Research article

A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations

  • Received: 14 March 2024 Revised: 11 May 2024 Accepted: 21 May 2024 Published: 05 June 2024
  • MSC : 46E20, 46N40, 65K05, 68T07, 90C25

  • In this study, we suggest a new class of forward-backward (FB) algorithms designed to solve convex minimization problems. Our method incorporates a linesearch technique, eliminating the need to choose Lipschitz assumptions explicitly. Additionally, we apply double inertial extrapolations to enhance the algorithm's convergence rate. We establish a weak convergence theorem under some mild conditions. Furthermore, we perform numerical tests, and apply the algorithm to image restoration and data classification as a practical application. The experimental results show our approach's superior performance and effectiveness, surpassing some existing methods in the literature.

    Citation: Suparat Kesornprom, Papatsara Inkrong, Uamporn Witthayarat, Prasit Cholamjiak. A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations[J]. AIMS Mathematics, 2024, 9(7): 18841-18859. doi: 10.3934/math.2024917

    Related Papers:

  • In this study, we suggest a new class of forward-backward (FB) algorithms designed to solve convex minimization problems. Our method incorporates a linesearch technique, eliminating the need to choose Lipschitz assumptions explicitly. Additionally, we apply double inertial extrapolations to enhance the algorithm's convergence rate. We establish a weak convergence theorem under some mild conditions. Furthermore, we perform numerical tests, and apply the algorithm to image restoration and data classification as a practical application. The experimental results show our approach's superior performance and effectiveness, surpassing some existing methods in the literature.



    加载中


    [1] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2013. https://doi.org/10.1007/978-1-4419-9467-7
    [2] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542
    [3] J. Y. Bello Cruz, T. T. A. Nghia, On the convergence of the forward–backward splitting method with linesearches, Optim. Method. Softw., 31 (2016), 1209–1238. https://doi.org/10.1080/10556788.2016.1214959 doi: 10.1080/10556788.2016.1214959
    [4] R. S. Burachik, A. N. Iusem, Set-valued mappings and enlargements of monotone operators, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-69757-4
    [5] P. L. Combettes, L. E. Glaudin, Quasi-nonexpansive iterations on the affine hull of orbits: from Mann's mean value algorithm to inertial methods, SIAM J. Optim., 27 (2017), 2356–2380. https://doi.org/10.1137/17M112806X doi: 10.1137/17M112806X
    [6] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090
    [7] Q. L. Dong, J. Z. Huang, X. H. Li, Y. J. Cho, T. M. Rassias, MiKM: multi-step inertial Krasnosel'skiǐ–Mann algorithm and its applications, J. Glob. Optim., 73 (2019), 801–824. https://doi.org/10.1007/s10898-018-0727-x doi: 10.1007/s10898-018-0727-x
    [8] J. C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl., 53 (1976), 145–158. https://doi.org/10.1016/0022-247X(76)90152-9 doi: 10.1016/0022-247X(76)90152-9
    [9] O. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim., 29 (1991), 403–419. https://doi.org/10.1137/0329022 doi: 10.1137/0329022
    [10] J. Han, J. Pei, H. Tong, Data mining: concepts and techniques, 4 Eds., Morgan kaufmann, 2022.
    [11] A. Hanjing, S. Suantai, A fast image restoration algorithm based on a fixed point and optimization method, Mathematics, 8 (2020), 378. https://doi.org/10.3390/math8030378 doi: 10.3390/math8030378
    [12] Y. Ho, S. Wookey, The real-world-weight cross-entropy loss function: modeling the costs of mislabeling, IEEE Access, 8 (2019), 4806–4813. https://doi.org/10.1109/ACCESS.2019.2962617 doi: 10.1109/ACCESS.2019.2962617
    [13] P. Inkrong, P. Cholamjiak, Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.10159
    [14] P. Inkrong, P. Cholamjiak, On multi-inertial extrapolations and forward-backward-forward algorithms, Carpathian J. Math., 40 (2024), 293–305.
    [15] L. O. Jolaoso, Y. Shehu, J. C. Yao, R. Xu, double inertial parameters forward-backward splitting method: applications to compressed sensing, image processing, and SCAD penalty problems, J. Nonlinear Var. Anal., 7 (2023), 627–646. https://doi.org/10.23952/jnva.7.2023.4.10 doi: 10.23952/jnva.7.2023.4.10
    [16] K. Kankam, N. Pholasa, P. Cholamjiak, Hybrid forward-backward algorithms using line search rule for minimization problem, Thai J. Math., 17 (2019), 607–625.
    [17] K. Kankam, N. Pholasa, P. Cholamjiak, On convergence and complexity of the modified forward‐backward method involving new line searches for convex minimization, Math. Method. Appl. Sci., 42 (2019), 1352–1362. https://doi.org/10.1002/mma.5420 doi: 10.1002/mma.5420
    [18] J. Liang, Convergence rates of first-order operator splitting methods, PhD thesis, Normandie Université, GREYC CNRS UMR 6072, 2016.
    [19] P. Martinet, Régularisation d'inéquations variationelles par approximations successives, Rev. fr. autom. inform. rech. opér., 4 (1970), 154–159.
    [20] Y. Nesterov, A method of solving a convex programming problem with convergence rate $\mathcal{O}(1/k^2)$, Dokl. Akad. Nauk SSSR, 269 (1983), 543.
    [21] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0
    [22] N. Parikh, S. Boyd, Proximal algorithms, Foundations and Trends® in Optimization, 1 (2014), 127–239. http://doi.org/10.1561/2400000003 doi: 10.1561/2400000003
    [23] B. T. Polyak, Introduction to optimization, New York: Optimization Software Inc., Publications Division, 1987.
    [24] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [25] C. Poon, J. Liang, Trajectory of alternating direction method of multipliers and adaptive acceleration, Advances in neural information processing systems 32 (NeurIPS 2019), Vancouver, Canada, 2019, 7325–7333.
    [26] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898. https://doi.org/10.1137/0314056 doi: 10.1137/0314056
    [27] W. Takahashi, Introduction to nonlinear and convex analysis, Yokohama Publishers, 2009.
    [28] K. H. Thung, P. Raveendran, A survey of image quality measures, 2009 international conference for technical postgraduates (TECHPOS), Kuala Lumpur, Malaysia, 2009, 1–4. https://doi.org/10.1109/TECHPOS.2009.5412098
    [29] C. Wang, N. Xiu, Convergence of the gradient projection method for generalized convex minimization, Comput. Optim. Appl., 16 (2000), 111–120. https://doi.org/10.1023/A:1008714607737 doi: 10.1023/A:1008714607737
    [30] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861
    [31] H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., 150 (2011), 360–378. https://doi.org/10.1007/s10957-011-9837-z doi: 10.1007/s10957-011-9837-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(495) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog