Research article

Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions

  • Received: 11 November 2019 Accepted: 09 January 2020 Published: 21 January 2020
  • MSC : 34A08, 34B10, 34B15

  • In this paper, we consider a nonlinear multi-term Caputo fractional differential equation with nonlinearity depending on the unknown function together with its lower-order Caputo fractional derivatives and equipped with Riemann-Stieltjes integro multipoint boundary conditions. The given problem is transformed to an equivalent fixed point problem, which is then solved with the aid of standard fixed point theorems to establish the existence and uniqueness results for the problem at hand. Examples are constructed for the illustration of the obtained results.

    Citation: Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas. Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions[J]. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099

    Related Papers:

  • In this paper, we consider a nonlinear multi-term Caputo fractional differential equation with nonlinearity depending on the unknown function together with its lower-order Caputo fractional derivatives and equipped with Riemann-Stieltjes integro multipoint boundary conditions. The given problem is transformed to an equivalent fixed point problem, which is then solved with the aid of standard fixed point theorems to establish the existence and uniqueness results for the problem at hand. Examples are constructed for the illustration of the obtained results.


    加载中


    [1] A. Carvalho, C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dynam. Control, 5 (2017), 168-186. doi: 10.1007/s40435-016-0224-3
    [2] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, 2006.
    [3] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecological Modelling, 318 (2015), 8-18. doi: 10.1016/j.ecolmodel.2015.06.016
    [4] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticy, World Scientific, Singapore, 2010.
    [5] J. Klafter, S. C. Lim, R. Metzler, Fractional Dynamics in Physics, World Scientific, Singapore, 2011.
    [6] L. Zhang, W. Hou, Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149.
    [7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993.
    [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of the Fractional Differential Equations, North-Holland Mathematics Studies, 2006.
    [9] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, New York, 2010.
    [10] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
    [11] B. Ahmad, A. Alsaedi, S. K. Ntouyas, et al. Hadamard-type Fractional Differential Equations, Inclusions and Inequalities, Springer, Cham, Switzerland, 2017.
    [12] J. Henderson, R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems, Bound. Value Probl., 2015 (2015), 138.
    [13] S. K. Ntouyas, S. Etemad, On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions, Appl. Math. Comput., 266 (2015), 235-243.
    [14] Y.-K. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 20 (2017), 963-987.
    [15] G. Wang, K. Pei, R. P. Agarwal, et al. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230-239. doi: 10.1016/j.cam.2018.04.062
    [16] M. Al-Refai, A. M. Jarrah, Fundamental results on weighted Caputo-Fabrizio fractional derivative, Chaos Solitons Fractals, 126 (2019), 7-11. doi: 10.1016/j.chaos.2019.05.035
    [17] B. Ahmad, N. Alghamdi, A. Alsaedi, et al. A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions, Fract. Calc. Appl. Anal., 22 (2019), 601-618. doi: 10.1515/fca-2019-0034
    [18] N. Y. Tuan, T. B. Ngoc, L. N. Huynh, et al. Existence and uniqueness of mild solution of timefractional semilinear differential equations with a nonlocal final condition, Comput. Math. Appl., 78 (2019), 1651-1668. doi: 10.1016/j.camwa.2018.11.007
    [19] B. Ahmad, M. Alghanmi, S. K. Ntouyas, et al. A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions, AIMS Mathematics, 4 (2019), 12-28. doi: 10.3934/Math.2019.1.12
    [20] X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Methods Appl. Sci., 41 (2018), 6984-6996. doi: 10.1002/mma.5210
    [21] G. Wang, X. Ren, Z. Bai, et al. Radial symmetry of standing waves for nonlinear fractional HardySchrdinger equation, Appl. Math. Lett., 96 (2019), 131-137. doi: 10.1016/j.aml.2019.04.024
    [22] B. Ahmad, A. Alsaedi, S. K. Ntouyas, On more general boundary value problems involving sequential fractional derivatives, Adv. Differ. Equ., 2019 (2019), 1-25. doi: 10.1186/s13662-018-1939-6
    [23] B. Ahmad, A. Alsaedi, S. K. Ntouyas, Multi-term fractional boundary value problems with fourpoint boundary conditions, J. Nonlinear Func. Anal., 2019 (2019), 1-25.
    [24] B. Ahmad, Y. Alruwaily, A. Alsaedi, et al. Existence and stability results for a fractional order differential equation with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions, Mathematics, 7 (2019), 249.
    [25] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2005.
    [26] E. Zeidler, Nonlinear functional analysis and its application: Fixed Point-theorems, SpringerVerlag, Univ. New York, 1986.
    [27] B. N. Sadovskii, On a fixed point principle, Funct. Anal. Appl., 1 (1967), 74-76.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3250) PDF downloads(431) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog