The target of this manuscript is to introduce new symmetric fractional $ \alpha $-$ \beta $-$ \eta $-$ \Upsilon $-contractions and prove some new fixed point results for such contractions in the setting of $ M_{b} $-metric space. Moreover, we derive some results for said contractions on closed ball of mentioned space. The existence of the solution to a fractional-order differential equation with one boundary stipulation will be discussed.
Citation: Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed AL-Sulami, Amjad Ali. New techniques on fixed point theorems for symmetric contraction mappings with its application[J]. AIMS Mathematics, 2023, 8(4): 9118-9145. doi: 10.3934/math.2023457
The target of this manuscript is to introduce new symmetric fractional $ \alpha $-$ \beta $-$ \eta $-$ \Upsilon $-contractions and prove some new fixed point results for such contractions in the setting of $ M_{b} $-metric space. Moreover, we derive some results for said contractions on closed ball of mentioned space. The existence of the solution to a fractional-order differential equation with one boundary stipulation will be discussed.
[1] | E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 421 (2019), 1–25. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3 |
[2] | H. A. Hammad, M. De la Sen, A solution of Fredholm integral equation by using the cyclic $\eta_{s}^{q}$-rational contractive mappings technique in $b$-metric-like spaces, Symmetry, 11 (2019), 1–22. http://doi.org/10.3390/sym11091184 doi: 10.3390/sym11091184 |
[3] | H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed-point of cyclic $\alpha_{s}^{q}$-Rational contraction mappings in metric-like spaces, Bull. Braz. Math. Soc. New Ser., 51 (2020), 81–105. https://doi.org/10.1007/s00574-019-00144-1 doi: 10.1007/s00574-019-00144-1 |
[4] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, New York, 1993, 1–376. |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204 (2006), 1–523. |
[6] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.1007/s00574-019-00144-1 doi: 10.1007/s00574-019-00144-1 |
[7] | D. Baleanu, R. P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 1–8. https://doi.org/10.1186/1687-2770-2013-112 doi: 10.1186/1687-2770-2013-112 |
[8] | A. Ali, A. Hussain, M. Arshad, H. A. Sulami, M. Tariq, Certain new development to the orthogonal binary relations, Symmetry, 14 (2022), 1–21. https://doi.org/10.3390/sym14101954 doi: 10.3390/sym14101954 |
[9] | A. Ali, A. Muhammad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized $\theta_{b}$-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 1–19. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8 |
[10] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[11] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[12] | M. Asadi, E. Karapinar, P. Salimi, New extension of $p$-metric spaces with some fixed-point results on $M$-metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18 |
[13] | N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawed, Fixed point theorem in $M_{b}$-metric spaces, J. Math. Anal., 7 (2016), 1–9. |
[14] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations itegrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[15] | E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135 |
[16] | E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-´Ciric´ type contractions on partial metric spaces, Mathematics, 6 (2018), 1–7. http://doi.org/10.3390/math6110256 doi: 10.3390/math6110256 |
[17] | A. Hussain, Fractional convex type contraction with solution of fractional differential equation, AIMS Math., 5 (2020), 5364–5380. http://doi.org/10.3934/math.2020344 doi: 10.3934/math.2020344 |
[18] | A. Hussain, Solution of fractional differential equations utilizing symmetric contraction, J. Math., 2021 (2021), 1–17. https://doi.org/10.1155/2021/5510971 doi: 10.1155/2021/5510971 |
[19] | A. Hussain, F. Jarad, E. Karapinar, A study of symmetric contractions with an application to generalized fractional differential equations, Adv. Differ. Equ., 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03456-z doi: 10.1186/s13662-021-03456-z |
[20] | H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 2021 (2021), 1–21. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159 |
[21] | B. Rodjanadid, J. Tanthanuch, Some fixed point results on $M_{b}$-metric space via simulation functions, Thai J. Math., 18 (2020), 113–125. |
[22] | S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for $\left(\alpha, \beta\right)$-$\left(\psi, \phi\right)$-contractive mappings, Filomat, 28 (2014), 635–647. https://doi.org/10.2298/FIL1403635A doi: 10.2298/FIL1403635A |
[23] | M. Mudhesh, H. A. Hammad, E. Ameer, M. Arshad, F. Jarad, Novel results on fixed-point methodologies for hybrid contraction mappings in $M_{b}$-metric spaces with an application, AIMS Math., 8 (2023), 1530–1549. http://doi.org/10.3934/math.2023077 doi: 10.3934/math.2023077 |
[24] | M. Mudhesh, H. A. Hammad, E. Ameer, A. Ali, Fixed point results under new contractive conditions on closed balls, Appl. Math. Inf. Sci., 16 (2022), 555–564. https://doi.org/10.18576/amis/160408 doi: 10.18576/amis/160408 |
[25] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new deffnition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[26] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[27] | N. Y. Özgür, N. Mlaiki, N. Tas, N. Souayah, A new generalization of metric spaces: Rectangular $M$-metric spaces, Math. Sci., 12 (2018), 223–233. https://doi.org/10.1007/s40096-018-0262-4 doi: 10.1007/s40096-018-0262-4 |
[28] | Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial $b$-metric spaces, J. Inequal. Appl., 2013 (2013), 1–26. https://doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562 |
[29] | M. Nazam, H. Aydi, A. Hussain, Existence theorems for $\left(\Psi, \Phi\right)$-orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 2022, 1–32. http://doi.org/10.1080/02331934.2022.2043858 |
[30] | A. Torres-Hernandez, F. Brambila-Paz, R. Montufar-Chaveznava, Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers, Appl. Math. Comput., 429 (2022), 1–12. https://doi.org/10.1016/j.amc.2022.127231 doi: 10.1016/j.amc.2022.127231 |