In this study, we suggest a new class of forward-backward (FB) algorithms designed to solve convex minimization problems. Our method incorporates a linesearch technique, eliminating the need to choose Lipschitz assumptions explicitly. Additionally, we apply double inertial extrapolations to enhance the algorithm's convergence rate. We establish a weak convergence theorem under some mild conditions. Furthermore, we perform numerical tests, and apply the algorithm to image restoration and data classification as a practical application. The experimental results show our approach's superior performance and effectiveness, surpassing some existing methods in the literature.
Citation: Suparat Kesornprom, Papatsara Inkrong, Uamporn Witthayarat, Prasit Cholamjiak. A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations[J]. AIMS Mathematics, 2024, 9(7): 18841-18859. doi: 10.3934/math.2024917
In this study, we suggest a new class of forward-backward (FB) algorithms designed to solve convex minimization problems. Our method incorporates a linesearch technique, eliminating the need to choose Lipschitz assumptions explicitly. Additionally, we apply double inertial extrapolations to enhance the algorithm's convergence rate. We establish a weak convergence theorem under some mild conditions. Furthermore, we perform numerical tests, and apply the algorithm to image restoration and data classification as a practical application. The experimental results show our approach's superior performance and effectiveness, surpassing some existing methods in the literature.
[1] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2013. https://doi.org/10.1007/978-1-4419-9467-7 |
[2] | A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542 |
[3] | J. Y. Bello Cruz, T. T. A. Nghia, On the convergence of the forward–backward splitting method with linesearches, Optim. Method. Softw., 31 (2016), 1209–1238. https://doi.org/10.1080/10556788.2016.1214959 doi: 10.1080/10556788.2016.1214959 |
[4] | R. S. Burachik, A. N. Iusem, Set-valued mappings and enlargements of monotone operators, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-69757-4 |
[5] | P. L. Combettes, L. E. Glaudin, Quasi-nonexpansive iterations on the affine hull of orbits: from Mann's mean value algorithm to inertial methods, SIAM J. Optim., 27 (2017), 2356–2380. https://doi.org/10.1137/17M112806X doi: 10.1137/17M112806X |
[6] | P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090 |
[7] | Q. L. Dong, J. Z. Huang, X. H. Li, Y. J. Cho, T. M. Rassias, MiKM: multi-step inertial Krasnosel'skiǐ–Mann algorithm and its applications, J. Glob. Optim., 73 (2019), 801–824. https://doi.org/10.1007/s10898-018-0727-x doi: 10.1007/s10898-018-0727-x |
[8] | J. C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl., 53 (1976), 145–158. https://doi.org/10.1016/0022-247X(76)90152-9 doi: 10.1016/0022-247X(76)90152-9 |
[9] | O. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403–419. https://doi.org/10.1137/0329022 doi: 10.1137/0329022 |
[10] | J. Han, J. Pei, H. Tong, Data mining: concepts and techniques, 4 Eds., Morgan kaufmann, 2022. |
[11] | A. Hanjing, S. Suantai, A fast image restoration algorithm based on a fixed point and optimization method, Mathematics, 8 (2020), 378. https://doi.org/10.3390/math8030378 doi: 10.3390/math8030378 |
[12] | Y. Ho, S. Wookey, The real-world-weight cross-entropy loss function: modeling the costs of mislabeling, IEEE Access, 8 (2019), 4806–4813. https://doi.org/10.1109/ACCESS.2019.2962617 doi: 10.1109/ACCESS.2019.2962617 |
[13] | P. Inkrong, P. Cholamjiak, Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.10159 |
[14] | P. Inkrong, P. Cholamjiak, On multi-inertial extrapolations and forward-backward-forward algorithms, Carpathian J. Math., 40 (2024), 293–305. |
[15] | L. O. Jolaoso, Y. Shehu, J. C. Yao, R. Xu, double inertial parameters forward-backward splitting method: applications to compressed sensing, image processing, and SCAD penalty problems, J. Nonlinear Var. Anal., 7 (2023), 627–646. https://doi.org/10.23952/jnva.7.2023.4.10 doi: 10.23952/jnva.7.2023.4.10 |
[16] | K. Kankam, N. Pholasa, P. Cholamjiak, Hybrid forward-backward algorithms using line search rule for minimization problem, Thai J. Math., 17 (2019), 607–625. |
[17] | K. Kankam, N. Pholasa, P. Cholamjiak, On convergence and complexity of the modified forward‐backward method involving new line searches for convex minimization, Math. Method. Appl. Sci., 42 (2019), 1352–1362. https://doi.org/10.1002/mma.5420 doi: 10.1002/mma.5420 |
[18] | J. Liang, Convergence rates of first-order operator splitting methods, PhD thesis, Normandie Université, GREYC CNRS UMR 6072, 2016. |
[19] | P. Martinet, Régularisation d'inéquations variationelles par approximations successives, Rev. fr. autom. inform. rech. opér., 4 (1970), 154–159. |
[20] | Y. Nesterov, A method of solving a convex programming problem with convergence rate $\mathcal{O}(1/k^2)$, Dokl. Akad. Nauk SSSR, 269 (1983), 543. |
[21] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0 |
[22] | N. Parikh, S. Boyd, Proximal algorithms, Foundations and Trends® in Optimization, 1 (2014), 127–239. http://doi.org/10.1561/2400000003 doi: 10.1561/2400000003 |
[23] | B. T. Polyak, Introduction to optimization, New York: Optimization Software Inc., Publications Division, 1987. |
[24] | B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5 |
[25] | C. Poon, J. Liang, Trajectory of alternating direction method of multipliers and adaptive acceleration, Advances in neural information processing systems 32 (NeurIPS 2019), Vancouver, Canada, 2019, 7325–7333. |
[26] | R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898. https://doi.org/10.1137/0314056 doi: 10.1137/0314056 |
[27] | W. Takahashi, Introduction to nonlinear and convex analysis, Yokohama Publishers, 2009. |
[28] | K. H. Thung, P. Raveendran, A survey of image quality measures, 2009 international conference for technical postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 2009, 1–4. https://doi.org/10.1109/TECHPOS.2009.5412098 |
[29] | C. Wang, N. Xiu, Convergence of the gradient projection method for generalized convex minimization, Comput. Optim. Appl., 16 (2000), 111–120. https://doi.org/10.1023/A:1008714607737 doi: 10.1023/A:1008714607737 |
[30] | Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861 |
[31] | H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., 150 (2011), 360–378. https://doi.org/10.1007/s10957-011-9837-z doi: 10.1007/s10957-011-9837-z |