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1. Introduction

In this paper we study the existence of solutions for the following integral boundary value problem
of the fourth-order differential equation

uD(t) = ft,u(),0 <t <1,

1 (1.1)
w0)=u"0)=u"(1)=0, u(l) = f u(t)da(r),
0

where f is a continuous function on [0, 1] X R, fol u(t)da(t) denotes the Riemann-Stieltjes integral, «
is a function of bounded variation and satisfies the condition
(HI) a(t) > 0,1 € [0, 1] with fol tda(r) € [0, 1).
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Boundary value problems can describe many phenomena in the applied sciences such as nonlinear
diffusion, thermal ignition of gases and concentration in chemical or biological problems. There are
many papers in the literature considering the existence of solutions using Leray-Schauder degree, the
method of upper-lower solutions and the Guo-Krasnoselskii fixed point theorem in cones; we refer the
reader to [1-32] and the references cited therein. In [4] the authors used the Guo-Krasnoselskii fixed
point theorem to study the existence of positive solutions of the fourth-order integral boundary value
problem

uP () + Mu(t) = f(t,u(®),u’ (), te(,]1),

1
u(l) =u'(0) =u'(1) = 0,u(0) = /lf u(s)v(s)ds,
0

and in [13] the authors investigated monotone positive solutions for the nonlinear fourth-order
boundary value problem with integral and multi-point boundary conditions

uD@) + £ (t,u(),u' () = 0,1 € (0, 1),

w'(0) = u'(1) = u”(0) = 0,u(0) = af u(s)ds + Zﬂiu' (),
v i=1

where f € C([0, 1] x R* x R*,R*) satisfies some superlinear and sublinear growth conditions. In [14]
the authors studied the existence and uniqueness of positive solutions for the fourth-order m-point
boundary value problem

U@ +au” - Pu = f(t,u),0 <t <1,
w(©0) = T2 au (&), u(l) = X bu (&), (1.2)
W'(0) = B apd” (&), u’(1) = XP b (&),
where f € C ([0, 1] x R*,R") satisfies the following conditions:

(Hyaor 1m0 inf mingepo 13 J% > A%, lim, o+ Sup maxe, 1 @ < A%,

and

(H)yaor 1m0+ inf minepo 1 @ > A", lim,_,e SUp Maxeo,1 @ < A%,

where A" is the first eigenvalue of the eigenvalue problem

D) + au”’ - Pu = Au

with the boundary conditions in (1.2).

Note all integral boundary conditions include the two-point, three-point and multi-point boundary
conditions as special cases and naturally this kind of problem has interested researchers; see for
example [1,2,4,8,9,11,13,19,22,24-28,30,31] and the references cited therein. In [11] the author
studied the following nonlocal fractional boundary value problem with a Riemann-Stieltjes integral
boundary condition

{ D%u(t) + f(t,u(r)) =0, 1€ (0,1),
w(0) = u”(0) = 0,u(l) = pu(n) + Bylul,

where D” is the standard Caputo derivative, f : [0, 1] Xx R* — R* is continuous, y[u] = fol u(s)dA(s)
and in [31] the authors studied the eigenvalue problem for a class of singular p-Laplacian fractional
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differential equations involving the Riemann-Stieltjes integral boundary condition

D} (g, (D)) (1) = Af (2, x(1)), £ € (0, 1),
x(0) = 0, DIx(0) = 0, x(1) = [ x(s)dA(s),

where Df and D¢ are the standard Riemann-Liouville derivatives, and f(z, x) : (0, 1) X (0, +00) — R*
is continuous.

As is well known, due to the non-locality of fractional calculus, more and more problems in physics,
electromagnetism, electrochemistry, diffusion and general transport theory can be described by the
fractional calculus approach. As a new modeling tool, it has a wide range of applications in many
fields. However, in the process of research, more and more scholars have found that a variety of
important dynamical problems exhibit fractional-order behavior that may vary with time, space or
other conditions. This phenomenon indicates that variable-order fractional calculus is a natural choice,
which provides an effective mathematical framework for the description of complex mathematics. For
more definitions of fractional derivatives and physical understandings, we refer the reader to [3,33-35].

Motivated by the aforementioned works, in this paper we use topological degree and the method of
upper-lower solutions to study the fourth-order Riemann-Stieltjes integral boundary value
problem (1.1), and obtain existence theorems for nontrivial solutions and extremal solutions.
Moreover, we note that the conditions in this paper are more general than (H)y,,; and (H)y,.,. Finally,
some appropriate examples to illustrate our main results are given.

2. Preliminaries

In this section motivated by the variational iteration method (see [13, Lemma 1]), we first obtain an
equivalent integral equation for our problem (1.1). Let

!
1
u(t) = f g(t — 8 f(s, u(s))ds + co + c1t + cot* + 38, forsome ¢; € R,i =0, 1,2, 3.
0
Then we have
1 1 1
u0)=cy =0, u(l) = f 8(1 - s)3f(s, u(s)ds+cy+cy+c3 = f u(t)da(t),
0 0

and

u’ (1) = f (t— 8)f(s,u(s))ds + 2c, + 6¢5t.
0

By using u”(0) = u”(1) = 0 we obtain

1
' (0)=2c,=0, u’'(1) = f (1 = 9)f(s,u(s))ds + 6¢3 =0,
0

and

1
c=0,c3 = —éf (1 = s5)f(s,u(s))ds.
0
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Note that
1 1 1
u®(f) = f(t,u(r)) and f é(l — )’ f(s, u(s))ds + ¢ —é f (1 = $)f(s, u(s))ds = f u(t)da(t),
0 0 0
and hence
1! 1 1
¢ == f (1 = 5)f(s, u(s))ds — f —(1 = 5)’ f(s, u(s))ds + f u(t)da(r).
6 0 0 6 0
Therefore, we obtain
ft 1 3 fl 1 fl 1 3 fl
u(t) = —(t— )" f(s,u(s))ds + —t(1 — s)f(s,u(s))ds — —t(1 — 5)” f(s,u(s))ds +t u(t)da(t)
0 6 0 6 0 6 0
1
- f lt3(1 — $)f(s, u(s))ds
o 6

1 1
= f K(t,s)f(s,u(s))ds + tf u(t)da(t),
0 0 2.1
where

6
We multiply both sides of (2.1) by da(¢) and integrate over [0, 1], then (note (H1))

1 1 pl 1 1
f u(t)da(r) = f f K(t, s)f(s,u(s))dsda(t) + f tda(r) f u(t)da(t),
0 0 Jo 0 0

1 1 pl
f u(t)da(t) = + f f K(t, s)f(s, u(s))dsda(t).
0 1= [ tda(r) Jo Jo

Consequently, we have

K(i.s) 1= +t(1-s5)—t(1-5P -1 -5),0<s<t<1,
»8) = —
t(1-s)—t(1-5° -1 -5),0<t<s<l.

and

t

1l
1—f f K(t, s)f(s, u(s))dsda(t)
1= [ tda(t) Jo Jo

1
u(t) = f K(t, s)f(s,u(s))ds +
0

1
= f O, 5)f (s, u(s))ds,
0

where

1
O, s) = K(t,s) + f K(t, s)da(t).
0

1 - fol tda(r)
Lemma 2.1. K(z, s) has the following properties:
() K(t,5) = [ H(t, DH(, s)d, where

H(l1-9),0<t<s<1,
s(1-1,0<s<t<1;

H(t,s) = {
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(1) K(t,s) > O fort, s € (0, 1);

(iii) %t(l -0s(1 —s) < K(t,s) < %s(l —s)fort,s €[0,1];

(iv) K(t,s) < t1(1 = 1) for 1, s € [0, 1].

By simple calculations we obtain Lemma 2.1(i). Moreover, note that H satisfies #(1 — )s(1 — s) <
H(t,s) < s(1—-s)and H(t,s) < t(1 — 1) for t, s € [0, 1], so we can easily obtain Lemma 2.1 (iii)—(iv), so
we here omit their proofs.

Lemma 2.2. O(t, s) has the following properties:

(1) O(t, s) > 0 fort,s € (0,1);

. o #(1-nda?)
> = — .
(1) O(t, 5) > - o) ts(1 —s) for ¢, s € [0, 1];

1 (1) _ .
(i) O, 5) < s [1 + —l_fol tdam] s(1 —s)fort, s €]0,1];

ltlftd t
b A=0de | ey s € [0, 1.
1= [ tder(r)

These conclusions can be obtained from Lemma 2.1.
Let E := C[0, 1], |lul| := maxepo 1) [u(®)|, P :={u € E : u(t) > 0,Vt € [0, 1]}. Then (E,||-||) is a real
Banach space and P a cone on E. Define a linear operator:

(iv) O(t, 5) < %t[l +

1
(Bu)(t) := f K, s)u(s)ds, u € E.
0

Then B : E — E is a completely continuous, positive, linear operator, and its spectral radius, denoted
by r(B), is #. Let an operator Ls(¢ > 0) be given by

1 1
(Leu) (1) := ¢ fo K(t, s)u(s)ds + t fo u(Hda(t), &> 0.

Now L; : P — P is a completely continuous, linear, positive operator. Note that the spectral radius
r (Lg) > &r(B) > 0. Then the Krein-Rutman theorem [17] implies that there exists ¢ € P\{0} such that

Lege = r(Le) ¢z (2.2)
Define an operator A : C[0, 1] — C[0, 1] as

Au)(¥) := f: K(t, s)f(s,u(s))ds +t fol u(t)da(t).
It is clear that u* is a solution of (1.1) if and only if Au™ = u", i.e.,
fo 1 K(t, 8)f(s,u"(s))ds + t fo l u' (da(t) = u' (),
and (HI) implies that

1
u*(t) = f O, s)f(s,u"(s))ds.
0

Therefore, the operator A can also be expressed as
1
(Au)(1) = f O, s)f(s,u(s)ds,u e E,t € [0,1].
0
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Lemma 2.3. Let (Low)(r) = [, ©(t, s)u(s)ds. Then Lo(P) C Py, where

1
t(1 - t)da(r)
Jy 11 ) MHE&H}
5[1 +f0(1 - Hda(h)]

Proof. If u € P, from Lemma 2.2(iii)—(iv) we have

1
<%mnaféP+—£¥L—
0 1— [ tdat)

UL - da()
0 301~ [ tda(r)]

11 = Ddar) fl Hy, ol
S[1+ [ (1 - nda(n)] ~ [} tdar)
11 = dar)

> 1 : ILoull.
5[1+ [, (1 - yda(n)]
This completes the proof. O
Lemma 2.4. (see [10]) Let Q2 be a bounded open set in a Banach space E, and T : Q — E a continuous
compact operator. If there exists xy € E\{0} such that

POlz{ueP:u(t)Zt

s(1 — s)u(s)ds,

and

(Lou)(t) 2 ts(1 — s)u(s)ds

s(1 = s)u(s)ds

x—Tx # uxo,VYx € 0Q,u > 0,

then the topological degree deg(/ — 7, Q,0) =
Lemma 2.5. (see [10]) Let Q be a bounded open set in a Banach space E with0 € Q,and 7 : Q — E
a continuous compact operator. If

Tx +# ux,¥x € 0Q,u > 1,

then the topological degree deg(/ — T,Q,0) = 1.
3. Nontrivial solutions for (1.1)

In this section, we assume that the nonlinearity f satisfies the conditions:
(H2) f € C([0,1] x R,R). Moreover, there exist three functions y; € C([0, 1],R*),i = 1,2, and
M e CR,R") with y,(f) £ 0,7 € [0, 1] such that

f(t,x) 2 =y1(t) = 20O M(x), Vx € R, 1 € [0, 1].
(H3) lim ... 22 = 0.
(H4) There exists & > 0 such that r(Lg,) > 1 and

liminf L&)

Ixl=+o0 ||

> &, uniformly for 7 € [0, 1],

AIMS Mathematics Volume 8, Issue 4, 9146-9165.
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(HS5) There exists & > 0 such that r(L;,) < 1 and

Z,
lim sup DAGEY
|x]—0 | x|

< &, uniformly for ¢ € [0, 1].

Theorem 3.1. Suppose that (H1)—(HS) hold. Then (1.1) has at least one nontrivial solution.
Proof. From (2.2) there exists ¢, € P\{0} such that L; ¢; = r(L¢ )pz,, 1.€.,

1

1
(Lawa) ) = & fo K(t, $)pe, (s)ds + 1 fo ee,(Dda(t) = r(Le, )z, (0, € [0, 1],

3.1

Note that r(Lg,) > 1. We multiply both sides of the above equation by da(t) and integrate over [0, 1]

(note (H1)) so we obtain

1 1 1 1 1
fo & fo K(t, $)ge, ()dsda(n) + fo tdar(t) fo o, (Dda(t) = r(Le,) fo e (Ddalt),

and

1 1 1 1
f Qe (Dda(t) = 1 f & f K(t, $)pz (s)dsda(t).
0 r(Le) - [, tda(r) Jo — Jo

Consequently, we have

1 ¢ 1
92, (1) = r(i) | Ko as+ o | eatiats
_ 4 fl K(t, s)ps (s)ds + ! ! flf fl K(t, )@z (s)dsda(t)
r(Le) Jo v "Le) /(L) - fol tda(t) Jo e
1
:”(i—lg)«f; A(t, $)pe, (s)dSs,
where 1
A(t, s) = K(t, 5) + - f K(t, s)da(r).
r(Le,) = [ tda(r) Jo
Let
fol 1(1 = tda(r)
Pp=JueP: ut)>1 1 e, £ € [0, 17 .
5[r(Le,) + [, (1 - Dda(n)]
Now

¥z € Poo.

Indeed, from Lemma 2.1(iii) we have

& fl ls a(1)
“s(1—s)|1+
r(Le) Jo 6 [ ML)~ [ tda(r)

P (t) < (p§1(s)dsa

(3.2)
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and
& ! f 1 f "L sl - 9d d
®g (1) 2 ML) ) - fol e Jo Jo 30t( sl = )da(t)pg (s)ds
1
1-1d I
_a ~ 420 f 1s(1—s)[1+ ath) e (s
r(Le)) 5[r(Lg,) + [ (1 = nda(r)] Jo © r(Le) — [, tda(r)
t fol 1(1 = da(r)
> : llpg, II.
S5[r(Le,) + [, (1 = Dda(1)]
Note that . |
Jy 11 = Dda(r) Jy 11 = da(r)
> .
501 + fol(l ~dda(t)]  S[r(Lg) + fol(l - da(1)]
Therefore, by Lemma 2.3 we obtain
L@(P) - P()z. (33)

By (H4), there exist gy > 0 and X, > 0 such that
f(t,x) = (&1 + &o)lx], for x| > X, t € [0, 1].
For any fixed € with gy — ||yz|le > 0, from (H3) there exists X; > X, such that
M(x) < glx|, for |x] > X;.
Note from (H2), we also obtain
@, %) = (& + €0)lxl = y1(®) — y2(DOM(x) = (&1 + &0 — ellyalDlx] — y1(0), £ € [0, 11, [x] > X;.
Let Cx, = (&) + & — &lly2l) X1 + maX,epo.17x<x, |f(#, X)|, M* = maxy<x, M(x), and we have
@, %) > (& + &0 = éllyalDIxl = y1() = Cx,, M(x) <eélxl + M', 1€[0,1],x e R. (3.4)
Note that € can be chosen arbitrarily small, and we let

R > max{”yl” +lyalIM*+ Cx, llyill + lly2llM” + Cx, 1 [(g0 = elly2DNIN + (61 + &0 - 8||72||)N3]}
1 , ,
N3 =yl (80 — lly2DN1(1 = elly2llN2) = ellyaliér + 0 — &lly2lDN

(3.5)
where
1 1
t(1 = t)da(t) 1 1 1 t(1 = t)da(t)
N = fo : ,NZ:—1+#,N:—1+I0 - .
S[r(Le,) + [, (1 - Dda(n)] 36 1- [ tdat) 6 1 - [ tda(r)
In what follows, we prove that
u—Au # g, foru € 0Bg,pu > 0, 3.6)
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where ¢, is defined in (3.1), and Bg, = {u € E : |jul| < R;}. Suppose the contrary. Then there exist
u; € 0Bg, and y; > 0 such that

u — Al/ll = H1@g, (37)
Note that i; # 0 (otherwise, u; is a solution for (1.1) and the theorem is proved). Let

1 1
(1) = f K (. 9)[y1(5) + y2()MGui (5)) + Cx, Ids + 1 f i (Dda(®), 1 € [0, 1].
0 0

Then (H1) implies that

(1) = fol O, $)[y1(s) + y2()M(ui(5)) + Cx, 1dss.
Note that y;(s) + y2(s) M(u;(s)) + Cx, = 0, s € [0, 1], and by (3.3) we have
U € Py.
Moreover, from (3.7) we have

ur () +ui (1) = (Au)(0) + ui (1) + g, (1),

1.e.,

1 1
up () +u () = f K(z, s)[f (s, ul(S))+7’1(S)+72(S)M(M1(S))+CX1]dSHf [1 (1) +uy (D)]da(t) + 1, (1)
0 0

From (H1) we get

1 1 1 1
f [u1(0) + wy(D)]da(t) = ————— f f K, s)Lf(s,u1(s)) + y1(s) + y2()M(ui1(s)) + Cx, 1dsda(t)
0 1— [ tda(r) Jo Jo
Hi !
—t f e, (Ndat).
1 — [ tda(r) Jo

Hence, we have

1
ui (1) +uy (1) = f O, s)[f (s, u1(5)) + y1(s) + y2()M(ui(s)) + Cx, Ids
0

1
. L f g (D) + 1102, (1).
1— [ tda(r) Jo

Note that f(s,u;(s)) + ¥1(s) + v2(s)M(u;(s)) + Cx, = 0, s € [0, 1]. Then (3.2) and (3.3) imply that

1
B [ g ndatt)
1= [ tda() Jo

11 = nda(r)
S[r(Le) + [ (1 = Dda(®)]

it
1 - [ tda(t)

implies that

1
f g, (Dda(t) > t
0

up +El € Pqy. (38)
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Now, we estimate the norm of u;. Note that (3.5) and ||u;]| = Ry, from Lemma 2.2 (iii) and (3.4) we

have

1
(1) < fo O, 9)yi(s) + y2()M(ui(s)) + Cx, 1ds

1 1 !
1 [1 N L} f s(1 = $)[1(5) + y2()(elur ()] + M) + Cx, Ids
0

SOl 1 - [ tde
1 1
< g 1+ 52—l + Il + M) + Cg
1 — [ tda(2)

<R1.

From (3.8) we have u,(1)+7, (1) > 1 Jy #1-dar) iy 70| = 1 Jy 1-da0 (sl =11, £ € [0, 1]
. u u > U +uyl > ur|| =1, ,1].
! ! S[r(Le)+ f; (1-da(®)] A S[r(Le)+ f; (1=Dda(?)] ! !

Note (3.5), and

i 11 = da(r)
S[r(Le) + [ (1 = Dda(®)]

1
11 t(1 — da(t)
— (&1 + & - 8||72||)‘f0 5 [1 + fo I -

(R = [[usll)

(&0 — €lly2l)

[y1(7) + Y2(D)M(u (7)) + Cx, ldr

1 — [ tda(r)
1
1(1 — )da(r) 1 1
> (g0 = €llyal) h 1 Rl—%[ +# [yl + llyalleRy + M) + Cx ]
S5[r(Le,) + [, (1 = Dda()] 1 — [} tda(2)
- (1 - t)da(0) |
- e el { b Il + yaleR + M)+ C)
1 - [ tdatr) |

> 0.
Then Lemma 2.2 (iv) implies that
1 1
(&0 — SIIVzll)f K(2, $)[ui(s) +ui(s)lds — (1 + &0 = 8||72||)f K(t, s)ui(s)ds
0 0
11 = dar)

; (Ri = llurld's
S5[r(Le,) + [, (1 = Dda(1)]

1
> (80— llya1) f K, 9)s
0

1 1
-+ - 8I|72||)f K(1,s) f O(s, DIy1(7) + ¥2(DOM(ui (7)) + Cx, ldrds
0 0

11 = dar)
S[r(Le) + [ (1 = Dda(®)]
fo r(1 — Dda(t)

- (£ +80—8||72||)f K(z, S)f —s[
tda(t)

>0,r€[0,1].

(Ri = lluilDds

1
Z(So—SIIVzII)fO K(1, 5)s

[¥1(7) + Y2(r)M(uy (7)) + Cx, Idtds

(3.9)
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Therefore, from (3.4) we have
(Au(@) + (1) = fo K LS 1) + 71(8) + 72 OMun(s) + Co I + 1 fo o) + (01dato)
- [ KG9 + #0— el ()] — 1(5) — Cry +71(9) + Co s +1 | 0 0) + (01t
> €+ 20— elal) [ K () + T (o)ds + 1 | 0 (0) + 0
-+ eo=cll) [ K ST (5)ds

1 1
=& f K(t, $)[ui(s) +ui(s)lds + tf [w1(2) + uy (1)]da(t).
’ ’ (3.10)
Together with (3.7), we have

ui () +ui () = (Au)(@) + ur (t) + pgg, (1) = (Le, (g +u))(t) + pipe, (1) = e, (1), € [0, 1].

Define
1o=sup{u > 0wy +up > pgy ).

Clearly, u* > py, and uy +u; > p*¢g,. Note that Lg, ¢, = r(Lg, )¢e, and we have

ur () +uy (1) = (Lg, (uy +up)(0) + 1@z, (1) = (L 70 )(8) + 10, (1) = (r(Le,) + p1)eg, (1),

which contradicts the definition of y*(r(Ls,) > 1). Therefore, (3.6) holds, and from Lemma 2.4 we

obtain
deg (I — A, Bg,,0) = 0. 3.11)

From (H5) there exists r; € (0, R;) such that
|f(t7 -x)| < §2|X|, for |X| < rl’t € [0’ 1]

Now for this ry, we prove that
Au # pu, Vu€oB,, u>1. (3.12)

Suppose the contrary. Then there exist u, € dB,, and u, > 1 such that
Auy = pous,

where B,, = {u € E : |[u|| < r;}. Consequently, we have
1
lua ()] < —|(Auz)(D)]
M2
1 1
< f K(t, 9)If (s, ua(s)lds + tf |ur (1)lda (1)
0 0

1 1
<& f K(t, s)|lux(s)|ds + tf |ur (8)|dad(t).
0 0
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Let v,(¢) = |ux(2)| € P,t € [0, 1]. Then we have
1 1
() < .fzf K(t, s)va(s)ds + tf va(t)da(t) = (Lg,v2)(@),t € [0, 1].
0 0

-1
Note that r(L;,) < 1, which implies that (I - ng) exists, and
-1
(I-Le) =T+Le+L+--+LL+-.
-1
Consequently, note that (I - L,fz) : P — P, and we have

(I = Le)vp)(®) <0 = IIvall < | (I~ L) Oll = 0.

Hence, |[v2] = 0 = |luz|| = 0, and this contradicts u, € dB,,. Thus, (3.12) holds, and Lemma 2.5
implies that
deg(I - A,B,,,0) = 1.

Combining this with (3.11) we have
deg (I — A, Bg,\B,,, O) =deg(I — A, Bg,,0) —deg (I — A, B,,,0) = —1.

Therefore the operator A has at least one fixed point in Bg,\B,,. Equivalently, (1.1) has at least one
nontrivial solution. This completes the proof.

4. Extremal solutions for (1.1)

In this section we use the method of upper-lower solutions to study the existence of extremal
solutions for (1.1). We first provide the definitions of upper and lower solutions.
Definition 4.1. We say that u € E is an upper solution of (1.1) if

uD(t) > f(t,u(t),0 <t <1,
1
u(0) =u”0)=u"(1) =0, u(l) > f u(t)da(t).
0
Definition 4.2. We say that u € E is a lower solution of (1.1) if
u(@) < ft,u(®),0<t<1,
1
u(0) =u”0) =u"(1) =0, u(1) < f u(t)da(t).
0
Lemma 4.3. Suppose that (H1) holds. Let u € E satisfy
u®(t) + c(tyu(t) 2 0, t € (0,1),

! 4.1)
u©)=u"0)=u"(1)=0, u(l) > f u(t)da(t).
0
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Then u(r) > 0, € [0, 1]; here () satisfies the condition

(H6) —n* < () < ¢o, t € [0,1], and ¢ := 4k; with ko being the smallest positive solution of the
equation tan k = tanh k (i.e., ky ~ 3.9266 and ¢y = 950.8843).
Proof. From [6,7,32] we introduce a result. Let L. : W — C[0, 1] be defined by L.u = u™® + c(t)u.
Then by (H6), L, has a positive inverse, where W = {u € C*([0, 17) : u(0) = u(1) = u”(0) = u”(1) = 0}.

In (4.1) let u®(1) + c(tu®) = 2(t) > 0 and y; = w(1) — [ u(tda(r) > 0, then we have
u®P@) + c(Hu() = 2(6),0 <t < 1,

1 4.2)
w0)=u"0)=u"(1)=0,u(l) = y; + f u(t)da(r)
0

is equivalent to
1 1
u(t) = f G(t, s)z(s)ds + t()(l +f u(t)da(t)), 4.3)
0 0

where G is defined in [32, Lemma 2.1].
We multiply both sides of (4.3) by da(?) and integrate over [0, 1], then (H1) enables us to obtain

1 1 pl 1 1
f u(t)da(t) = f f G(t, s)z(s)dsda(t) + f tda(t) ()(1 + f u(t)da(t))
0 0 Jo 0 0

1 1 1 1
f u(®)da(t) = + f f G(t, s)z(s)dsda(t) + )1(—1 f tda(t).
0 1 — [} tda(r) Jo Jo 1 — [ tda(r) Jo

Therefore, we have

u(t) = f G(t, s)z(s)ds + x 1t + —f f G(t, )z(s)dsda(t) +
1- f tda(r)

it
f tdalt)

and

X—t f 1 tda(?)
f tda(r)

f Ks(t, s)z(s)ds+

where ]
t
Ks(t,s) = G(t, ) + 1—f G(t, s)da(t),t € [0, 1].
1— | tda(t)
Note that G(z, s) > 0,¢, s € [0, 1]. Then, (H1) implies that
u(t) >0,te[0,1].

This completes the proof.
For vy, wy € E with vo(t) < wo(?) for ¢ € [0, 1], we denote an ordered interval:

[vo, wol = {u € E - vo(t) < u(t) < wo(r), t € [0,1]}.

Also, we list our other assumptions in this section.
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(H7) There exist wy, vy € E which are the upper and lower solutions of problem (1.1), respectively,
and vo(1) < wy(?),t € [0, 1].
(H8) f € C([0,1] xR, R) and

ft,w) = f(t,v) = —c(t)(w —v) for vo(r) < v <w < wy(2), 1 € [0, 1].

Theorem 4.4. Suppose that (H1) and (H6)—(HS8) hold. Then there exist monotone iterative sequences
{vu}, {w,} C [vo, wo] such that v, — v, w, — w* as n — oo uniformly in [vy, wy], and v*, w* are the
minimal and the maximal solution of (1.1) in [vy, wy], respectively.

Proof. We define two sequences {w,}, {v,} C E satistying the following boundary value problems

{v;‘“(t) +c(Ou(t) = F(t,vpr) + (O (1), 0<t<1,n=1,2,---,
1 (4.4)
va(0) =v/(0) = v, (1) =0, v,(1) = f va(Dda(t),
0
and
W) + c(Ow,(t) = ft,wpy) + cOw,1 (1), 0 <t < 1,n=1,2,---,
1 4.5
w,(0) = w,/(0) = w,/(1) =0, w,(1) = f wy(Dda(t). (4
0
Step 1. We prove
vo(t) < vi(®) < wi(®) < wy(2),t € [0, 1]. (4.6)

Let x(#) = v1(t) — vo(?). Then we have
X(1) + c(x(t) = vV (t) = v§ (1) + (i (1) — e(t)vo(t)

> f(t,vo) + c(t)vo(t) — f(t,vo) —c(Dvo(t) =0, 0 <t < 1,
x(0) = v1(0) = vo(0) = 0, x”(0) = v{'(0) = v (0) = 0,x"(1) =v{(1) = v{(1) =0, (4.7)

1 1 1
x(1) =vi(1) —ve(1) > f vi(Oda(t) — f vo(Hda(t) = f x()da(t).
0 0 0

From Lemma 4.3, x(¢) > 0, i.e., vi(t) > vo(?),t € [0, 1].
Let y(t) = wo(t) — wy(¢). Then we obtain
YO + cy() = w (1) = wi (1) + cOwo(t) — c(t)wi (1)
> f(t,wo) + c(Owo(t) — c(H)wo(t) — f(t,wy) =0, 0 <t < 1,
¥(0) = wp(0) = w(0) = 0,y”(0) = wy (0) —wi'(0) = 0,y"(1) = wy(1) —w/ (1) =0, (4.8)

1 1 1
y(1)=Wo(1)—W1(1)2f Wo(t)da(l)—f Wl(t)da’(t):f y(O)da(?).
0 0 0

Lemma 4.3 implies that y(¢) > 0, i.e., wo(¢) > wy (), € [0, 1].
Let h(¢) = wi () — v{(¢). Then we have
KO(t) = wi(0) = viP(0) = f(t,wo) + cOwo(t) — cOW1 (D) + (Vi (D) — c(Bvo(D) + f(t,vo)
> c(wo(t) — c(O)w (1) + c(Ov1(t) = c()vo(t) — c(D)(wo(t) = vo(D)), 0 <t <1,
h(0) = wi(0) — v(0) = 0, (0) = w/(0) — v/ (0) = 0, /”(1) = w/(1) = v{(1) = 0, (4.9)

1 1 1
h(1) = wi(1) = (1) = f wi(Ddat) - f v(D)dalt) = f h(dda(n),
0 0 0
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and thus
K6 + c(Oh(t) = 0,
1 (4.10)
h0)=h"0)=hr"(1)=0, k(1) = f h(t)da(t).
0
Lemma 4.3 enable us to obtain A(?) > 0, i.e., wi(¢) > v{(¢),t € [0, 1].
As aresult, (4.6) holds.
Step 2. We prove that wy, v; are upper and lower solutions of problem (1.1), respectively.
From (H8) and (4.4) we have
() = f(t,v0) + c@vo(r) = c(tvi (1)
= f(t,vo) + c(@O)vo(D) — c(vi(1) = f(t,v1) + f(1,v1)
< c@(1(@) = vo(D) + c(D)vo(r) — c(@vi(2) + f(2,v1)
= f(ta Vl)a
and note that |
vi(0) =v{(0) =v{(1) = 0, vi(1) = f vi(t)da(r).
0
From Definition 4.2, v; is a lower solution for (1.1).
From (H8) and (4.5) we have
wiP(6) = f(t, wo) + c(Owo(r) = c(Owi (1)
= f(t,wo) + c(O)wo(?) — c(Owi (1) — f(t, w1) + [T, w1)
= —c(D)(wo(?) = wi (D)) + c(Owo(r) — c(Ow1 (1) + [, w1)
= f(ta Wl),
and |
wi(0) = wi(0) = wi(1) = 0, wi(1) = f wi(D)da(?).
0
From Definition 4.1, wy is an upper solution for (1.1).
Therefore, for v,_y, v,, w,_1, w, we can use the method in Steps 1 and 2 to obtain
Vn—l(t) S Vn(t) S Wn(t) S Wn—l(t)7t € [0’ l]an = 1529 T, (4'11)

and w,, v, € E are upper and lower solutions of problem (1.1), respectively.
Using mathematical induction, it is easy to verify that

vo®) Svi) < <y, (O < - Sw() < < wi(r) S wo(n),t e [0, 1].

It is easy to conclude that {v,},~, and {w,} ~, are uniformly bounded in E, and from the monotone
bounded theorem we have

lim v,(¢) = v'(?), lim w,(¢) = w*(?),t € [0, 1].
Step 3. We prove (1.1) has solutions.
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Note that (4.4) and (4.5) are respectively equivalent to the following integral equations

1 1
va(t) = f Gt LF (5. Va1()) + ()t ()]s + 1 f va(t)da(n),
0 0

and

1 1
wy (1) = f G, )L (s, wp-1(8)) + c(s)wp_1(8)]ds + ¢ f wy(D)da(?).
0 0
Let n — oo and we have
1 1
Vi) = f G(t, )[f(s,v(s)) + c(s)v'(s)lds + tf vi(Hda(t),
0 0

and
1 1
w'(t) = f G(t, [ f(s,w*(s)) + c(s)w*(s)]ds + tf w*(Oda(r).
0 0

These two integral equations can be transformed into the following boundary value problems

V' O1Y + e @) = f(t,v") + @), 0 <t < 1,

. ! (4.12)
vi(0) = v]7(0) = v']"(1) =0, vi(1) = fo Vi(Hda(t),
and
W O1® + e = f(t, W) + W D), 0 <1< 1,
(4.13)

1
w*(0) = [w']7(0) = [w']"(1) = 0, w*(1)=f0 wi(Hda(t),

i.e., v, w" are solutions for (1.1).
Step 4. We prove that v* and w* are extremal solutions for (1.1) in [vg, wy].

Let u € [vy, wy] be any solution for (1.1). We assume that v,,(t) < u(t) < w,(t),t € [0, 1] for some
m. Let p(t) = u(t) — viuy1(8), (1) = Wy 1 (1) — u(t). Then from (1.1), (4.4) and (H8) we have

PO = u@) =V () = f(t,u) = f(t, V1) = —c(@)U@) = Vpsr (D), 1 € [0, 1],
1(0) = V1 (0) = u”(0) = v/, (0) = u’(1) = v/, (1) = 0,

u(l) = vy (1) 2 v[ u(t)da(r) — fol Vi1 (Dda(?),
and this leads to the following boundary value problem
pP@) + c()p() > 0,1 € [0,1],
p(0) = p"(0) = p"(1) = 0, p(1) > fol pda(®).
Lemma 4.3 implies that p(t) > 0, i.e., u(t) > v,,41(?),t € [0, 1].
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By (1.1), (4.5) and (H8) we have

g0 = w () = uP (1) > f(t,Wpir) = (1) = —c(t) W1 (£) — u(D), £ € [0, 1],
Wins1(0) — u(0) = w2, (0) — u”(0) = w/’, (1) — u”(1) = 0,
1

1
Wi (1) — u(1) 2 f W1 (Dd (1) — f u(t)da(t),
0 0

and this leads to the following boundary value problem

g0 + c(H)g() > 0,1 € [0, 1],
1
q(0) =q"(0) = 4g"(1) = 0,4(1) > fo gt)da(t).

Lemma 4.3 implies that g(r) > 0, i.e., w1 (t) > u(?),t € [0, 1].
Combining the above two cases, we have

Vi1 (1) < u(t) < Wit (1), 1 € [0, 1].

Applying mathematical induction, we obtain v, () < u(t) < w,(¢) on [0, 1] for any n. Taking the limit,
we conclude v(7) < u(t) < w*(t),t € [0, 1]. This completes the proof.

Remark 4.1. As noted in [32], the Green’s function G in (4.2) has no explicit expression, but this does
not affect our result. In our study we only use its positiveness and continuity.

S. Examples

Now, we provide some examples to illustrate our main results.
Example 5.1. From (2.2) we have

L <r(L) < % +a(1),£> 0.

at T
Let a(?) = %t,t € [0, 1]. Then we can choose & > i, &, € (0, 18) such that
I"(Lfl) >1, r(ng) < 1.

Let Vl(t) = §1 € (é:la +OO)9 72(t) = (2 € (Oa gl + 52]’ and f(ta -x) = {1 |X| - §2M(-x)a M(.X) = 1n(|X| + 1),X €
R’ re [07 1] Then lim|x|—>+oo % = O, and lim|x|_)+oo ak-oMx = (1 > fl, lim|x|_,0 - M)l = |§1 _évzl <

|x| [2x]

&. Therefore, (H1)—(HS) hold. From Theorem 3.1, (1.1) has a nontrivial solution.
Example 5.2. Let a(r) = 11, and vo(r) = —1* + 2% = 5t,wo(1) = t* = 27 + 51, f(t,u) = 5tu(1), 1 € [0, 1].
Then we have

[wo(D]® = 24 > Stwo(t) = f(t, wo(D)), 0 <t < 1,
1
wo(0) = wi(0) =wi (1) =0, wo(1) =4 > 1.1 = f (t' =26 + 5t)d%t,
0

and
o(HD]W = =24 < Stvo(t) = f(t,vo(1), 0 <t < 1,

1
1
vo(0) =5 (0) = vy (1) =0, vp(1) = -4 < —1.1 = f (—* +2F - Snd 1.
0
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Moreover,
ft,w)— f(t,v) =5t(w—v), t €[0,1].

Then (H1) and (H6)—(H8) hold. From Theorem 4.4, (1.1) has two extremal solutions.
6. Conclusions

In this paper we use topological degree and the method of upper-lower solutions to study the
existence of solutions for (1.1). When the nonlinearity satisfies some superlinear growth conditions
involving the first eigenvalue corresponding to the relevant linear operator we obtain nontrivial
solutions. Also, when the nonlinearity satisfies a one-sided Lipschitz condition, we use the method of
upper-lower solutions to obtain extremal solutions. We also provide two iterative sequences for these
solutions.
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