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1. Introduction

This work focuses on solving a convex minimization problem in a real Hilbert space H equipped
with the product 〈·, ·〉 and the norm ‖ · ‖. Let f , g : H → R ∪ {+∞} be proper, convex, and lower
semicontinuous. Additionally, assume that f is Fréchet differentiable onH . In this context, the convex
minimization problem is formulated as follows:

min
u∈H
{ f (u) + g(u)}. (1.1)

We denote Γ∗ as the solution set of problem (1.1). This problem encompasses various real-world
challenges, including machine learning, signal and image processing, and the projection and distance

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2024917


18842

between sets. Problem (1.1) is recognized for the fixed-point equation:

u = (I + β∂g)−1(I − β∇ f )(u), (1.2)

where β > 0, ∇ f represents the gradient of the function f , and ∂g stands for the subdifferential function
g. It is noted that ∂g(u) = {b ∈ H : g(z) ≥ g(u) + 〈b, z − u〉, for all z ∈ H}. In this connection, (1.2)
presents the possibility of iterating

un+1 = (I + βn∂g)−1(I − βn∇ f )(un), (1.3)

where the step size βn lies in an appropriate bounded interval. This technique is referred to the FB
method, encompassing the proximal point algorithm [9, 19, 22, 26] and the gradient method [8, 29,
31]. To establish the convergence of algorithms based on (1.3), ∇ f is commonly considered Lipschitz
continuous. The step size βn is constrained to be bounded below and less than constants associated with
the Lipschitz constant that is not known in practice. Combettes and Wajs [6] suggested the iterative
sequence (1.4), derived from the classical FB iteration (1.3). Let µ ∈

(
0,min

{
1, 1

L

})
and let u0 ∈ R

N .
For n ≥ 1, define  wn = un − βn∇ f (un),

un+1 = un + λn

(
(I + βn∂g)−1(wn) − un

)
,

(1.4)

where βn ∈
[
µ, 2

L − µ
]
, λn ∈ [L, 1], and L is the Lipschitz constant of ∇ f .

Cruz and Nghia [3] introduced a rapid FB method utilizing linesearch iterates to solve (1.4). An
essential benefit of this method is eliminating the Lipschitz condition during computation. Given that
βn > 0, δ > 0, σ ∈ (0, 1), γ ∈

(
0, 1

2

)
, s1 = 1, and u0 = u1 ∈ dom g, calculate

sn+1 =
1 +

√
1 + 4s2

n

2
,

wn = un +
sn − 1
sn+1

(un − un−1),

un+1 = (I + βn∂g)−1(I − βn∇ f )(wn).

(1.5)

where βn = δσkn and kn is the smallest nonnegative integer such that

βn ‖∇ f (un+1) − ∇ f (wn)‖ ≤ γ ‖un+1 − wn‖ .

It has been demonstrated that the sequence {un} converges weakly to a minimizer of f + g.
In 2019, Kankam et al. [17] developed the FB method by using a new linesearch form. Let un ∈

dom g, δ > 0, σ ∈ (0, 1), and γ > 0. For n ≥ 1, set{
wn = (I + βn∂g)−1(I − βn∇ f )(un),
un+1 = (I + βn∂g)−1(I − βn∇ f )(wn),

(1.6)

where βn = δσkn and kn is the smallest nonnegative integer such that

βn ·max {‖∇ f (un+1) − ∇ f (wn)‖ , ‖∇ f (wn) − ∇ f (un)‖} ≤ γ (‖un+1 − wn‖ + ‖wn − un‖) .

It was verified that {un} converges weakly to a solution. Moreover, numerical experiments in signal
recovery are also provided. It was also shown that this method had better convergence than a classical
FB and the FB using linesearch defined in [3].
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The inertial extrapolation is known for improving the convergence rate of iterative methods,
with Polyak [24] being the first to consider it. After that, Nesterov [20] popularized it by solving
programming problems, and it was later developed by Beck and Teboulle [2] for structured convex
minimization problems. Based on the insight presented in [18], it was observed that utilizing more
than two points, specifically un and un−1, can improve acceleration. This enhancement is explained by
employing a double inertial extrapolation, outlined as

wn = un + α(un − un−1) + β(un−1 − un−2),

where α > 0 and β > 0 can provide acceleration. In [25], the limitations of one inertial acceleration
in ADMM were examined along with an alternative called adaptive acceleration for ADMM. At the
same time, Jolaoso et al. [15] proposed an alternative to the conventional one inertial FB splitting
method. They present the utilization of double inertial extrapolation in the FB splitting method to
increase the convergence speed. Additionally, Polyak [23] also examined the potential of multi-step
inertial methods in improving the optimization speed despite the absence of established convergence
or rate outcomes in [23]. Recently, many studies have been conducted on multi-step inertial methods,
and specific results have been presented in [5, 7, 14].

From this connection, we aim to combine a new linesearch in (1.6) with a double inertial
extrapolation for modifying the FB splitting method and proving its weak convergence. The
contributions of this work are summarized below.

• We present a new modified FB algorithm with double inertial extrapolations designed explicitly
for convex minimization problems in real Hilbert spaces. Our proposed method has a forward
assessment of ∇ f and a backward evaluation of ∂g in two steps in each iteration. Furthermore,
double inertial extrapolations are incorporated into our algorithm to expedite convergence.
• The proposed algorithms achieve weak convergence under some mild conditions through a

linesearch technique in [17] for updating βn. The main advantage of the technique is that the
Lipschitz constants of the gradient of functions do not require computation. It is noted that our
linesearch is different from that of Cruz and Nghia [3].
• We show numerical experiments on image restoration and data classification to illustrate the

validity of our proposed algorithm. The numerical results reveal that our method is efficient
and outperforms related methods in the literature.

The rest of this paper is organized as follows: Section 2 contains some useful definitions and lemmas
used for our proof. In Section 3, we give a proof of our proposed algorithm’s weak convergence.
Section 4 contains numerical tests on image restoration and data classification. Finally, we give a
conclusion in Section 5.

2. Preliminaries

In this section, we collect some necessary definitions and lemmas that will be used in our analysis.
We use un ⇀ v to indicate that {un} converges weakly to v. Let k : H → R be a proper, lower
semicontinuous, and convex function. The domain of a function k is denoted by dom k := {u ∈
H|k(u) < +∞}.

We also recognize the following definitions:
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(1) k : H → R is convex if
k(ρu + (1 − ρ)v) ≤ ρk(u) + (1 − ρ)k(v),

∀ρ ∈ (0, 1) and u, v ∈ H .
(2) A differentiable function k is convex if and only if

k(u) + 〈∇k(u), v − u〉 ≤ k(v), ∀v ∈ H .

(3) An element g ∈ H is designated as a subgradient of k : H → R at u when

k(u) + 〈∇g, v − u〉 ≤ k(v), ∀v ∈ H .

(4) The proximal operator proxg : H → H associated with g is defined as follows:

proxg(w) = (I + ∂g)−1(w), ∀w ∈ H .

It is known that the proximal operator is a single-valued function with a full domain. Furthermore,
as derived in [3], we know that

w − proxβg(w)

β
∈ ∂g(proxβg(w)), ∀w ∈ H , β > 0. (2.1)

Fact 2.1. ( [1], Proposition 17.2). Let k : H → R ∪ {+∞} be a proper, lower semicontinuous, and
convex function. Then, for u ∈ dom k and v ∈ H ,

k′(u, v − u) + k(u) ≤ k(v).

Lemma 2.2. [27] The following hold:
(i) ‖ca + (1 − c)b‖2 = c‖a‖2 + (1 − c)‖b‖2 − c(1 − c)‖a − b‖2, ∀c ∈ [0, 1] and ∀a, b ∈ H ;
(ii) ‖a ± b‖2 = ‖a‖2 ± 2〈a, b〉 + ‖b‖2, ∀a, b ∈ H .

Lemma 2.3. [4] The subdifferential operator ∂k of a convex function k is maximal monotone.
Furthermore, the graph of ∂k, Graph(∂k) = {(u, v) ∈ H × H : v ∈ ∂k(v)}, is demiclosed, that is,
if a sequence {un, vn} ⊂ Graph(∂k) is such that {un} converges weakly to u and {vn} converges strongly
to v, then (u, v) ∈ Graph(∂k).

Lemma 2.4. [21] Let C be a subset ofH and {un} be a sequence inH such that
(i) for any v ∈ C, lim

n→∞
‖un − v‖ exists;

(ii) each weak-cluster point of {un} is in C.
Then {un} converges weakly to a point in C.

3. Algorithm and convergence theorem

Next, we modify double inertial terms and a new linesearch for solving (1.1). Assume that Γ∗ is
nonempty. Moreover, we suppose the following:

(A1) f , g : H −→ R ∪ {+∞} are proper, lower semicontinuous, and convex functions and that f is
differentiable onH .
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(A2) ∇ f is uniformly continuous and bounded on a bounded subset ofH .

We begin by presenting the following supporting lemma, which is motivated by [11].

Lemma 3.1. [13] Let ψ−1 ≥ 0, ψ0 ≥ 0, {ψn}, {θn}, and {αn} be sequences of nonnegative real numbers
that satisfy the following conditions:

ψn+1 ≤ (1 + θn)ψn + (θn + αn)ψn−1 + αnψn−2, n ∈ N.

Then

ψn+1 ≤ K ·
n∏

j=1

(1 + 2θ j + 2α j), where K = max{ψ−1, ψ0, ψ1}, n ∈ N.

Furthermore, if
∞∑

n=1

θn < +∞ and
∞∑

n=1

αn < +∞, then {ψn} is bounded.

Algorithm 3.2. Forward–backward algorithm by double inertial extrapolations

Initialization : Let 0 < γ <
1
4
, δ > 0, σ ∈ (0, 1). Let {αn} and {θn} be real nonnegative sequences. Let

u−1, u0, u1 ∈ H .
Step 1. Given un, un−1, un−2, compute

zn = un + θn(un − un−1) + αn(un−1 − un−2),
wn = (I + βn∂g)−1(I − βn∇ f )zn,

where βn = δσkn and kn is the smallest non-negative integer such that

βn ·max {‖∇ f (un+1) − ∇ f (wn)‖ , ‖∇ f (zn) − ∇ f (wn)‖} ≤ γ (‖un+1 − wn‖ + ‖zn − wn‖) . (3.1)

Step 2. Calculate
un+1 = (I + βn∂g)−1(I − βn∇ f )wn.

Then, update in Step 1.

Remark 3.3. Algorithm 3.2 is based on double inertial extrapolations and the FB method. Moreover,
our method combines a linesearch technique that can eliminate the need of a Lipschitz constant. This
can enhance the convergence speed of the proposed algorithm compared with other methods.

Lemma 3.4. [16] Linesearch (3.1) stops after finitely many steps.

Theorem 3.5. Let {un} be defined by Algorithm 3.2. If
∞∑

n=1

θn < +∞,
∞∑

n=1

αn < +∞, and lim inf
n→∞

βn > 0,

then

(i) for each v∗ ∈ Γ∗, we have ‖un+1 − v∗‖ ≤ K ·
n∏

j=1

(1 + 2θ j + 2α j), where K = max{‖u−1 − v∗‖, ‖u0 −

v∗‖, ‖u1 − v∗‖};
(ii) the sequence {un} converges weakly to a point in Γ∗.
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Proof. (i) Let v∗ be a solution in Γ∗. From
v∗ − proxβng(v∗)

βn
∈ ∂g(proxβng(v∗)) and wn =

proxβng (zn − βn∇ f (zn)), we can deduce that

zn − wn

βn
− ∇ f (zn) =

zn − proxβng (zn − βn∇ f (zn))

βn
− ∇ f (zn) ∈ ∂g(wn).

By the convexity of g, we obtain

g(v∗) − g(wn) ≥
〈

zn − wn

βn
− ∇ f (zn), v∗ − wn

〉
. (3.2)

Also, from
v∗ − proxβng(v∗)

βn
∈ ∂g(proxβng(v∗)) and un+1 = proxβng(wn − βn∇ f (wn)), we see that

wn − un+1

βn
− ∇ f (wn) =

wn − proxβng (wn − βn∇ f (wn))

βn
− ∇ f (wn) ∈ ∂g(un+1).

It follows from the convexity of g that

g(v∗) − g(un+1) ≥
〈

wn − un+1

βn
− ∇ f (wn), v∗ − un+1

〉
. (3.3)

By Fact 2.1, we get
f (v∗) − f (y) ≥ 〈∇ f (y), v∗ − y〉, y ∈ H . (3.4)

For any v∗ ∈ H , set y = zn in (3.4). Then

f (v∗) − f (zn) ≥ 〈∇ f (zn), v∗ − zn〉. (3.5)

Also, if y = wn in (3.4), then we obtain

f (v∗) − f (wn) ≥ 〈∇ f (wn), v∗ − wn〉. (3.6)

So, from (3.2), (3.3), (3.5), and (3.6), we get
g(v∗) − g(un+1) + g(v∗) − g(wn) + f (v∗) − f (wn) + f (v∗) − f (zn)

≥

〈
wn − un+1

βn
− ∇ f (wn), v∗ − un+1

〉
+

〈
zn − wn

βn
− ∇ f (zn), v∗ − wn

〉
+ 〈∇ f (wn), v∗ − wn〉 + 〈∇ f (zn), v∗ − zn〉

=
1
βn
〈wn − un+1, v∗ − un+1〉 + 〈∇ f (wn), un+1 − v∗〉 +

1
βn
〈zn − wn, v∗ − wn〉

+ 〈∇ f (zn),wn − v∗〉 + 〈∇ f (wn), v∗ − wn〉 + 〈∇ f (zn), v∗ − zn〉

=
1
βn
〈wn − un+1, v∗ − un+1〉 +

1
βn
〈zn − wn, v∗ − wn〉 + 〈∇ f (wn) − ∇ f (un+1), un+1 − wn〉

+ 〈∇ f (un+1), un+1 − wn〉 + 〈∇ f (zn) − f (wn),wn − zn〉 + 〈∇ f (wn),wn − zn〉

≥
1
βn
〈wn − un+1, v∗ − un+1〉 +

1
βn
〈zn − wn, v∗ − wn〉 + ‖∇ f (wn) − ∇ f (un+1)‖ ‖un+1 − wn‖

+ f (un+1) + f (wn) + ‖∇ f (zn) − f (wn)‖ ‖wn − zn‖ + f (wn) − f (zn),
where the last inequality is observed from Fact 2.1. It can be deduced that
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1
βn

[〈wn − un+1, un+1 − v∗〉 + 〈zn − wn,wn − v∗〉]

≥ ( f + g)(un+1) − ( f + g)(v∗) + ( f + g)(wn) − ( f + g)(v∗)
− ‖∇ f (wn) − ∇ f (un+1)‖ ‖un+1 − wn‖ − ‖∇ f (zn) − f (wn)‖ ‖wn − zn‖ . (3.7)

This shows that
1
βn

[〈wn − un+1, un+1 − v∗〉 + 〈zn − wn,wn − v∗〉]

≥ ( f + g)(un+1) − ( f + g)(v∗) + ( f + g)(wn) − ( f + g)(v∗)

−
γ

βn
[‖wn − un+1‖ + ‖wn − zn‖] ‖un+1 − wn‖

−
γ

βn
[‖wn − un+1‖ + ‖wn − zn‖] ‖wn − zn‖

= ( f + g)(un+1) − ( f + g)(v∗) + ( f + g)(wn) − ( f + g)(v∗)

−
γ

βn
‖wn − un+1‖

2
−
γ

βn
‖wn − zn‖

2
−

2γ
βn
‖un+1 − wn‖ ‖wn − zn‖ .

We know that

2〈wn − un+1, un+1 − v∗〉 = ‖wn − v∗‖2 − ‖wn − un+1‖
2 − ‖un+1 − v∗‖2,

and
2〈zn − wn,wn − v∗〉 = ‖zn − v∗‖2 − ‖zn − wn‖

2 − ‖wn − v∗‖2.

So, we have

‖zn − v∗‖2 − ‖un+1 − v∗‖2 ≥ 2βn
[
( f + g)(un+1) − ( f + g)(v∗) + ( f + g)(wn) − ( f + g)(v∗)

]
+(1 − 4γ)‖wn − un+1‖

2 + (1 − 4γ)‖zn − wn‖
2. (3.8)

Using (3.8), we obtain

‖un+1 − v∗‖2 ≤ ‖zn − v∗‖2 − (1 − 4γ)‖wn − un+1‖
2 − (1 − 4γ)‖zn − wn‖

2

+2βn
[
( f + g)(un+1) − ( f + g)(v∗) + ( f + g)(wn) − ( f + g)(v∗)

]
.

Since 0 < γ <
1
4

, we get

‖un+1 − v∗‖2 ≤ ‖zn − v∗‖2 − (1 − 4γ)‖wn − un+1‖
2 − (1 − 4γ)‖zn − wn‖

2

+2βn
[
( f + g)(un+1) − ( f + g)(v∗) + ( f + g)(wn) − ( f + g)(v∗)

]
(3.9)

≤ ‖zn − v∗‖2.

This gives

‖un+1 − v∗‖ ≤ ‖un + θn(un − un−1) + αn(un−1 − un−2) − v∗‖

≤ ‖un − v∗‖ + θn‖un − un−1‖ + αn‖un−1 − un−2‖ (3.10)
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≤ ‖un − v∗‖ + θn [‖un − v∗‖ + ‖un−1 − v∗‖]
+αn[‖un−1 − v∗‖ + ‖un−2 − v∗‖]

= (1 + θn)‖un − v∗‖ + (θn + αn)‖un−1 − v∗‖ + αn‖un−2 − v∗‖.

Using Lemma 3.1, we obtain

‖un+1 − v∗‖ ≤ K ·
n∏

j=1

(1 + 2θ j + 2α j), (3.11)

where K = max{‖u−1 − v∗‖, ‖u0 − v∗‖, ‖u1 − v∗‖}.

(ii) Since
∞∑

n=1

θn < +∞ and
∞∑

n=1

αn < +∞, {un} is bounded according to Lemma 3.1 and (3.11).

Moreover, we have
∞∑

n=1

θn‖un − un−1‖ < +∞ and
∞∑

n=1

αn‖un−1 − un−2‖ < +∞. By (3.10), we conclude that

lim
n→∞
‖un − v∗‖ exists. On the other hand, we see that

‖zn − v∗‖2 = ‖un + θn(un − un−1) + αn(un−1 − un−2) − v∗‖2

= ‖(un − v∗) + θn(un − un−1) + αn(un−1 − un−2)‖2

= ‖(un − v∗) + θn(un − un−1)‖2 + α2
n‖un−1 − un−2‖

2

+2〈un − v∗ + θn(un − un−1), αn(un−1 − un−2)〉
= ‖un − v∗‖2 + θ2

n‖un − un−1‖
2 + 2〈un − v∗, θn(un − un−1)〉

+α2
n‖un−1 − un−2‖

2 + 2〈un − v∗, αn(un−1 − un−2)〉
+2〈θn(un − un−1), αn(un−1 − un−2)〉

≤ ‖un − v∗‖2 + θ2
n‖un − un−1‖

2 + 2θn‖un − v∗‖‖un − un−1‖

+α2
n‖un−1 − un−2‖

2 + 2αn‖un − v∗‖‖un−1 − un−2‖

+2θnαn‖un − un−1‖‖un−1 − un−2‖. (3.12)

From (3.9) and (3.12), we get

‖un+1 − v∗‖2 ≤ ‖un − v∗‖2 + θ2
n‖un − un−1‖

2 + 2θn‖un − v∗‖‖un − un−1‖

+2αn‖un − v∗‖‖un−1 − un−2‖ + 2θnαn‖un − un−1‖‖un−1 − un−2‖

+α2
n‖un−1 − un−2‖

2 − (1 − 4γ)‖wn − un+1‖
2 − (1 − 4γ)‖zn − wn‖

2

−2βn
[
( f + g)(un+1) − ( f + g)(v∗) + ( f + g)(wn) − ( f + g)(v∗)

]
≤ ‖un − v∗‖2 + θ2

n‖un − un−1‖
2 + 2θn‖un − v∗‖‖un − un−1‖

+2αn‖un − v∗‖‖un−1 − un−2‖ + 2θnαn‖un − un−1‖‖un−1 − un−2‖

+α2
n‖un−1 − un−2‖

2 − (1 − 4γ)‖wn − un+1‖
2 − (1 − 4γ)‖zn − wn‖

2. (3.13)

Since
∑∞

n=1 θn < +∞,
∑∞

n=1 αn < +∞, and lim
n→∞
‖un − v∗‖ exists, from (3.13) we obtain

lim
n→∞
‖wn − un+1‖ = 0, (3.14)
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and
lim
n→∞
‖zn − wn‖ = 0. (3.15)

We see that

‖zn − un‖ = ‖un + θn(un − un−1) + αn(un−1 − un−2) − un‖

≤ θn‖un − un−1‖ + αn‖un−1 − un−2‖

→ 0. (3.16)

From (3.15) and (3.16), we have

‖wn − un‖ ≤ ‖wn − zn‖ + ‖zn − un‖

→ 0. (3.17)

From (3.14) and (3.17), we get

‖un+1 − un‖ ≤ ‖un+1 − wn‖ + ‖wn − un‖

→ 0.

Let a be a weak cluster point of {un}. Then there exists a subsequence {un j} of {un} such that un j ⇀ a ∈
H . Moreover, we get un j+1 ⇀ a. Next, we show that a ∈ Γ∗. Let (p, q) ∈ Graph(∇ f + ∂g), that is,
q − ∇ f (p) ∈ ∂g(p). Since {un j} is bounded and lim

j→∞
‖un j+1 − wn j‖ = 0, by (A2), we have

lim
j→∞
‖∇ f (un j+1) − ∇ f (wn j)‖ = 0. (3.18)

From
un j+1 = (I + βn j∂g)−1(I − βn j∇ f )wn j ,

it follows that
(I − βn j∇ f )wn j ∈ (I + βn j∂g)un j+1.

Hence,
1
βn j

(wn j − un j+1 − βn j∇ f (wn j)) ∈ ∂g(un j+1).

By the monotonicity of ∂g, we obtain〈
p − un j+1, q − ∇ f (p) −

1
βn j

(wn j − un j+1 − βn j∇ f (wn j))
〉
≥ 0.

Consequently, we have

〈p − un j+1, q〉 ≥
〈

p − un j+1,∇ f (p) +
1
βn j

(wn j − un j+1 − βn j∇ f (wn j))
〉

= 〈p − un j+1,∇ f (p) − ∇ f (wn j)〉 +
〈

p − un j+1,
1
βn j

(wn j − un j+1)
〉

= 〈p − un j+1,∇ f (p) − ∇ f (un j+1)〉 + 〈p − un j+1,∇ f (un j+1) − ∇ f (wn j)〉
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+

〈
p − un j+1,

1
βn j

(wn j − un j+1)
〉

≥ 〈p − un j+1,∇ f (un j+1) − ∇ f (wn j)〉

+

〈
p − un j+1,

1
βn j

(wn j − un j+1)
〉
. (3.19)

From (3.18), taking the limit as j→ ∞ in (3.19), we have

〈p − a, q〉 ≥ 0.

Hence, by the maximal monotonicity of ∇ f + ∂g and Lemma 2.3, we have 0 ∈ (∇ f + ∂g)(a), i.e.,
a ∈ (∇ f + ∂g)−1(0) = Γ∗. By Lemma 2.4, it is concluded that {un} converges weakly to a point in Γ∗.
Thus, we complete the proof. �

4. Numerical experiments

4.1. Image restoration

Next, we present numerical experiments to evaluate the performance of Algorithm 3.2 and to
compare it with Iteration (1.5) and Iteration (1.6).

We consider the problem of image restoration, which can be formulated by:

b = Dx + ε, (4.1)

where an original image is denoted as x ∈ RN×1, a degraded image is represented by b ∈ RM×1, a noise
term is given by ε ∈ RM×1, and D ∈ RM×N is a blurring matrix. It is worth noting that problem (4.1)
can be equivalently formulated as the convex minimization model

min
x∈RN

1
2
‖b − Dx‖22 + η‖x‖1,

where η > 0. We set ∇ f (x) = Dt(Dx − b) and ∂g(x) = ∂(η‖x‖1). To measure the quality of the restored
images, we use the peak signal-to-noise ratio (PSNR) [28]

PS NR := 20 log10(
2552

‖xn − x‖22
),

and the structural similarity index measure (SSIM) [30]

S S IM :=
(2θxθxr + c1)(2σxxr + c2)

(θ2
x + θ2

xr
+ c1)(σ2

x + σ2
xr

+ c2)
.

In these equations, all parameters are defined as in [28, 30].
In this example, the initial points u−1, u0, and u1 are the blurred image with the stopping criterion at

the 500th iteration. The regularization parameter is chosen as η = 10−5. All parameters are selected as

in Table 1 with sn+1 =
1 +

√
1 + 4s2

n

2
.

AIMS Mathematics Volume 9, Issue 7, 18841–18859.



18851

Table 1. Numerical comparison of PSNR and SSIM values of each algorithm.

θn αn βn δ σ γ s1

Iteration (1.5)
sn − 1
sn+1

- 0.5 - - - 1

Iteration (1.6) - - - 1.5 0.75 0.75 -

Algorithm 3.2
if 1 ≤ n ≤ 200, θn =

sn − 1
sn+1

1
(10n + 1)2 - 1.4 0.86 0.24 1

else, θn =
1

(3n + 1)2

First, we apply the toolbox in our test and degrade the original image by motion blur with an angle
of 90 and a motion length of 25. After that, we present the restored images at 500 iterations for each
algorithm in Table 2 and show them in Figure 1. Moreover, the performance measurements for PSNR
and SSIM are illustrated in Figure 2.

Table 2 shows that the PSNR value of our algorithm is 42.9128, which is higher than other iterations.
This means that images recovered using our algorithm will have image quality closer to the original
than images recovered using other algorithms. For SSIM, it is recovered perfectly if the value is 1. In
this example, the SSIM value is found to be 0.9834, which is also higher than other iterations. So, our
proposed method has the best performance among other iterations.

Table 2. Numerical comparison of PSNR and SSIM values of each iteration.

Iteration (1.5) Iteration (1.6) Algorithm 3.2
PSNR 40.0807 34.7060 42.9128
SSIM 0.9692 0.9379 0.9834

(a) Cat (b) Observed image (c) Algorithm 3.2

(d) Iteration (1.5) (e) Iteration (1.6)

Figure 1. The Cat image (909 × 608) reconstructed by each iteration.

AIMS Mathematics Volume 9, Issue 7, 18841–18859.



18852

(a) PSNR Quality (b) SSIM Quality

Figure 2. Measuring the quality of the Cat image.

4.2. Data classification

In this part, we focus on the data classification problem. Several real-world problems considered in
this work can be cast in the framework of a convex minimization problem. We will explain the process
of formulating machine learning (ML) problems, particularly classification problems. Furthermore, we
present the evidence which indicates that the introduced methods outperform some of the approaches
in the existing literature.

Before delving into our work, we will briefly overview an extreme learning machine (ELM) applied
to data classification problems. Let P := {(un, zn) : un ∈ R

n, zn ∈ R
m, n = 1, 2, ...,N} represent a training

set comprising N distinct samples, where un is input training data, and zn is a training target. For any
single hidden layer of ELM, the output at the i-th hidden node is

hi(u) =W(〈ai, u〉 + bi),

where W denotes an activation function, and ai and bi represent the parameters for the weight and
bias at the i-th hidden node, respectively. The output function of the ELM for single-hidden layer
feedforward neural networks (SLFNs) with M hidden nodes is

On =

M∑
i=1

ωihi(un),

where ωi stands for the optimal output weight at the i-th hidden node. The matrixA, corresponding to
the output of the hidden layer, is defined as

A =


W(〈a1, u1〉 + b1) · · · W(〈aM, u1〉 + bM)

...
. . .

...

W(〈a1, uN〉 + b1) · · · W(〈aM, uN〉 + bM)

 .
The primary objective of ELM is to determine the optimal output weight ω = [ωT

1 , ω
T
2 , ..., ω

T
M]T such

that Aω = T , where T = [tT
1 , t

T
2 , ..., t

T
N]T represents the training target data. In certain situations,
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finding ω = A∗T , where A∗ is the Moore-Penrose generalized inverse of A, can be challenging,
especially when the matrix A is non-existent. Consequently, obtaining such a solution ω through
convex minimization can overcome this difficulty.

In this part, we conduct experiments on the classification problem, which can be formulated as the
convex minimization problem

min
ω∈RM

{
1
2
‖Aω − T‖22 + β‖ω‖1

}
, (4.2)

where β is a regularization parameter. This problem is called the regularization of least squares problem
by L1, or the least absolute shrinkage and selection operator (LASSO).

We employ the binary cross-entropy loss function [12] with sigmoid activation function defined by

Loss = −
1
ρ

ρ∑
j=1

u j log û j + (1 − u j) log(1 − û j), (4.3)

where ρ is the number of scalar values in the model output, u j is the corresponding target value, and û j

is the j-th scalar values in the model output.
The precision and recall can justify the performance evaluation in classification. Recall, also known

as the true positive rate, measures the accuracy of predictions in positive classes and represents the
percentage of correctly predicted positive observations. Accuracy and F1-score can be calculated using
the following equations [10]:

Precision (Pre) =
T P

T P + FP
× 100%,

Recall (Rec) =
T P

T P + FN
× 100%,

Accuracy (Acc) =
T P + T N

T P + FP + T N + FN
× 100%,

F1-score =
2 × (Pre×Rec)

Pre + Rec
× 100%,

where a confusion matrix for original and predicted classes are indicated in terms of T P =True Positive,
T N =True Negative, FP =False Positive and FN =False Negative.

First, we will mention Chronic Kidney Disease (CKD), which is among the rapidly growing
diseases, and which poses a significant threat to health and life. CKD is characterized by the
gradual failure of the kidneys to perform their essential functions, such as blood filtration. Given that
kidney damage occurs progressively over an extended period, it qualifies as a “chronic” disease. The
functionality of the urinary organs is also compromised. As the disease advances, it may accumulate
waste in the blood, giving rise to additional health complications. Associated symptoms include
hypertension, a decline in blood count levels, weakened bones, nerve damage, and, ultimately, an
increased risk of heart and blood vessel diseases.

In this numerical experiment, the dataset is sourced from the UCI Dataset for CKD, encompassing
sample data from 400 patients. The dataset comprises 13 attributes and 1 class attribute. The
considered features include blood pressure, specific gravity, albumin, sugar, red blood cells, blood
urea, serum creatinine, sodium, potassium, hemoglobin, white blood cell count, red blood cell count,
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and hypertension. The visualization of the CKD dataset is presented in Table 3. The output classes,
namely ‘Diseased’ (meaning the patient has CKD) and ‘Not Diseased’ (meaning the patient is healthy),
consist of 250 and 150 instances, respectively. For implementing machine learning algorithms, we used
280 data for training and 120 data for testing, as illustrated in Table 4.

Table 3. Overview of all attributes used in training the models.

Attributes Mean SD Min Max
Blood pressure 0.2035 0.1037 0 1
Specific gravity 1.0177 0.0054 1.005 1.025
Albumin 1.015 1.2723 0 5
Sugar 0.395 1.0400 0 5
Red blood cell 0.8825 0.3224 0 1
Blood Urea 0.1435 0.1265 0 1
Serum creatinine 0.0353 0.0743 0 1
Sodium 0.8393 0.0581 0 1
Pottasium 0.0478 0.0634 0 1
Hemoglobin 12.5269 2.7162 3.1 17.8
white blood cell count 0.2565 0.1043 0 1
Red blood cell count 4.7083 0.8403 2.1 8
Hypertension 0.3694 0.4820 0 1
(SD: Standard deviation)

Table 4. Class distribution in dataset.

Class Number of instances Training dataset Testing dataset
1 Diseased 250 175 75
2 Not Diseased 150 105 45

Specifically, we employ our algorithm to optimize weight parameters in training data for machine
learning, and we focus on the extreme machine learning (ELM). The computational process begins
with the activation function set as sigmoid and hidden nodes L set to 180. We compare the outcomes
of our algorithm with those obtained from Iteration (1.5) and Iteration (1.6). The inertial points are set
as u−1 = (1, 1, 1, ..., 1), u0 = (1, 1, 1, ..., 1), and u1 = (0, 0, 0, ..., 0). The parameters for each algorithm
used in the comparison are as follows:

• Iteration (1.5): s1 = 1;
• Iteration (1.6): δ = 1.1, σ = 0.24 and γ = 0.11;

• Algorithm 3.2: if 0 ≤ n ≤ 300, we set θn =
sn − 1
sn+1

, sn+1 =
1 +

√
1 + 4s2

n

2
, else θn =

1
(10n + 1)2 ,

αn =
1

(5n + 1)2 , s1 = 1, δ = 1.4, σ = 0.87, and γ = 0.24.

We compare the performance of each algorithm for the number of iterations at 500 and 1000. The
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numerical results are presented in Tables 5 and 6. It shows that our algorithm, Algorithm 3.2, performs
the best in terms of accuracy at both 500 and 1000 iterations.

Table 5. The performance of each algorithm for 500 iterations.

Algorithms Pre Rec F1-score Acc
Iteration (1.5) 80 97.78 88 90
Iteration (1.6) 81.48 97.78 88.89 90.83
Algorithm 3.2 83.33 100 90.91 92.5

Table 6. The performance of each algorithm for 1000 iterations.

Algorithms Pre Rec F1-score Acc
Iteration (1.5) 80 97.78 88 90
Iteration (1.6) 83.33 100 90.91 92.50
Algorithm 3.2 84.91 100 91.84 93.33

Next, we show the performance with the highest accuracy of each algorithm for prediction in terms
of iterations. The comparison is shown in Table 7.

Table 7. The performance of each algorithm with training accuracy > 91 and testing accuracy
> 96.

Algorithms Iterations Pre Rec F1-score Acc
Iteration (1.5) 60 97.67 93.33 95.45 96.67
Iteration (1.6) 56 97.67 93.33 95.45 96.67
Algorithm 3.2 19 97.67 93.33 95.45 96.67

From Table 7, we observe that Algorithm 3.2 has fewer iterations than Iteration (1.5) and
Iteration (1.6) with the stopping criteria as training accuracy > 91 and testing accuracy > 96. Moreover,
the proposed algorithm provides more accuracy than other algorithms. This shows that our algorithm
has the highest probability of correctly classifying the CKD dataset compared to other algorithms.

Next, the convergence behavior of the accuracy and the loss of training data and testing data for
overfitting of Algorithm 3.2 are shown graphs in Figure 3 and Figure 4, respectively. We can see that
the graphs have loss of training data and testing data.

In Figures 3 and 4, it shows the convergence behaviour of accuracy and loss of Algorithm 3.2. We
see that graphs have a good fitting model which means that Algorithm 3.2 suitably learns the training
dataset classification.
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Figure 3. Accuracy of Algorithm 3.2.

Figure 4. Loss of Algorithm 3.2.

5. Conclusions

In this study, we presented a recent FB algorithm for convex minimization problems. Our approach
incorporates a linesearch technique to eliminate the need for explicit Lipschitz assumptions and
employs double inertial extrapolations to accelerate the algorithm’s convergence. Furthermore, we
established a weak convergence theorem under reasonable assumptions. Additionally, we conducted
numerical tests in image restoration and data classification, demonstrating the superiority of our
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algorithm over existing methods in the literature. The experimental results validate the effectiveness
and improved performance of our proposed approach.
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