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1. Introduction

Let H represent a real Hilbert space featuring an inner product 〈·, ·〉 and its corresponding norm
denoted as | · | =

√
〈·, ·〉. Our aim is to address the monotone inclusion problem, which seeks to find

x ∈ H such that
0 ∈ Ax + Bx, (1.1)

where A : H → H is a single-valued mapping, and B : H → 2H denotes a multi-valued mapping. The
set of all solutions to problem (1.1) is denoted as (A+B)−1(0). Many intriguing problems can be framed
within the framework of the monotone inclusion problem (1.1), such as convex minimization problems,
variational inequalities, equilibrium problems, image processing challenges, and more. One of the
most renowned algorithms used to approximate the solution of problem (1.1) is the forward-backward
algorithm (FB), as highlighted in references such as [1–3]. This algorithm (FB) was initially introduced
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by Brezis and Lions [4] and is defined by a sequence (xk)k≥1 according to the recurrence relation:

xk+1 = JB
λ (xk − λAxk), for all k ≥ 1, (1.2)

where JB
λ = (Id + λB)−1 represents the resolvent of the operator B, λ > 0, and Id denotes the

identity mapping. This method is used in the context of solving monotone inclusion problems and
has been widely studied and applied in various fields such as optimization and signal processing.
After that, Moudafi [5] later introduced the viscosity approximation method to address issues of
strong convergence. This method combines the forward-backward splitting algorithm with contraction
mappings. The viscosity approach ensures strong convergence of the iterative sequences, which is
particularly useful in various applications like fixed-point problems.

The method involves both the proximal point algorithm and the gradient method, as evidenced in
references such as [6–12].

On the other hand, the concept of the heavy ball method (or inertial method), introduced by
Polyak in 1964 [13], was an early example of incorporating inertia into optimization algorithms.
The discretized form of this method has inspired various optimization algorithms that incorporate
momentum to accelerate convergence.

In 2001, Alvarez and Attouch [14] introduced a new algorithm based on the inertial method outlined
in [13]. This method is expressed as follows:wk = xk + θk(xk − xk−1),

xk+1 = (Id + λkB)−1wk, for all k ≥ 1.
(1.3)

They established that the sequence (xk)k≥1 generated by algorithm (1.3) converges weakly to a zero
point of the operator B under the conditions (θk)k≥1 ⊆ [0, 1] and (λk)k≥1 being non-decreasing, with
the constraint

∞∑
k=1

θk‖xk − xk−1‖
2 < ∞. (1.4)

See [15, 16] for other types of conditions on θk, which no longer rely on the iterates.
Moudafi and Oliny [17] proposed an iterative method that incorporates the concept of the inertial

method to address problem (1.1). They also proved weak convergence of the iterates under the
following conditions:

(i) The condition (1.4) holds.
(ii) λk < 2/L with L the Lipschitz constant of A.

Their algorithm is defined bywk = xk + θk(xk − xk−1),
xk+1 = (Id + λkB)−1(wk − λkAwk), for all k ≥ 1,

(1.5)

where A : H → H and B : H → 2H .
We explore several methods proposed in recent studies for tackling monotone inclusion problems,

each with its unique approach and contributions. Cholamjiak et al. [18] extended the inertial forward-
backward splitting method to Banach spaces; this study focuses on applications in compressed
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sensing, showcasing the method’s efficacy in real-world scenarios. After that, Shehu et al. [19]
introduced inertial terms into iterative methods for nonexpansive mappings; we introduce the
advantages of inertial techniques in improving convergence rates and handling compressed sensing
problems. In 2020, Artsawang and Ungchittrakool [20] aimed at solving monotone inclusion and
image restoration problems; this method develops an inertial Mann-type algorithm for nonexpansive
mappings, showcasing its applicability in diverse domains. The approach utilizes the Mann-type
algorithm, as demonstrated by references such as [21–24]. Alternatively, image restoration problems
typically require the restoration of a high-quality image from a degraded or noisy version. Monotone
inclusion methods provide powerful frameworks for addressing such problems, as can be seen in
[25–31].

Kitkuan et al. [32] recently introduced a viscosity approximation algorithm using the inertial
forward-backward approach to solve problem (1.1). Their algorithm is formulated as follows:wk = xk + θk(xk − xk−1),

xk+1 = γk( f (xk)) + (1 − γk)JB
λk

(wk − λkAwk), for all k ≥ 1,
(1.6)

where A : H → H represents a µ-inverse strongly monotone operator with µ > 0, B : H → 2H is
a maximal monotone operator, and f : H → H is a contraction with constant constraint c ∈ (0, 1).
They also proved the strong convergence of their proposed method under certain appropriate conditions
imposed on the parameters.

In 2020, Kitkuan et al. [33] introduced a novel method that combines the Halpern-type method and
the forward-backward splitting method to solve the monotone inclusion problem (1.1). Their method
is described as: 

u, x1 ∈ H ,

zk = αkxk + (1 − αk)JB
λk

(xk − λkAxk),
yk = βkxk + (1 − βk)JB

λk
(zk − λkAzk),

xk+1 = γku + (1 − γk)yk, for all k ≥ 1,

(1.7)

where JB
λk

= (Id + λkB)−1 denotes the resolvent of B, and αk, βk, γk ∈ (0, 1). Strong convergence results
are obtained under certain appropriate conditions.

By drawing inspiration from the inertial viscosity forward-backward splitting algorithms pioneered
by Kitkuan et al. [32, 33], we propose the following algorithm:

(Algorithm 1)


wk = xk + θk(xk − xk−1),
zk = αkwk + (1 − αk)JB

λk
(wk − λkAwk),

yk = βkwk + (1 − βk)JB
λk

(zk − λkAzk),
xk+1 = γk f (xn) + (1 − γk)yk, for all k ≥ 1,

(1.8)

where (θk)k≥1 ⊆ [0, θ] with θ ∈ [0, 1) and (αk)k≥1, (βk)k≥1 and (γk)k≥1 are sequences in [0, 1].

Remark 1.1. If αk = 1 in Algorithm 1, we have the inertial viscosity forward-backward
splitting algorithm (1.6).

If θk = 0 and setting f (xk) = u in Algorithm 1, we have generalized Halpern-type forward-backward
splitting method (1.7).
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The structure of this work is as follows. In Section 2, we revisit and compile essential definitions
and properties crucial to this study. In Section 3, we prove convergence results for our proposed method
addressing problem (1.1). After that, Section 4 assesses the proposed method’s performance through
numerical experiments. Finally, we conclude this work by offering some closing remarks in Section 5.

2. Preliminaries

An operator T : H → H is nonexpansive if ‖T x− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H . We denote the set
of all fixed points of the operator T as Fix(T ) := {x ∈ H : T x = x}.

Let C be a nonempty closed convex subset of H . The metric projection of H onto C, denoted as
projC : H → C, is defined by projC(x) = arg minc∈C ‖x − c‖ for all x ∈ H . It is known that

〈x − projC(x), y − projC(x)〉 ≤ 0

for all x ∈ H and y ∈ C.
A mapping K : H → H is called monotone if for all x, y ∈ H , 〈Kx − Ky, x − y〉 ≥ 0 and it is said

to be β-inverse strongly monotone with parameter β > 0 if, there exists a constant β > 0 such that

〈Kx − Ky, x − y〉 ≥ β‖Kx − Ky‖2

for all x, y ∈ H .
Let L : H → 2H be a set-values operator. We denote by gra(L) := {(x, u) ∈ H × H : u ∈ Lx} its

graph of L. The operator L is called monotone if,

〈u − v, x − y〉 ≥ 0

for all (x, u), (y, v) ∈ gra(L). It is classified as maximal monotone if there exists no proper monotone
extension of its graph.

