Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theorem lies in its applicability to resolve convex minimization problems. To demonstrate the efficacy of our proposed algorithm, we conducted a comparative analysis of its convergence behavior against other algorithms. Finally, we showcased the performance of our proposed method through numerical experiments aimed at addressing image restoration problems.
Citation: Kasamsuk Ungchittrakool, Natthaphon Artsawang. A generalized viscosity forward-backward splitting scheme with inertial terms for solving monotone inclusion problems and its applications[J]. AIMS Mathematics, 2024, 9(9): 23632-23650. doi: 10.3934/math.20241149
Our aim was to establish a novel generalized viscosity forward-backward splitting scheme that incorporates inertial terms for addressing monotone inclusion problems within a Hilbert space. By incorporating appropriate control conditions, we achieved strong convergence. The significance of this theorem lies in its applicability to resolve convex minimization problems. To demonstrate the efficacy of our proposed algorithm, we conducted a comparative analysis of its convergence behavior against other algorithms. Finally, we showcased the performance of our proposed method through numerical experiments aimed at addressing image restoration problems.
[1] | P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. https://doi.org/10.1137/0716071 doi: 10.1137/0716071 |
[2] | G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383–390. https://doi.org/10.1016/0022-247X(79)90234-8 doi: 10.1016/0022-247X(79)90234-8 |
[3] | P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control. Optim., 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806 |
[4] | H. Brezis, P. L. Lions, Produits infinis de résolvantes, Israel J. Math., 29 (1978), 329–345. https://doi.org/10.1007/BF02761171 doi: 10.1007/BF02761171 |
[5] | A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl., 241 (2000), 46–55. |
[6] | H. H. Bauschke, E. Matoušková, S. Reich, Projection and proximal point methods: Convergence results and counterexamples, Nonlinear Anal., 56 (2004), 715–738. https://doi.org/10.1016/j.na.2003.10.010 doi: 10.1016/j.na.2003.10.010 |
[7] | R. E. Bruck, S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math., 3 (1977), 459–470. |
[8] | G. H. G. Chen, R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim., 7 (1997), 421–444. https://doi.org/10.1137/S1052623495290179 doi: 10.1137/S1052623495290179 |
[9] | O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403–419. https://doi.org/10.1137/0329022 doi: 10.1137/0329022 |
[10] | R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898. https://doi.org/10.1137/0314056 doi: 10.1137/0314056 |
[11] | N. Artsawang, K. Ungchittrakool, A new forward-backward penalty scheme and its convergence for solving monotone inclusion problems, Carpath. J. Math., 35 (2019), 349–363. |
[12] | N. Artsawang, K. Ungchittrakool, A new splitting forward-backward algorithm and convergence for solving constrained convex optimization problem in Hilbert spaces, J. Nonlinear Convex Anal., 22 (2021), 1003–1023. |
[13] | B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5 |
[14] | F. Alvarez, H. Attouch, An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set Valued Anal., 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155 |
[15] | Y. Dong, Q. Luo, On an inertial Krasnoselskii-Mann iteration, Appl. Set-Valued Anal. Optim., 6 (2024), 103–112. |
[16] | J. J. Maulen, I. Fierro, J. Peypouquet, Inertial Krasnoselskii-Mann iteration, Set-Valued Var. Anal., 32 (2024). https://doi.org/10.1007/s11228-024-00713-7 |
[17] | A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. https://doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8 |
[18] | P. Cholamjiak, Y. Shehu, Inertial forward-backward splitting method in Banach spaces with application to compressed sensing, Appl. Math. 64 (2019), 409–435. https://doi.org/10.21136/AM.2019.0323-18 |
[19] | Y. Shehu, O. S. Iyiola, F. U. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings: Applications to compressed sensing, Numer. Algor., 83 (2020), 1321–1347. https://doi.org/10.1007/s11075-019-00727-5 doi: 10.1007/s11075-019-00727-5 |
[20] | N. Artsawang, K. Ungchittrakool, Inertial Mann-type algorithm for a nonexpansive mapping to solve monotone inclusion and image restoration problems, Symmetry, 12 (2020), 750. https://doi.org/10.3390/sym12050750 doi: 10.3390/sym12050750 |
[21] | B. Tan, S. X. Li, Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems, J. Nonlinear Var. Anal. 4 (2020), 337–355. https://doi.org/10.23952/jnva.4.2020.3.02 |
[22] | N. Artsawang, Accelerated preconditioning Krasnosel'skiĭ-Mann method for efficiently solving monotone inclusion problems, AIMS Math., 8 (2023), 28398–28412. https://doi.org/10.3934/math.20231453 doi: 10.3934/math.20231453 |
[23] | N. Nimana, N. Artsawang, A strongly convergent simultaneous cutter method for finding the minimal norm solution to common fixed point problem, Carpathian J. Math., 40 (2024), 155–171. |
[24] | Y. X. Hao, J. Zhao, Two-step inertial Bregman projection iterative algorithm for solving the split feasibility problem, Appl. Nonlinear Anal., 1 (2024), 64–78. https://doi.org/10.69829/apna-024-0101-ta04 doi: 10.69829/apna-024-0101-ta04 |
[25] | K. Ungchittrakool, S. Plubtieng, N. Artsawang, P. Thammasiri, Modified Mann-type algorithm for two countable families of nonexpansive mappings and application to monotone inclusion and image restoration problems, Mathematics, 11 (2023), 2927. https://doi.org/10.3390/math11132927 doi: 10.3390/math11132927 |
[26] | N. Artsawang, S. Plubtieng, O. Bagdasar, K. Ungchittrakool, S. Baiya, P. Thammasiri, Inertial Krasnosel'skiĭ-Mann iterative algorithm with step-size parameters involving nonexpansive mappings with applications to solve image restoration problems, Carpathian J. Math., 40 (2024), 243–261. |
[27] | L. O. Jolaoso, L. Olakunle, Y. Shehu, J. C. Yao, R. Q. Xu, Double inertial parameters forward-backward splitting method: Applications to compressed sensing, image processing, and SCAD penalty problems, J. Nonlinear Var. Anal., 7 (2023), 627–646. |
[28] | Y. Pei, Y. Chen, S. Song, A novel accelerated algorithm for solving split variational inclusion problems and fixed point problems, J. Nonlinear Funct. Anal., 2023 (2023), 19. |
[29] | O. T. Mewomo, C. C. Okeke, F. U. Ogbuisi, Iterative solutions of split fixed point and monotone inclusion problems in Hilbert spaces, J. Appl. Numer. Optim., 5 (2023), 271–285. |
[30] | M. X. Zheng, Y. N. Guo, Scaled forward-backward algorithm and the modified superiorized version for solving the split monotone variational inclusion problem, Optim. Erudit., 1 (2024), 56–74. https://doi.org/10.69829/oper-024-0101-ta05 doi: 10.69829/oper-024-0101-ta05 |
[31] | B. Tan, X. L. Qin, On relaxed inertial projection and contraction algorithms for solving monotone inclusion problems, Adv. Comput. Math., 50 (2024), 59. https://doi.org/10.1007/s10444-024-10156-1 doi: 10.1007/s10444-024-10156-1 |
[32] | D. Kitkuan, P. Kumam, J. Martínez-Moreno, K. Sitthithakerngkiet, Inertial viscosity forward-backward splitting algorithm for monotone inclusions and its application to image restoration problems, Int. J. Comput. Math., 97 (2019), 482–497. https://doi.org/10.1080/00207160.2019.1649661 doi: 10.1080/00207160.2019.1649661 |
[33] | D. Kitkuan, P. Kumam, J. Martínez-Moreno, Generalized Halpern-type forward-backward splitting methods for convex minimization problems with application to image restoration problems, Optimization, 69 (2020), 1557–1581. https://doi.org/10.1080/02331934.2019.1646742 doi: 10.1080/02331934.2019.1646742 |
[34] | W. Takahashi, Nonlinear functional analysis, Japan: Yokohama Publishers, 2000. |
[35] | H. H. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332 |
[36] | G. López, V. Martín-Márquez, F. H. Wang, H. K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012), 109236. https://doi.org/10.1155/2012/109236 doi: 10.1155/2012/109236 |
[37] | S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75 (1980), 287–292. https://doi.org/10.1007/BF03007664 doi: 10.1007/BF03007664 |
[38] | J. B. Baillon, G. Haddad, Quelques proprietes des operateurs angle-bornes etn-cycliquement monotones, Israel J. Math. 26 (1977), 137–150. https://doi.org/10.1007/BF03007664 |
[39] | R. T. Rockafellar, On the maximality of subdifferential mappings, Pac. J. Math., 33 (1970), 209–216. https://doi.org/10.2140/pjm.1970.33.209 doi: 10.2140/pjm.1970.33.209 |
[40] | A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed problems, SIAM Rev. 21 (1979), 266–267. |