Research article

A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem

  • Received: 19 November 2024 Revised: 18 February 2025 Accepted: 21 February 2025 Published: 28 February 2025
  • MSC : 90C33, 49J52

  • In this paper, we aimed to consider the common elements of the generalized split variational inclusion and paramonotone equilibrium problem in real Hilbert spaces. Based on the self-adaptive method, a self-adaptive viscosity-type inertial algorithm to solve the problem under consideration was introduced and the inertial technique was used to accelerate the convergence rate of the method. Under the assumption of generalized monotonicity of the related mappings, the strong convergence of the iterative algorithm was established. The results presented here improve and generalize many results in this area.

    Citation: Yali Zhao, Qixin Dong, Xiaoqing Huang. A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem[J]. AIMS Mathematics, 2025, 10(2): 4504-4523. doi: 10.3934/math.2025208

    Related Papers:

  • In this paper, we aimed to consider the common elements of the generalized split variational inclusion and paramonotone equilibrium problem in real Hilbert spaces. Based on the self-adaptive method, a self-adaptive viscosity-type inertial algorithm to solve the problem under consideration was introduced and the inertial technique was used to accelerate the convergence rate of the method. Under the assumption of generalized monotonicity of the related mappings, the strong convergence of the iterative algorithm was established. The results presented here improve and generalize many results in this area.



    加载中


    [1] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
    [2] A. Anderson, Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm Ultrason, Ultrason. Imaging, 6 (1984), 81–94. https://doi.org/10.1016/0161-7346(84)90008-7 doi: 10.1016/0161-7346(84)90008-7
    [3] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001
    [4] N. Buong, Iterative algorithms for the multiple-sets split feasibility problem, Numer. Algor., 76 (2017), 783–798. https://doi.org/10.1007/s11075-017-0282-4 doi: 10.1007/s11075-017-0282-4
    [5] H. Stark, Image recovery theory and applications, New York: Academic Press, 1987. https://epubs.siam.org/doi/10.1137/1031042
    [6] C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Probl., 18 (2002), 441–453. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310
    [7] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275–283. https://doi.org/10.1007/s10957-011-9814-6 doi: 10.1007/s10957-011-9814-6
    [8] H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review, 38 (1996), 367–426. https://doi.org/10.1137/S0036144593251710 doi: 10.1137/S0036144593251710
    [9] P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., 95 (1996), 155–270. https://doi.org/10.1016/S1076-5670(08)70157-5 doi: 10.1016/S1076-5670(08)70157-5
    [10] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, Nonlinear Convex Anal., 13 (2011), 759–775.
    [11] K. R. Kazmi, S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2014), 1113–1124. https://doi.org/10.1007/s11590-013-0629-2 doi: 10.1007/s11590-013-0629-2
    [12] C. S. Chuang, Algorithms with new parameter conditions for split variational inclusion problems in Hilbert spaces with application to split feasibility problem, Optimization, 65 (2016), 859–876. https://doi.org/10.1080/02331934.2015.1072715 doi: 10.1080/02331934.2015.1072715
    [13] K. Sitthithakerngkiet, J. Deepho, P. Kumam, A hybrid viscosity algorithm via modify the hybrid steepest descent method for solving the split variational inclusion in image reconstruction and fixed point problems, Appl. Math. Comput., 250 (2015), 986–1001. https://doi.org/10.1016/j.amc.2014.10.130 doi: 10.1016/j.amc.2014.10.130
    [14] L. C. Ceng, E. Kobis, X. P. Zhao, On general implicit hybrid iteration method for triple hierarchical variational inequalities with hierarchical variational inequality constraints, Optimization, 69 (2020), 1961–1986. https://doi.org/10.1080/02331934.2019.1703978 doi: 10.1080/02331934.2019.1703978
    [15] Y. Shehu, F. U. Ogbuisi, An iterative method for solving split monotone variational inclusion and fixed point problems, RACSAM, 110 (2016), 503–518. https://doi.org/10.1007/s13398-015-0245-3 doi: 10.1007/s13398-015-0245-3
    [16] L. C. Ceng, M. J. Shang, Generalized Mann viscosity implicit rules for solving systems of variational inequalities with constraints of variational inclusions and fixed point problems, Mathematics, 7 (2019), 933. https://doi.org/10.3390/math7100933 doi: 10.3390/math7100933
    [17] L. Yang, F. H. Zhao, General split variational inclusion problem in Hilbert spaces, Abstr. Appl. Anal., 2014 (2014), 816035. https://doi.org/10.1155/2014/816035 doi: 10.1155/2014/816035
    [18] P. Chuasuk, F. Ogbuisi, Y. Shehu, P. Cholamjiak, New inertial method for generalized split variational inclusion problems, J. Ind. Manag. Optim., 17 (2021), 3357–3371. http://dx.doi.org/10.3934/jimo.2020123 doi: 10.3934/jimo.2020123
    [19] H. Nikaido, K. Isoda, Note on non-cooperative convex games, Pac. J. Math., 5 (1955), 807–815. https://doi.org/10.2140/pjm.1955.5.807 doi: 10.2140/pjm.1955.5.807
    [20] E. Blum, From optimization and variational inequalities to equilibrium problems, Math Student, 63 (1994), 123–145. https://api.semanticscholar.org/CorpusID:117484413
    [21] G. M. Korpelevich, The extragradient method foe finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [22] A. von Heusinger, C. Kanzow, Relaxation methods for generalized nash-equilibrium problems with inexact line search, J. Optim. Theory Appl., 143 (2009), 159–183. https://doi.org/10.1007/s10957-009-9553-0 doi: 10.1007/s10957-009-9553-0
    [23] H. Iiduka, I. Yamada, A subgradient-type method for the equilibrium problem problem over the fixed point set and its applications, Optimization, 58 (2009), 251–261. https://doi.org/10.1080/02331930701762829 doi: 10.1080/02331930701762829
    [24] L. D. Muu, T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a nash-cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185–204. https://doi.org/10.1007/s10957-009-9529-0 doi: 10.1007/s10957-009-9529-0
    [25] T. T. V. Nguyen, J. J. Strodiot, V. H. Nguyen, The interior proximal extragradient method for solving equilibrium problems, J. Glob. Optim., 44 (2009), 175–192. https://doi.org/10.1007/s10898-008-9311-0 doi: 10.1007/s10898-008-9311-0
    [26] T. T. Nguyen, J. J. Strodiot, V. H. Nguyen, A bundle method for solving equilibrium problems, Math. Program., 116 (2009), 529–552. https://doi.org/10.1007/s10107-007-0112-x doi: 10.1007/s10107-007-0112-x
    [27] P. Santos, S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Comput. Appl. Math., 30 (2011), 91–107. http://dx.doi.org/10.1590/S1807-03022011000100005 doi: 10.1590/S1807-03022011000100005
    [28] L. H. Yen, L. D. Muu, N. T. T. Huyen, An algorithm for a class of split feasibility problems: Application to a model in electricity production, Math. Meth. Oper. Res., 84 (2016), 549–565. https://doi.org/10.1007/s00186-016-0553-1 doi: 10.1007/s00186-016-0553-1
    [29] T. O. Alakoya, O. T. Mewomo, Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems, Comp. Appl. Math., 41 (2022), 39. https://doi.org/10.1007/s40314-021-01749-3 doi: 10.1007/s40314-021-01749-3
    [30] E. C. Godwin, C. Izuchukwu, O. T. Mewomo, Image restoration using a modified relaxed inertial method for generalized split feasibility problems, Mathematical Methods in the Applied Sciences, 46 (2022), 5521–5544. https://doi.org/10.1002/mma.8849 doi: 10.1002/mma.8849
    [31] S. H. Khan, T. O. Alakoya, O. T. Mewomo, Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach spaces, Math. Comput. Appl., 25 (2020), 54. https://doi.org/10.3390/mca25030054 doi: 10.3390/mca25030054
    [32] N. Onjai-uea, W. Phuengrattana, On solving split mixed equilibrium problems and fixed point problems of hybrid-type multivalued mappings in Hilbert spaces, J. Inequal. Appl., 2017 (2017), 137. https://doi.org/10.1186/s13660-017-1416-x doi: 10.1186/s13660-017-1416-x
    [33] H. Iiduka, I. Yamada, A subgradient-type method for the equilibrium problem over the fixed point set and its applications, Optimization, 58 (2009), 251–261. https://doi.org/10.1080/02331930701762829 doi: 10.1080/02331930701762829
    [34] H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comput. Appl. Math., 236 (2012), 1733–1742. https://doi.org/10.1016/j.cam.2011.10.004 doi: 10.1016/j.cam.2011.10.004
    [35] C. Q. Luo, H. Ji, Y. Li, Utility-based muliti-service bandwidth allocation in the 4G heterogeneous wireless networks, In: 2009 IEEE Wireless Communication and Networking Conference, 2009, 1–5. http://doi.org/10.1109/WCNC.2009.4918017
    [36] B. Tan, X. L. Qin, J. C. Yao, Strong convergence of self-adaptive inertial algorithms for solving split variational inclusion problems with applications, J. Sci. Comput., 87 (2021), 20. https://doi.org/10.1007/s10915-021-01428-9 doi: 10.1007/s10915-021-01428-9
    [37] C. Izuchukwu, S. Reich, Y. Shehu, A. Taiwo, Strong convergence of forward-reflected-backward splitting methods for solving monotone inclusions with applications to image restoration and optimal control, J. Sci. Comput., 94 (2023), 73. https://doi.org/10.1007/s10915-023-02132-6 doi: 10.1007/s10915-023-02132-6
    [38] Y. Q. Zhang, Y. Q. Wang, A new inertial iterative algorithm for split null point and common fixed point problems, J. Nonlinear Funct. Anal., 2023 (2023), 1–19. https://doi.org/10.23952/jnfa.2023.36 doi: 10.23952/jnfa.2023.36
    [39] J. L. Zheng, R. L. Gan, X. X. Ju, X. Q. Ou, A new fixed-time stability of neural network to solve split convex feasibility problems, J. Inequal. Appl., 2023 (2023), 1–21. https://doi.org/10.1186/s13660-023-03046-5 doi: 10.1186/s13660-023-03046-5
    [40] M. Aphane, L. O. Jolaoso, K. O. Aremu, O. K. Oyewole, An inertial-viscosity algorithm for solving split generalized equilibrium problem and a system of demimetric mappings in Hilbert spaces, Rend. Circ. Mat. Palermo Ser., 72 (2023), 1599–1628. https://doi.org/10.1007/s12215-022-00761-8 doi: 10.1007/s12215-022-00761-8
    [41] F. Su, L. L. Liu, X. H. Li, Q. L. Dong, A multi-step inertial asynchronous sequential algorithm for common fixed point problems, J. Nonlinear Var. Anal., 8 (2024), 473–484. https://doi.org/10.23952/jnva.8.2024.3.08 doi: 10.23952/jnva.8.2024.3.08
    [42] M. D. Ngwepe, L. O. Jolaoso, M. Aphane, U. O. Adiele, An inertial shrinking projection self-adaptive algorithm for solving split variational inclusion problems and fixed point problems in Banach spaces, Demonstr. Math., 57 (2024), 20230127. https://doi.org/10.1515/dema-2023-0127 doi: 10.1515/dema-2023-0127
    [43] K. Goebel, W. A. Krik, Topics in metric fixed point theory, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152
    [44] W. Takahashi, Nonlinear functional analysis. Fixed point theory and its application, Yokohama: Yokohama Publishers, 2000.
    [45] B. T. Polyak, Introduction to optimization. Translations series in mathematics and engineering, New York: Cambridge University Press, 1987.
    [46] P. N. Anh, L. D. Muu, A hybrid subgradient algorithm for nonexpansive mappings and equilibrium problems, Optim. Lett., 8 (2014), 727–738. https://doi.org/10.1007/s11590-013-0612-y doi: 10.1007/s11590-013-0612-y
    [47] C. Izuchukwu, Y. Shehu, J. C. Yao, New strong convergence analysis for variational inequalities and fixed point problems, Optimization, 2024, 1–22. https://doi.org/10.1080/02331934.2024.2424446
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(63) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog