Research article

Precise large deviations for aggregate claims in a two-dimensional compound dependent risk model

  • Received: 24 December 2022 Revised: 23 January 2023 Accepted: 02 February 2023 Published: 13 February 2023
  • MSC : 60F10, 91B05, 91G05

  • This paper considers a two-dimensional compound risk model. We mainly investigate the claim sizes and inter-arrival times are size-dependent. When the claim sizes have consistently varying tails, we obtain the precise large deviations for aggregate amount of claims in the above dependent compound risk model.

    Citation: Weiwei Ni, Kaiyong Wang. Precise large deviations for aggregate claims in a two-dimensional compound dependent risk model[J]. AIMS Mathematics, 2023, 8(4): 9106-9117. doi: 10.3934/math.2023456

    Related Papers:

  • This paper considers a two-dimensional compound risk model. We mainly investigate the claim sizes and inter-arrival times are size-dependent. When the claim sizes have consistently varying tails, we obtain the precise large deviations for aggregate amount of claims in the above dependent compound risk model.



    加载中


    [1] A. Aleškevičienė, R. Leipus, J. Šiaulys, A probabilistic look at tail behavior of random sums under consistent variation with applications to the compound renewal risk, Extremes, 11 (2008), 261–279. https://doi.org/10.1007/s10687-008-0057-3 doi: 10.1007/s10687-008-0057-3
    [2] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Cambridge: Cambridge University Press, 1987.
    [3] X. Bi, S. Zhang, Precise large deviation of aggregate claims in a risk model with regression-type size-dependence, Stat. Probabil. Lett., 83 (2013), 2248–2255. https://doi.org/10.1016/j.spl.2013.06.009 doi: 10.1016/j.spl.2013.06.009
    [4] J. Cai, H. Li, Dependence properties and bounds for ruin probabilities in multivariate compound risk models, J. Multivariate Anal., 98 (2007), 757–773. https://doi.org/10.1016/j.jmva.2006.06.004 doi: 10.1016/j.jmva.2006.06.004
    [5] D. B. H. Cline, G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stoch. Proc. Appl., 49 (1994), 75–98. https://doi.org/10.1016/0304-4149(94)90113-9 doi: 10.1016/0304-4149(94)90113-9
    [6] G. A. Delsing, M. R. H. Mandjes, P. J. C. Spreij, E. M. M. Winands, An optimization approach to adaptive multi-dimensional capital management, Insur. Math. Econ., 84 (2019), 87–97. https://doi.org/10.1016/j.insmatheco.2018.10.001 doi: 10.1016/j.insmatheco.2018.10.001
    [7] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Berlin: Springer, 1997.
    [8] K. Fu, X. Shen, H. Li, Precise large deviations for sums of claim-size vectors in a two-dimensional size-dependent renewal risk model, Acta Math. Appl. Sin. Engl. Ser., 37 (2021), 539–547. https://doi.org/10.1007/s10255-021-1030-z doi: 10.1007/s10255-021-1030-z
    [9] H. Guo, S. Wang, C. Zhang, Precise large deviations of aggregate claims in a compound size-dependent renewal risk model, Commun. Stat. Theor. Method., 46 (2017), 1107–1116. https://doi.org/10.1080/03610926.2015.1010011 doi: 10.1080/03610926.2015.1010011
    [10] J. Kočetova, R. Leipus, J. Šiaulys, A property of the renewal counting process with application to the finite-time probability, Lith. Math. J., 49 (2009), 55–61. https://doi.org/10.1007/s10986-009-9032-1 doi: 10.1007/s10986-009-9032-1
    [11] D. G. Konstantinides, F. Loukissas, Precise large deviations for consistently varying-tailed distribution in the compound renewal risk model, Lith. Math. J., 50 (2010), 391–400. https://doi.org/10.1007/s10986-010-9094-0 doi: 10.1007/s10986-010-9094-0
    [12] D. Lu, Lower bounds of large deviation for sums of long-tailed claims in a multi-risk model, Stat. Probabil. Lett., 82 (2012), 1242–1250. https://doi.org/10.1016/j.spl.2012.03.020 doi: 10.1016/j.spl.2012.03.020
    [13] R. B. Nelsen, An introduction to copulas, New York: Springer, 2006.
    [14] X. Shen, H. Tian, Precise large deviations for sums of two-dimensional random vectors and dependent components with extended regularly varying tails, Commun. Stat. Theor. Method., 45 (2016), 6357–6368. https://doi.org/10.1080/03610926.2013.839794 doi: 10.1080/03610926.2013.839794
    [15] Q. Tang, C. Su, T. Jiang, J. Zhang, Large deviations for heavy-tailed random sums in compound renewal model, Stat. Probabil. Lett., 52 (2001), 91–100. https://doi.org/10.1016/S0167-7152(00)00231-5 doi: 10.1016/S0167-7152(00)00231-5
    [16] Q. Tang, Insensitivity to negative dependence of the asymptotic behavior of precise large deviations, Electron. J. Probab., 11 (2006), 107–120. https://doi.org/10.1214/EJP.v11-304 doi: 10.1214/EJP.v11-304
    [17] K. Wang, Y. Cui, Y. Mao, Estimates for the finite-time ruin probability of a time-dependent risk model with a Brownian perturbation, Math. Probl. Eng., 2020 (2020), 7130243. https://doi.org/10.1155/2020/7130243 doi: 10.1155/2020/7130243
    [18] K. Wang, L. Chen, Precise large deviations for the aggregate claims in a dependent compound renewal risk model, J. Inequal. Appl., 257 (2019), 1–25. https://doi.org/10.1186/s13660-019-2209-1 doi: 10.1186/s13660-019-2209-1
    [19] S. Wang, W. Wang, Precise large deviations for sums of random variables with consistently varying tails in multi-risk mode, J. Appl. Probab., 44 (2007), 889–900. https://doi.org/10.1239/jap/1197908812 doi: 10.1239/jap/1197908812
    [20] S. Wang, W. Wang, Precise large deviations for sums of random variables with consistent variation in dependent multi-risk models, Commun. Stat. Theor. Method., 42, (2013), 4444–4459. https://doi.org/10.1080/03610926.2011.648792
    [21] B. Xun, K. C. Yuen, K. Wang, The finite-time ruin probability of a risk model with a general counting process and stochastic return, J. Ind. Manag. Optim., 18 (2022), 1541–1556. https://doi.org/10.3934/jimo.2021032 doi: 10.3934/jimo.2021032
    [22] Y. Yang, R. Leipus, J. Šiaulys, Precise large deviations for compound random sums in the presence of dependence structures, Comput. Math. Appl., 64 (2012), 2074–2083. https://doi.org/10.1016/j.camwa.2012.04.003 doi: 10.1016/j.camwa.2012.04.003
    [23] Y. Yang, K. Wang, J. Liu, Z. Zhang, Asymptotics for a bidimensional risk model with two geometric Lévy price processes, J. Ind. Manag. Optim., 15 (2019), 481–505. http://dx.doi.org/10.3934/jimo.2018053 doi: 10.3934/jimo.2018053
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1190) PDF downloads(37) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog