Research article Special Issues

Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space

  • Received: 31 January 2024 Revised: 06 May 2024 Accepted: 21 May 2024 Published: 05 June 2024
  • MSC : 35B40, 35B41, 37L30

  • The focus of this paper lies in exploring the limiting dynamics of stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions and nonlinear noise in weighted space. To begin, we established the well-posedness of solutions to these stochastic delay lattice systems and subsequently proved the existence and uniqueness of invariant measures.

    Citation: Xintao Li, Lianbing She, Rongrui Lin. Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space[J]. AIMS Mathematics, 2024, 9(7): 18860-18896. doi: 10.3934/math.2024918

    Related Papers:

  • The focus of this paper lies in exploring the limiting dynamics of stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions and nonlinear noise in weighted space. To begin, we established the well-posedness of solutions to these stochastic delay lattice systems and subsequently proved the existence and uniqueness of invariant measures.



    加载中


    [1] S. F. Mingaleev, P. L. Christiansen, Y. B. Gaidideiet, M. Johansson, K. Ø. Rasmussen, Models for energy and charge transport and storage in biomolecules, J. Biol. Phys., 25 (1999), 41–63. https://doi.org/10.1023/A:1005152704984 doi: 10.1023/A:1005152704984
    [2] J. M. Pereira, Global attractor for a generalized discrete nonlinear Schrödinger Equation, Acta. Appl. Math., 134 (2014), 173–183. https://doi.org/10.1007/s10440-014-9877-0 doi: 10.1007/s10440-014-9877-0
    [3] J. M. Pereira, Pullback attractor for a nonlocal discrete nonlinear Schrödinger equation with delays, Electron. J. Qual. Theo., 93 (2021), 1–18. https://doi.org/10.14232/ejqtde.2021.1.93 doi: 10.14232/ejqtde.2021.1.93
    [4] Y. Chen, X. Wang, Random attractors for stochastic discrete complex Ginzburg-Landau equations with long-range interactions, J. Math. Phys., 63 (2022), 032701. https://doi.org/10.1063/5.0077971 doi: 10.1063/5.0077971
    [5] Y. Chen, X. Wang, K. Wu, Wong-Zakai approximations of stochastic lattice systems driven by long-range interactions and multiplicative white noises, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 1092–1115. https://doi.org/10.3934/dcdsb.2022113 doi: 10.3934/dcdsb.2022113
    [6] C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc., 286 (1984), 431–469. https://doi.org/10.2307/1999806 doi: 10.2307/1999806
    [7] B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal-Theor., 70 (2009), 3799–3815. https://doi.org/10.1016/j.na.2008.07.011 doi: 10.1016/j.na.2008.07.011
    [8] A. Adili, B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst. Special, (2013), 1–10. https://doi.org/10.3934/proc.2013.2013.1
    [9] A. Adili, B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin, Dyn. Syst. Ser. B, 18 (2013), 643–666. https://doi.org/10.3934/dcdsb.2013.18.643 doi: 10.3934/dcdsb.2013.18.643
    [10] A. Gu, B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689–1720. https://doi.org/10.3934/dcdsb.2018072 doi: 10.3934/dcdsb.2018072
    [11] Z. Wang, S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwan. J. Math., 20 (2016), 589–616. https://doi.org/10.11650/tjm.20.2016.6699 doi: 10.11650/tjm.20.2016.6699
    [12] S. Yang, Y. Li, T. Caraballo, Dynamical stability of random delayed FitzHugh-Nagumo lattice systems driven by nonlinear Wong-Zakai noise, J. Math. Phys., 63 (2022), 111512. https://doi.org/10.1063/5.0125383 doi: 10.1063/5.0125383
    [13] C. E. Elmer, E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations, SIAM J. Appl. Math., 65 (2005), 1153–1174. https://doi.org/10.1137/S003613990343687 doi: 10.1137/S003613990343687
    [14] E. Van Vleck, B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D, 212 (2005), 317–336. https://doi.org/10.1016/j.physd.2005.10.006 doi: 10.1016/j.physd.2005.10.006
    [15] Z. Chen, D. Yang, S. Zhong, Limiting dynamics for stochastic FitzHugh-Nagumo lattice systems in weighted spaces, J. Dyn. Diff. Equ., 2022, 1–32. https://doi.org/10.1007/s10884-022-10145-2
    [16] A. Gu, Y. R. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci., 19 (2014), 3929–3937. https://doi.org/10.1016/j.cnsns.2014.04.005 doi: 10.1016/j.cnsns.2014.04.005
    [17] A. Gu, Y. Li, J. Li, Random attractors on lattice of stochastic FitzHugh-Nagumo systems driven by $\alpha$-stable Lévy noises, Int. J. Bifurcat. Chaos, 24 (2014), 1450123. https://doi.org/10.1142/S0218127414501235 doi: 10.1142/S0218127414501235
    [18] L. Xu, W. Yan, Stochastic FitzHugh-Nagumo systems with delay, Taiwan. J. Math., 16 (2012), 1079–1103. https://doi.org/10.11650/twjm/1500406680 doi: 10.11650/twjm/1500406680
    [19] Z. Chen, X. Li, B. Wang, Invariant measures of stochastic delay lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3235–3269. https://doi.org/10.3934/dcdsb.2020226 doi: 10.3934/dcdsb.2020226
    [20] D. Li, B. Wang, X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dyn. Differ. Equ., 34 (2022), 1453–1487. https://doi.org/10.1007/s10884-021-10011-7 doi: 10.1007/s10884-021-10011-7
    [21] Y. Lin, D. Li, Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems, Discrete Contin. Dynam. Syst. Ser. B, 27 (2022), 7561–7590. https://doi.org/10.3934/dcdsb.2022054 doi: 10.3934/dcdsb.2022054
    [22] W. Yan, Y. Li, S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702. https://doi.org/10.1063/1.3319566 doi: 10.1063/1.3319566
    [23] D. Li, L. Shi, Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay, J. Differ. Equ. Appl., 24 (2018), 872–897. https://doi.org/10.1080/10236198.2018.1437913 doi: 10.1080/10236198.2018.1437913
    [24] D. Li, L. Shi, X. Wang, Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5121–5148. https://doi.org/10.3934/dcdsb.2019046 doi: 10.3934/dcdsb.2019046
    [25] F. Wang, T. Caraballo, Y. Li, R. Wang, Periodic measures for the stochastic delay modified Swift-Hohenberg lattice systems, Commun. Nonlinear Sci., 125 (2023), 107341. https://doi.org/10.1016/j.cnsns.2023.107341 doi: 10.1016/j.cnsns.2023.107341
    [26] P. E. Kloeden, T. Lorenz, Mean-quare random dynamical systems, J. Differ. Equations, 253 (2012), 1422–1438. https://doi.org/10.1016/j.jde.2012.05.016 doi: 10.1016/j.jde.2012.05.016
    [27] B. Wang, Dynamics of stochastic reaction difusion lattice system driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104–132. https://doi.org/10.1016/j.jmaa.2019.04.015 doi: 10.1016/j.jmaa.2019.04.015
    [28] B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spacs, J. Dyn. Differ. Equ., 31 (2019), 277–2204. https://doi.org/10.1007/s10884-018-9696-5 doi: 10.1007/s10884-018-9696-5
    [29] S. Yang, Y. Li, Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise, J. Math. Phys., 62 (2021), 051510. https://doi.org/10.1063/5.0037929 doi: 10.1063/5.0037929
    [30] A. Gu, Weak pullback mean random attractors for stochastic evolution equations and applications, Stoch. Dynam., 22 (2022), 1–6. https://doi.org/10.1142/S0219493722400019 doi: 10.1142/S0219493722400019
    [31] A. Gu, Weak pullback mean random attractors for non-autonomous p-Laplacian equations, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3863–3878. https://doi.org/10.3934/dcdsb.2020266 doi: 10.3934/dcdsb.2020266
    [32] R. Liang, P. Chen, Existence of weak pullback mean random attractors for stochastic Schrödinger lattice systems driven by superlinear noise, Discrete Contin. Dynam. Syst. Ser. B, 28 (2023), 4993–5011. https://doi.org/10.3934/dcdsb.2023050 doi: 10.3934/dcdsb.2023050
    [33] B. Wang, R. Wang, Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise, Stoch. Anal. Appl., 38 (2020), 213–237. https://doi.org/10.1080/07362994.2019.1679646 doi: 10.1080/07362994.2019.1679646
    [34] J. Shu, L. Zhang, X. Huang, J. Zhang, Dynamics of stochastic Ginzburg-Landau equations driven by nonlinear noise, Dynam. Syst., 37 (2022), 382–402. https://doi.org/10.1080/14689367.2022.2060066 doi: 10.1080/14689367.2022.2060066
    [35] R. Wang, B. Wang, Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431–7462. https://doi.org/10.1016/j.spa.2020.08.002 doi: 10.1016/j.spa.2020.08.002
    [36] R. Wang, B. Wang, Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise, Discrete Contin. Dynam. Syst. Ser. B, 25 (2020), 2461–2493. https://doi.org/10.3934/dcdsb.2020019 doi: 10.3934/dcdsb.2020019
    [37] R. Wang, Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping, J. Dynam. Differ. Equ., 33 (2021), 767–803. https://doi.org/10.1007/s10884-020-09830-x doi: 10.1007/s10884-020-09830-x
    [38] X. Wang, P. E. Kloeden, X. Han, Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise, Nodea Nonlinear Differ., 28 (2021), 1–31. https://doi.org/10.1007/s00030-021-00705-8 doi: 10.1007/s00030-021-00705-8
    [39] J. Kim, On the stochastic Burgers equation with polynomial nonlinearity in the real line, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 835–866. https://doi.org/10.3934/dcdsb.2006.6.835 doi: 10.3934/dcdsb.2006.6.835
    [40] J. Kim, On the stochastic Benjamin-Ono equation, J. Differ. Equations, 228 (2006), 737–768. https://doi.org/10.1016/j.jde.2005.11.005 doi: 10.1016/j.jde.2005.11.005
    [41] Z. Brzeźniak, E. Motyl, M. Ondrejat, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Ann. Probab., 45 (2017), 3145–3201. https://doi.org/10.1214/16-AOP1133 doi: 10.1214/16-AOP1133
    [42] Z. Brzeźniak, M. Ondrejat, J. Seidler, Invariant measures for stochastic nonlinear beam and wave equations, J. Differ. Equations, 260 (2016), 4157–4179. https://doi.org/10.1016/j.jde.2015.11.007 doi: 10.1016/j.jde.2015.11.007
    [43] J. Kim, Invariant measures for a stochastic nonlinear Schrödinger equation, Indiana Univ. Math. J., 55 (2006), 687–717. https://doi.org/10.1512/iumj.2006.55.2701 doi: 10.1512/iumj.2006.55.2701
    [44] J. Kim, Periodic and invariant measures for stochastic wave equations, Electron. J. Differ. Eq., 5 (2004), 1–30. https://doi.org/10.1023/B:DISC.0000005011.93152.d8 doi: 10.1023/B:DISC.0000005011.93152.d8
    [45] C. Sun, C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal-Theor., 63 (2005), 49–65. https://doi.org/10.1016/j.na.2005.04.034 doi: 10.1016/j.na.2005.04.034
    [46] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41–52. https://doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2
    [47] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 246 (2009), 845–869. https://doi.org/10.1016/j.jde.2008.05.017 doi: 10.1016/j.jde.2008.05.017
    [48] H. Lu, J. Qi, B. Wang, M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dynam. Syst. Ser. A, 39 (2019), 683–706. https://doi.org/10.3934/dcds.2019028 doi: 10.3934/dcds.2019028
    [49] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9780511666223
    [50] F. Wu, G. Yin, H. Mei, Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differ. Equations, 262 (2017), 1226–1252. https://doi.org/10.1016/j.jde.2016.10.006 doi: 10.1016/j.jde.2016.10.006
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(502) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog