Research article Special Issues

Nontrivial solutions for a fourth-order Riemann-Stieltjes integral boundary value problem

  • Received: 27 December 2022 Revised: 05 February 2023 Accepted: 08 February 2023 Published: 13 February 2023
  • MSC : 34B10, 34B15, 34B18

  • In this paper we study a fourth-order differential equation with Riemann-Stieltjes integral boundary conditions. We consider two cases, namely when the nonlinearity satisfies superlinear growth conditions (we use topological degree to obtain an existence theorem on nontrivial solutions), when the nonlinearity satisfies a one-sided Lipschitz condition (we use the method of upper-lower solutions to obtain extremal solutions).

    Citation: Keyu Zhang, Yaohong Li, Jiafa Xu, Donal O'Regan. Nontrivial solutions for a fourth-order Riemann-Stieltjes integral boundary value problem[J]. AIMS Mathematics, 2023, 8(4): 9146-9165. doi: 10.3934/math.2023458

    Related Papers:

  • In this paper we study a fourth-order differential equation with Riemann-Stieltjes integral boundary conditions. We consider two cases, namely when the nonlinearity satisfies superlinear growth conditions (we use topological degree to obtain an existence theorem on nontrivial solutions), when the nonlinearity satisfies a one-sided Lipschitz condition (we use the method of upper-lower solutions to obtain extremal solutions).



    加载中


    [1] B. Ahmad, J. J. Nieto, A. Alsaedi, H. Al-Hutami, Boundary value problems of nonlinear fractional $q$-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions, Filomat, 28 (2014), 1719–1736. https://doi.org/10.2298/FIL1408719A doi: 10.2298/FIL1408719A
    [2] A. Alsaedi, B. Ahmad, Y. Alruwaily, S. K. Ntouyas, On a coupled system of higher order nonlinear Caputo fractional differential equations with coupled Riemann-Stieltjes type integro-multipoint boundary conditions, Adv. Differ. Equ., 2019 (2019), 474. https://doi.org/10.1186/s13662-019-2412-x doi: 10.1186/s13662-019-2412-x
    [3] N. Anjum, C. He, J. He, Two-scale fractal theory for the population dynamics, Fractals, 29 (2021), 2150182. https://doi.org/10.1142/S0218348X21501826 doi: 10.1142/S0218348X21501826
    [4] A. Cabada, R. Jebari, Existence results for a clamped beam equation with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2020 (2020), 70. https://doi.org/10.14232/ejqtde.2020.1.70 doi: 10.14232/ejqtde.2020.1.70
    [5] E. Cancès, B. Mennucci, J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J. Chem. Phys., 107 (1997), 3032. https://doi.org/10.1063/1.474659 doi: 10.1063/1.474659
    [6] P. Drábek, G. Holubová, On the maximum and antimaximum principles for the beam equation, Appl. Math. Lett., 56 (2016), 29–33. https://doi.org/10.1016/j.aml.2015.12.009 doi: 10.1016/j.aml.2015.12.009
    [7] P. Drábek, G. Holubová, Positive and negative solutions of one-dimensional beam equation, Appl. Math. Lett., 51 (2016), 1–7. https://doi.org/10.1016/j.aml.2015.06.019 doi: 10.1016/j.aml.2015.06.019
    [8] M. Feng, J. Qiu, Multi-parameter fourth order impulsive integral boundary value problems with one-dimensional $m$-Laplacian and deviating arguments, J. Inequal. Appl., 2015 (2015), 64. https://doi.org/10.1186/s13660-015-0587-6 doi: 10.1186/s13660-015-0587-6
    [9] Z. Fu, S. Bai, D. O'Regan, J. Xu, Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives, J. Inequal. Appl., 2019 (2019), 104. https://doi.org/10.1186/s13660-019-2058-y doi: 10.1186/s13660-019-2058-y
    [10] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 1988.
    [11] F. Haddouchi, Positive solutions of nonlocal fractional boundary value problem involving Riemann-Stieltjes integral condition, J. Appl. Math. Comput., 64 (2020), 487–502. https://doi.org/10.1007/s12190-020-01365-0 doi: 10.1007/s12190-020-01365-0
    [12] F. Haddouchi, C. Guendouz, S. Benaicha, Existence and multiplicity of positive solutions to a fourth-order multi-point boundary value problem, Mat. Vesn., 73 (2021), 25–36.
    [13] F. Haddouchi, N. Houari, Monotone positive solution of fourth order boundary value problem with mixed integral and multi-point boundary conditions, J. Appl. Math. Comput., 66 (2021), 87–109. https://doi.org/10.1007/s12190-020-01426-4 doi: 10.1007/s12190-020-01426-4
    [14] X. Hao, N. Xu, L. Liu, Existence and uniqueness of positive solutions for fourth-order $m$-point boundary value problems with two parameters, Rocky Mountain J. Math., 43 (2013), 1161–1180. https://doi.org/10.1216/RMJ-2013-43-4-1161 doi: 10.1216/RMJ-2013-43-4-1161
    [15] J. H. He, A short review on analytical methods for a fully fourth-order nonlinear integral boundary value problem with fractal derivatives, Int. J. Numer. Method. H., 30 (2020), 4933–4943. https://doi.org/10.1108/HFF-01-2020-0060 doi: 10.1108/HFF-01-2020-0060
    [16] J. H. He, M. H. Taha, M. A. Ramadan, G. M. Moatimid, A combination of bernstein and improved block-pulse functions for solving a system of linear fredholm integral equations, Math. Probl. Eng., 2022 (2022), 6870751. https://doi.org/10.1155/2022/6870751 doi: 10.1155/2022/6870751
    [17] M. G. Kreǐn, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, New York: American Mathematical Society, 1950.
    [18] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand., 45 (1950), 255–282. https://doi.org/10.6028/jres.045.026 doi: 10.6028/jres.045.026
    [19] B. Liu, J. Li, L. Liu, Nontrivial solutions for a boundary value problem with integral boundary conditions, Bound. Value Probl., 2014 (2014), 15. https://doi.org/10.1186/1687-2770-2014-15 doi: 10.1186/1687-2770-2014-15
    [20] J. H. He, M. H. Taha, M. A. Ramadan, G. M. Moatimid, Improved block-pulse functions for numerical solution of mixed volterra-fredholm integral equations, Axioms, 10 (2021), 200. https://doi.org/10.3390/axioms10030200 doi: 10.3390/axioms10030200
    [21] A. Ramazanova, Y. Mehraliyev, On solvability of inverse problem for one equation of fourth order, Turkish J. Math., 44 (2020), 611–621. https://doi.org/10.3906/mat-1912-51 doi: 10.3906/mat-1912-51
    [22] F. T. Fen, I. Y. Karaca, Existence of positive solutions for fourth-order impulsive integral boundary value problems on time scales, Math. Method. Appl. Sci., 40 (2017), 5727–5741. https://doi.org/10.1002/mma.4420 doi: 10.1002/mma.4420
    [23] R. Vrabel, On the lower and upper solutions method for the problem of elastic beam with hinged ends, J. Math. Anal. Appl., 421 (2015), 1455–14685. https://doi.org/10.1016/j.jmaa.2014.08.004 doi: 10.1016/j.jmaa.2014.08.004
    [24] F. Wang, L. Liu, Y. Wu, Iterative unique positive solutions for a new class of nonlinear singular higher order fractional differential equations with mixed-type boundary value conditions, J. Inequal. Appl., 2019 (2019), 210. https://doi.org/10.1186/s13660-019-2164-x doi: 10.1186/s13660-019-2164-x
    [25] W. Wang, J. Ye, J. Xu, D. O'Regan, Positive solutions for a high-order Riemann-Liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 14 (2022), 2320. https://doi.org/10.3390/sym14112320 doi: 10.3390/sym14112320
    [26] J. R. L. Webb, Positive solutions of nonlinear differential equations with Riemann-Stieltjes boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 86. https://doi.org/10.14232/ejqtde.2016.1.86 doi: 10.14232/ejqtde.2016.1.86
    [27] J. Xu, D. O'Regan, Z. Yang, Positive solutions for a $n$th-order impulsive differential equation with integral boundary conditions, Differ. Equ. Dyn. Syst., 22 (2014), 427–439. https://doi.org/10.1007/s12591-013-0176-4 doi: 10.1007/s12591-013-0176-4
    [28] C. Zhai, Y. Ma, H. Li, Unique positive solution for a $p$-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral, AIMS Math., 5 (2020), 4754–4769. https://doi.org/10.3934/math.2020304 doi: 10.3934/math.2020304
    [29] G. Zhang, Positive solutions to three classes of non-local fourth-order problems with derivative-dependent nonlinearities, Electron. J. Qual. Theory Differ. Equ., 2022 (2022), 11. https://doi.org/10.14232/ejqtde.2022.1.11 doi: 10.14232/ejqtde.2022.1.11
    [30] X. Zhang, X. Liu, M. Jia, H. Chen, The positive solutions of fractional differential equation with Riemann-Stieltjes integral boundary conditions, Filomat, 32 (2018), 2383–2394. https://doi.org/10.2298/FIL1807383Z doi: 10.2298/FIL1807383Z
    [31] X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a class of singular $p$-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Appl. Math. Comput., 235 (2014), 412–422. https://doi.org/10.1016/j.amc.2014.02.062 doi: 10.1016/j.amc.2014.02.062
    [32] Y. Zhang, L. Chen, Positive solution for a class of nonlinear fourth-order boundary value problem, AIMS Math., 8 (2023), 1014–1021. https://doi.org/10.3934/math.2023049 doi: 10.3934/math.2023049
    [33] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [34] M. Al-Refai, A. M. Jarrah, Fundamental results on weighted Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 126 (2019), 7–11. https://doi.org/10.1016/J.CHAOS.2019.05.035 doi: 10.1016/J.CHAOS.2019.05.035
    [35] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and applications to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1489) PDF downloads(83) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog