ds
2 - 5 F(CZ) T-"0+

_ a-2
_TZ i T (s &)1) [F(s)—,uf;_lgﬁ(s)]ds},

where

1 1
bi(t) = K(f56—57—TS9+T), bz(t)=K[(l—Sl)I+52+TS4—T],

AIMS Mathematics Volume 8, Issue 5, 11709-11726.
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|

S1=DS7+TSo-T)—-S6(S2+TS4-T),

ipi, Szzzmlpifi, S3=iPiAi, S4=Zm:% SsziCbBi,
=1 =1 =1 =1 =1
S¢ = Zm:"i, 57:Zm:"i§i, SSZZm:riAi’ 59:Zmlvi, Slozzm:ViBi’

1=1 1=1 1=1 1=1 1=1
A = I [F(&) - AL _I§ HE)], B = -I{_'[F(&) - Al _I§ HE)]. (2.3)

%}
Il

Proof. Applying the right fractional integral operator I7_ to the integro-differential equation in (2.1),
we get
y(t) = I§_F(t) — A;PIS H(t) — ¢o — cit, (2.4)

where ¢y and ¢; are unknown arbitrary constants. Using (2.4) in the nonlocal closed boundary
conditions of (2.1), we obtain

S;—-1 S TS,-T =9 TSs,
{( 1= Deo+(S2+TS4—T)c, 3+ TS5 2.5)

S6CO+(S7+T59—T)C1 :S8+T510,

where S;, i = 1,...,10, are given in (2.3).
Solving the system (2.5) for ¢y and ¢;, we find that

1
co = X[(S7+T59—T)(S3+TSS)_(S2+TS4_T)(SS+TSIO)]’

1
e = [=Se(S3+TS5)+ (S = 1)(Ss+TSw)]

where A is given in (2.3). Substituting the above values of ¢y and c; in (2.4) together with the
notation (2.3), we obtain the solution (2.2). The converse of this lemma can be obtained by direct
computation. This completes the proof.

3. Existence and uniqueness results

This section is devoted to our main results concerning the existence and uniqueness of solutions for
the problems (1.1) and (1.2).

In order to convert the problems (1.1) and (1.2) into a fixed point problem, we define an operator
V : X — X by using Lemma 2.1 as follows:

_ pa-1
Vy (o) f (Sr(”) (5. 3(8)) — AB_IS, (s, y(s)ds

m

" (s &) -
+bi (1) Z ), TRey ) = I A ()]s

_ a-2
_TZ f Gt il ) f(s y(s)) — ALY _I§ h(s, y(s)]d }

m _ e)ya-l
+b2<r>{;r,- ] %ms,ym)—Ali_l&h(s,y(s))]ds

AIMS Mathematics Volume 8, Issue 5, 11709-11726.



11713

TZ (S_f')a : f( b
- i $,¥(8)) = ALy IS, h(s,y(s)|ds ¢, t € J, (3.1)

where X = C([0,T],R) denotes the Banach space of all continuous functions from [0,7] — R
equipped with the norm ||y|| = sup{[y(?)| : ¢ € [0, T']}. Notice that the fixed point problem Vy(¢) = y(¢)
is equivalent to the boundary value problems (1.1) and (1.2) and the fixed points of the operator V are
its solutions.

In the forthcoming analysis, we use the following estimates:

T (S _ t)a+p—l o d t)a+p 1 f (S u)cr 1 Ta'(T _ t)a+p
_ s = ,
. Da+p) * . F(a +p) (o) r(a +DI(@+p+1)
T (s—&) ! 17 d = &) f (s —u)’" ] ‘< T°(T — )"
_— s = s
& Lla+p) 0+ & F(a +0) I'(o) I+ Dl'(a+p+1)
where we have used u” < T7, p,o > 0.
In the sequel, we set
Q = {Ta+b iT—ia‘F T iT_ia_l
1 F(a+1) | ;m( E)" +a ;m( &)

+Ez[ i Irl(T — &)* +aT i vil(T — fz’)a_l]},
=1 =1

_ AT o TN s e
Q, = F(G+1)F(a+p+1){T p+b1[;|pz|(T &) p+(a+p)T;|ql|(T &)

B ST -+ @ )T S T - ) (32)
1=1 1=1

where
by = max |b1(1)], by = max |by(7)|.
t€[0,T] t€[0,T]

3.1. Existence results

In the following, Krasnosel’skii’s fixed point theorem [31] is applied to prove our first existence
result for the problems (1.1) and (1.2).

Theorem 3.1. Assume that:

(Hy) There exists L > 0 such that |f(t,x) — f(t,y)| < Llx—y|, YVt € [0,T], x,y € R;
(H,) There exists K > 0 such that |h(t, x) — h(t,y)| < Klx —y|, Yt € [0, T], x,y € R;
(H3) |f(@t, ) <6() and |h(z,y)| < 6(t), where 6,6 € C([0, T],RY).

Then, the problems (1.1) and (1.2) has at least one solution on [0, T if Ly, + Ky, < 1, where

T« |/1|Tw+p+<r

MM =="—"—" V2=

I'a+1) T+ DI@+p+1) 3.3)

AIMS Mathematics Volume 8, Issue 5, 11709-11726.
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Proof. Introduce the ball B, = {y € X : ||yl < n}, with
n = 1611€21 + [1611€2. (3.4)

Now we verify the hypotheses of Krasnosel’skii’s fixed point theorem in three steps by splitting the
operator V : X — X defined by (3.1) on B, as V =V, + V,, where

Viy(@)

T _ pna-1
f (s t) [f(s,(5)) — ALy _I§ h(s,y(s))] ds, t €,

m a—1
Vo) = m{z f rf)) [£(5, (s)ds = ALy_I§,hs, ¥(s)]ds
1 &i

_ a2
—TZ ) (s £ QUCOR /ll‘;_l(‘)’+h(s,y(s))]ds}

m

_ sye-l
+bz<t>{2ri i o Ff)) [FCs. () = AIE_IE (s, (s))ds

1=1
a—2
_TZ f (s fz) f(s y(s)) — /U?_I&h(s,y(s))]ds}, re

(i) For y, x € B,, we have

Vi + Vor
T (S_t)(t—l P
< tes[gg]{ @) [1£Cs, y(I + 171G, |h(s, y(s))l]ds
n T (s gy .
+|b1<t>|{ D [ s g s ] as
&i
_ a-2
+TZ| l| (S LU XD+ A5, xC)IJd }
&i
a-1
+|bz<t>|{2| A f b rf)) (1. XD+ LAUES_IE, s, x(s))ld
1=1 &i
a-2
+TZ' ! f £ (o) + I s 3O ds}}
<

( _ )(l 1 f (S_'fz)w 1
5 ds + b :
[ ”,S[‘é%{f Rl JLC] Zl]|p| T
02 m al
+TZ| ,|f T +|b2(t>|[2| |f s
(S_é:t)(22
+TZ| |fi F(a—l)

(s =) T (s = &)
+116][|1] su f —I‘T ds + |bi(1)] —Icr ds
te[OI;J (e + p) o 0 [le &i ['(a +p) 0

AIMS Mathematics Volume 8, Issue 5, 11709-11726.
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n — a+p-2 a+p—1
*T ) lal | ﬁz f‘) s+ b0 Z| | f (r(f‘i s
1=1 Si &i

m (S é;l)a+p 2
T ; —ICr
+ ;w | Tar D £.ds|

191 sup {£=5 + ) Z LI |ql-|(T;(—fga_l]

t€[0,T]

o) Zm = Z| A ;f’za )

(T - fz)(” (T - &)*~!
i T o+ 1) Z"' T(a +p) |

IA

el Sup{ (T - )‘”p
I'(o+ 1) o \T(@+p+ 1)

_ &)Mp m _gl)ch 1
Hba(0) Z| |F( Tt Zu T ]}

rﬂ'—l){” +bi| Z pil(T = &)" +aT Z} (T - &) |

ds + |b1<r>|[

IA

+E2[ i Iril(T = &)* +aT i vil(T — fi)a_l]}
=

{Taﬂ’ + b [Z |pil(T — fl)a#’ + (@ +p)T Z lg:|(T - fl)a/+p 1]
1=1

+EZ[ Z (T = &) + (@ + p)T Z Wil(T - é‘_‘i)(1+p—1]}
1=1 =

< [BI€ + 116]1€: < 7,

o7
[Noc+Dl'(a+p+1)

where we used (3.4). Thus Vy + V,x € B,

(ii) Using (H,) and (H,), it is easy to show that

[Viy=Vixll < sup {f i F( ) If(S ¥(8)) = f(s, x(s))lds

te[0,T]

_ p\at+p-1
o f Sl o 5050 = G x(s»|ds}
< Ly + Wyz)lly - XII,

which, in view of the condition Ly; + Ky, < 1, implies that the operator V), is a contraction.

(iii) Continuity of the functions f, h implies that the operator V, is continuous. In addition, V, is
uniformly bounded on B, as

S ( _é:t)a :
vV < b ; d
Vol < ZS[‘SEJ{' 1<r>|[;|p| a6 s

AIMS Mathematics Volume 8, Issue 5, 11709-11726.
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IA

IA

<

m T _ enat+p-1
Y lpd | Sy s s

a-2
+TZ' | f (s

a+p-2
+IAITZI d f M@ f’) S5, Ih(s, (s)lds|

& (s — &)™
+by (1) ;w fg Ty YO

m T _ eNa+p
S f s, y)lds

a2
+TZ| A f sy ()lds

fz)(”p >
+|/1|TZ| | f Ta ol y(s))lds]}

(s —f,)" ! Ts-&)
o b ; d T qi
l6]] sup {l 1(2)] le f s+ Z| i . T-1) ]

1€[0,T]

a-1 a-2
+b2 (1) Zl |f 6’) ds +TZ| llfi e é:i)l) }

a+p—1
+all6ll sup {|b1<r>| Z|pl| f (F(f’i 5 l6ds

t€[0,T]

_ a+p-2
+T§ gl [ =8 Ig+ds]
., Tatp-1)

_ a+p-1 a+p-2)
Hb2() Z|r,-| f (sr(f’i - Thds +TZ| A f o f’) 1. ds ]}

131 sup {|b1<t>|[2|pl o ff) Zl I(Tr(g’ial]

t€[0,T]

+|b2(t>|[2| s + Z|l|(Trf‘§a]]

Jenre aw (T - &)
ot {|b (r)|[Z|pl TZ' et |

1) tE[O T

(r—&)™ | (T - g»“*p :
+|b2<r>|[Z| i Z' T+ ]}

1611(€21 = y1) + [101l(€22 = 72),

where €;, and y;, i = 1,2, are defined in (3.2) and (3.3), respectively. To show the compactness of V>,

AIMS Mathematics
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we fix sup yejo.71x, L GV = f, SUP( yej0.71x8, 1A Y = h. Then, for 0 < #; < 1, < T, we have

IA

|(Vay)(22) = ((sz)(tl)l

a—1
b1(12) - b1(1) Z|p,| f (s Ff)) 175,551+ 185_E s, sy s

( _é:l)a 2 0 yo
+TZ| 1 Ty WG YN + I G ¥(s))lds|
&i

_ sl
+ba(tr) - b2<r1>|{ Z I %[Iﬂs, Y + AL_IZ, ks, y(s))lds]

_ a-2
+TZ| 1 ( o sy + I syl

|S6”|tZ|_ tll{l“( _+ 1)[Zm:|P, (T — &)° +aTZ|6]: (T - &) 1]

1=1

[Zm: Ip(T = &) + (@ + p)T Z \qil(T - é‘:i)a/+p—1:|}

1=

IS] — 1||t2—l’1| r m a 1
A {r(a+1)[z| (T = &) +wTZIv,I(T &) ]

1=

hAIT” o .
+F(0' P p— 1)[; [rl(T = &) + (a +p)T; WVil(T — &)+ ]}

. hAIT?
Lo+ Dl(@+p+1)

which tends to zero, independent of y, as t, — #;. This shows that V), is equicontinuous. It is clear from
the foregoing arguments that the operator V; is relatively compact on B,,. Hence, by the Arzela-Ascoli
theorem, V), is compact on B,,.

In view of the foregoing arguments (i)—(iii), the hypotheses of the Krasnosel’skii’s fixed point
theorem [31] are satisfied. Hence, the operator V; + V, = V has a fixed point, which implies that the
problems (1.1) and (1.2) has at least one solution on [0, T']. The proof is finished.

Remark 3.1. Interchanging the roles of the operators V| and V, in the previous result, the condition
Ly, + Ky, < 1 changes to the following one:

L —y) + K —yr) <1,

where Q,Q, and y,,y, are defined in (3.2) and (3.3) respectively.

The following existence result relies on Leray-Schauder nonlinear alternative [32].

Theorem 3.2. Suppose that the following conditions hold:

(Hy4) There exist continuous nondecreasing functions ¢, ¢, : [0,00) — (0,00) such that ¥(t,y) €

[0, 1T X R, [/ (£, »)] < w11 (IIyl) and |h(t, y)| < w(Da(IlyI), where wy, wy € C([0, T1,R");

(Hs) There exists a constant M > 0 such that

AIMS Mathematics
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Then, the problems (1.1) and (1.2) has at least one solution on [0, T].

Proof. We firstly show that the operator V : X — X defined by (3.1) is completely continuous.

(i) V maps bounded sets into bounded sets in X.

Letye B, ={y e X : |}yl <r}, where ris a fixed number. Then, using the strategy employed in the
proof of Theorem 3.1, we obtain

llwillg (r)
INa+1)

+5| ST - &+t > T - &-)““]}
1=1 1=1

AT w2 llp2(r)
[+ Dl'(a+p+1)

IVl < {T“ +Bi| i (T = &)" +aT i T - &) |
1=1 1=1

{Ta+p + El [ Zm: |pil(T — &)™

1=1

Ha+ T 3 gi(T - &) |
1=1

*7’2[ DI = E) 4 (e + )T ) l(T - .f»‘”p‘l]}
1=1 =1
= |lwillg1(rQ + ||wsll(r)Q, < oo.

(ii) V maps bounded sets into equicontinuous sets.
LetO <t <t, <T andy € B,. Then, we obtain

[Vy(£2) = Vy(t)l

T _ a1 _ _ a1 5] _ a1
< | f S o + [l s x(s)ds
T (S _ tz)a+p—l _ (S _ tl)a+p—1 ” 15} (S _ tl)a+p—l ”
_/lL T+ p) Iy, h(s, y(s))ds — A ) F(a—-l-p)IOJ'h(s’ v(s))ds
S .
+|bl(l2) - bl(tl)|{ Z Di W[f(s’ y(8)) = Aly_I5, h(s, y(s))]ds
1=1 &i
m T _ ena-2
Jr ) [ S -ty s solas]|
1=1 Si
S (T ,
+|bz(l2) - b2(11)|{ Z ri \ W[f(& ¥(8)) — ALy _I7, h(s, y(s))]ds
1=1 Si
m T _enya-2
e 3o [ S o) an i s}
1=1 Si
T _ a-1 _ _ a—1 ) _ a—1
< | [ s+ [T s
T (S _ tz)a+p—1 _ (S _ tl)a+p—1 . 5] (S _ tl)a+p—1 .
+‘/lft2 Ma+p) Iy, h(s, y(s))ds + A ) F(a/—_i_p)lmh(s,y(s))ds

AIMS Mathematics Volume 8, Issue 5, 11709-11726.
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S _ T _ l_a—l
+|mz MH s g?%§—V@J@D—ﬂiﬁﬁ@J®Mds
&
m _ a=2
+‘Tqu g (;( &) [f(s ¥(s)) = A_IS, hs, y(s))]ds}
1=1 i
S, —1 _ _ ia—l
+w{ r, f %[f(s,y(s))—AI’;_Ig+h(s,y(S))]dS
1=1 51

+‘T;v, &_ O s s -t s o) s

}

H®1(r) ) ) )
= %{W -0)" =T -1) | + 2|(t2 -1) |
|t2 tll @ a—1
a1l Z AT - €)" + T Z T - &)
+1s1 - 11 ST ~ ) +aT ) (T - &)}
1=1 1=1
[T w,(£)a(r)

T — )" — (T — )" + 2|t — 41|*™*
Ha+DHa+p+D“( =T =n) 2 =1l

w2 isl i IPIT =€) + (@ + )T i a7 - &)

Hs 1 -1 ianT E) + (@ +p)T Z'v &)}

1=1

Notice that the right-hand side of the above inequality tends to O as #, — #;, independent of y € B,.
Thus, it follows by the ArzelAscoli theorem that the operator V : X — X is completely continuous.

The conclusion of the Leray-Schauder nonlinear alternative [32] will be applicable once it is shown
that there exists an open set U C C([0,T],R) withy # vVy forv € (0,1) and y € dU. Lety €
C([0,T],R) be such that y = vVy for v € (0, 1). As argued in proving that the operator V is bounded,
one can obtain that

@I = vVy@)] < [wiDIg(lIyIDR: + w2 (DY (][yIDE2,

which can be written as
[yl

llwill@AIYINQR: + llwall Iyl —
On the other hand, we can find a positive number M such that ||y|| # M by assumption (Hs). Let us set

W={yeX:lyll <M}
Clearly, W contains a solution only when ||y|| = M. In other words, we cannot find a solution

y € W satisfying y = vVy for some v € (0,1). In consequence, the operator V has a fixed point
y € W, which is a solution of the problems (1.1) and (1.2). The proof is finished.

AIMS Mathematics Volume 8, Issue 5, 11709-11726.
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3.2. Uniqueness result

Here we apply Banach contraction mapping principle to establish the uniqueness of solutions for

the problems (1.1) and (1.2).

Theorem 3.3. If the conditions (H,) and (H;) hold, then the problems (1.1) and (1.2) has a unique

solution on [0, T] if
LQ] + «Qz <1,

where Q; and €, are defined in (3.2).
Proof. In the first step, we show that V8B, c B,, where B, = {y € X : ||y|| < «} with

ﬁ)Ql + hQQZ
K> , = sup |f(t,0)|, hy = sup |h(z,0)|.
1 - (LQ) +KQ,) Jo ze[og] f 0 tE[O,IT)"]

For y € 8, and using the condition (H;), we have

lf @) 1@, y) = f@,0) + f(1,0l < |[f(,y) = f(£,0)] + | f(2,0)|
< Ll + fo < Lr+ fo.

Similarly, using (H,), we get
|h(t, y)| < Kr+ hy.
In view of (3.6) and (3.7), we obtain

[Vyll < sup [Vy(@)

t€[0,T]
a—1
< sup { f DT s, vl + LIS s, (5D}
t€[0,T] r( )
Gl -
+b1 (1) Zpl Ty (Y + WU VG, ()}
+Ti|ql~| f s ‘f’)a 2[|f(s Y + LUE_I, (s, y(s)l]d }
1=1 & F(CZ :
S G i -
+ba(0) Z ey W+ I JhGs. )l
1=1 Si
é:l)a 2 -
+TZ|v| Ta — 1y WY@+ I IhGs, y(s)llds
&i
(S )a 1
= fo s f T
(s = &) < —fl)f' 2
b i ——ds+T qi ——d
+| 1<r>|[;|p| e Z| 1), Ta-n 5]
m (_fzal m (s_glaZ
+|b2<r>|[;|r,-| Boms +TZ| 1), T ]|

(3.5)

(3.6)

(3.7
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% T (S t)a+p—1
HAKF + ho) su { W27 e ogs
( O)ze og] I'(a+p) 0r
S T (s &)“*’) ! S T (s—&)rr?
+|b (¢ Di —  I"ds+T ; — I7d

N (s - f»f“p 1 N ARGt i |
A LA Y T ; I
+ba(0) Z Ty st ;m | a0l

IA

(1;5(;-:-]?) {Ta +b [ Z lpil(T = &)* + aT Z lg:(T — é:i)a—l]

B ST - & +aTZ|vl(T &)}

1=1
T7A(Kr + hy)
I'ol'a+p+1)

(17 B[ D AT — £ + (0T Y gIT - £
1=1 1=1

+B| Z IHIT = €)77 + @ + T Y l(T - &)1}
1=1
= (.EI" + fo)Q] + (7(1" + ho)Qz <K,

which implies that Vy € B,, for any y € B,. Therefore, VB, C B,.
Next, we prove that V is a contraction. For that, let x,y € X and t € [0,T]. Then, by the
conditions (H,) and (H,), we obtain

[Vy — Vx| = Sup [(VY)®) = (VX))

IA

f (D" s 9() = Fs, x(s))Mds
te[OT] I'(@) Y ’

(S _ )a/+p 1

+A] I ﬁl&lh(&y(ﬂ)—h(s,X(S))IdS

a-1
Hbi(0) Zm f S5, 3(5) = . x(5)ds

a+p—1
A f ¢16’+|h(s ¥(s)) - h(s, x<s>>|ds)
+p)

a2
+TZ| A L 305D = fs.x(5)ds

» a+p=2
+4 |f fl) [6’+|h(s y(s)) — h(S,X(S))lds)]

_ a1
(1) ;m L (s r(i)) (5, 3(8)) = fs, x()lds

T _ eNat+p-1
+|/1|L: %I&lh(&y(@)—h(s,X(S))IdS)
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+TZ| ([ ¢ B0 5,206 = S5, (5
: E y )

a+p-2
o f fl) 36 (s () - h(s,X(S))IdS)]}

< r(a+l){T“+b Z|p,|<T §,>“+aTZ|q,|<T &' |
+b, ZIF,I(T &) +04TZ|V (T = &) l]}
1=1
T |4K

Tt N CH' a+p-1
+F(0'+1)F(a+p+1){ Al Zl pict = p+(“+p)TZ'ql'(T & |

+b| zm] IR(T = €)% + (a + p)T Z vil(T ~ f»f”ﬂ‘l]}ny — Al
1=1 1=1

= (L +KD)lly -,

which shows that “V is a contraction in view of the condition (3.5). Therefore, we deduce by Banach
contraction mapping principle that there exists a unique fixed point for the operator V, which
corresponds to a unique solution for the problems (1.1) and (1.2) on [0, T']. The proof is completed.

3.3. Examples

In this subsection, we construct examples for illustrating the abstract results derived in the last two
subsections. Let us consider the following problem:

D®y(1) + 312 L, y(0) = £t (1), t € J := [0, 1],
3 3 3

¥(T) = Z piy(&) + Z gy &), y'(T)= ) ry&) + Z viy'(&), , 0 <& < 1.
1=1 1=1 =1 1=1

1

(3.8)

Here @ = 9/8,p = 7/3,00 = 3/4,4 = 3,&, = 3/7,& = 2/3,6 =4/5,p1 = 1/2,p, = 1/3,p3 =
/4,1 = =2,q0 = -3,q3 = =4,r1 = 1,rn, = =1,r3 = 3,v; = =2/7,v, = =3/7,v3 = —4/7. Using the
given data, it is found that

b, = H%Suf] |b1()] = |b1()|;=1 = 0.1112461491, b, = “}3"13 |b2 ()| = |b2(1)|=1 = 0.3364235041.
[0, rell,

In consequence, we get ) ~ 2.517580993, ), ~ 0.3543113654 (2,2, are defined in (3.2)).
(i) For illustrating Theorem 3.1, we consider the functions

2

(1 f—y +cos3r+1), h(t,y) =

[y = (2 tan~'y + sint + e"/z), (3.9)

n
3Ve: + 64

where m; and m, are finite positive real numbers. Observe that

2t+25

m;(2 + cos 3f) my(m + sint + e7"/?)

, h(t,y)| < 6(t) = ,
TEY: Az, )l < 6(1) W
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and f(¢,y) and h(t,y) respectively satisfy the conditions (H;) and (H,) with £ = 2m;/25 and K =
my/24. Moreover, y; ~ 0.9438765902 and vy, ~ 0.2972831604. By the condition Ly, + Ky, < 1, we
get

0.0755101272m; + 0.0123867984m, < 1 (3.10)

For the values of m; and m, satisfying the inequality (3.10), the hypothesis of Theorem 3.1 is
satisfied. Hence, it follows by the conclusion of Theorem 3.1 that the problem (3.8) with f(¢,y)
and A(t,y) given in (3.9) has at least one solution on [0, 1]. If the values m; and m, do not satisfy the
inequality (3.10), then Theorem 3.1 does not guarantee the existence of at least one solution to the
problem (3.8) with f(¢,y) and A(¢, y) given in (3.9) for such values of m; and m,.

(ii) In order to illustrate Theorem 3.2, we take the following functions (instead of (3.9)) in the
problem (3.8):

-3t | |

s Lsiny +1/5] h(t,y):7\/_(1+||

Observe that the assumption (H,) is satisfied as |f(z,y)] < w1(0)¢1(lyl) and Az, y)| < w2(O)éa(IyID,
where w (1) = /(2 +3), ¢1(Ilyl) = (Yl +1/5), wa(t) = 2/(T VB + 1), ¢o(llyl)) = (llyll+7/4). Tt is easy
to see that ||w;|| = 1/3 and w,|| = 2/7. By the condition (Hs), we find that M > 4.151876169. Thus, all
the conditions of Theorem 3.2 are satisfied and hence the problem (3.8) with f(z,y) and A(t,y) given
by (3.11) has at least one solution on [0, 1].

(iii) The conditions (H;) and (H,) are respectively satisfied by f(#,y) and h(¢,y) defined in (3.9)
with £ = 2m, /25 and K = m,/24. By the condition (3.5), we have

[,y =

Iyl + 7/4). (3.11)

0.20140647944m, + 0.0147629736m, < 1. (3.12)

Clearly, all the assumptions of Theorem 3.3 hold true with the values of m; and m, satisfying the
inequality (3.12). In consequence, the problem (3.8) with f(z, y) and A(¢,y) given in (3.11) has a unique
solution on [0, 1]. In case, we take m; = m, = min (3.9), then the condition (3.12) implies the existence
of a unique solution for the problem at hand for m < 4.62600051. One can notice that Theorem 3.1
does not guarantee the existence of a unique solution to the problem (3.8) with f(¢,y) and A(t,y) given
in (3.9) for the values of m; and m,, which do not satisfy the inequality (3.12).

4. Conclusions

In this study, we discussed the existence and uniqueness of solutions under different assumptions
for a boundary value problem involving a right Caputo fractional derivative with usual and mixed
Riemann-Liouville integrals type nonlinearities, equipped with nonlocal multipoint version of the
closed boundary conditions. Our results are not only new in the given configuration, but also yield
some new results as special cases. Here are some examples.

e If A = 01in (1.1), then our results correspond to the fractional differential equation CD‘;_y(t) =
f(t, y(t)) with the boundary conditions (1.2).
e Incase, wetake ¢; = 0,r; = 0,Vi =1, ..., min the results of this paper, we obtam the ones for the

Eq (1.1) supplemented with boundary conditions: y(7T") = Z py(&), V(T) = viy' (&).

1=1 1=1
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e We get the results for the Eq (1.1) complemented with boundary conditions:

wWT)y=T Z gy (&), TY(T) = riy(&;) by taking p; = 0,v; =0, Vi = 1,...,m in the obtained
1=1 1=1
results.
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