The resolvent of L and parameter λ ≥ 0, JL
λ : H → 2H defined by JL

λ := (Id + λL)−1, where Id is
the identity operator fromH toH . If L is maximally monotone, JL

λ is a single-valued operator.
Next, we present several results in real Hilbert spaces that will prove to be valuable in our

convergence analysis.

Lemma 2.1. [34] LetH be a real Hilbert space. Then, the following conditions are satisfied:

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 for all x, y ∈ H .
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H .

(iii) ‖τx + (1 − τ)y‖2 = τ‖x‖2 + (1 − τ)‖y‖2 − τ(1 − τ)‖x − y‖2 for all τ ∈ [0, 1] and x, y ∈ H .

In order to show the convergence results, we also require the following tools.

Lemma 2.2. [35, Lemma 2.5] Let (S k)k≥1 be a sequence of nonnegative real numbers satisfying the
following inequalities

S k+1 ≤ (1 − ρk)S k + ρkσk ∀k ≥ 1 and S k+1 ≤ S k − ηk + πk ∀k ≥ 1,

where (ρk)k≥1 forms a sequence within (0, 1), (ηk)k≥1 constitutes a sequence of nonnegative real
numbers, and both (σk)k≥1 and (πk)k≥1 are real sequences, satisfying the conditions:
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(i)
∑

k≥1 ρk = ∞.
(ii) limk→∞ πk = 0.

(iii) limi→∞ ηki = 0 implies lim supi→∞ σki ≤ 0 for any subsequence (ηki)i≥1 of (ηk)k≥1.

Then the sequence (S k)k≥1 converges to 0.

For convenience, the following notation will be used

ΓA,B
λ := (Id + λB)−1(Id − λA), λ ≥ 0.

Lemma 2.3. [36] Let A be an µ-inverse strongly monotone operator from a real Hilbert spaceH into
itself and B : H → 2H a maximal monotone operator. Then, the following inequalities hold.

‖ΓA,B
λ x − ΓA,B

λ y‖2 ≤ ‖x − y‖2 − λ(2µ − λ)‖Ax − Ay‖2

− ‖(Id − JB
λ )(Id − λA)x − (Id − JB

λ )(Id − λA)y‖2 (2.1)

for all x, y ∈ Bλ := {z ∈ H : ‖z‖ ≤ λ}.

Lemma 2.4. [36] Let A be an µ-inverse strongly monotone operator from a real Hilbert spaceH into
itself and B : H → 2H a maximal monotone operator. Then, the following conditions hold.

(i) For λ > 0, Fix(ΓA,B
λ ) = (A + B)−1(0).

(ii) For 0 < δ ≤ λ and x ∈ H , ‖x − ΓA,B
δ x‖ ≤ 2‖x − ΓA,B

λ x‖.

Theorem 2.5. [37] Let H be a real Hilbert space with a nonempty closed convex subset C, consider
a nonexpansive mapping T : C → C with Fix(T ) , ∅. For every u ∈ C and any t ∈ (0, 1), the unique
fixed point xt within C derived from the contraction C 3 x 7→ tu + (1− t)T x converges strongly towards
a fixed point of T as t tends to zero.

3. Main results

In this section, we delve into the intricate details of the convergence analysis for our main results.

Theorem 3.1. Let A : H → H be an µ-inverse strongly monotone operator on a real Hilbert space
H with µ > 0, and B : H → 2H be a maximal monotone operator such that (A + B)−1(0) , ∅.
Let f : H → H be a contraction mapping with constant c ∈ (0, 1). Let (xk)k≥1 be generated by
Algorithm 1. Assume that the following conditions hold:

(i) limk→∞ γk = 0 and
∑

k≥1 γk = +∞.
(ii) limk→∞

θk
γk
‖xk − xk−1‖ = 0.

(iii) 0 < lim infk→+∞ λk ≤ lim supk→+∞ λk < 2µ.
(iv) lim infk→+∞(1 − αk)(1 − βk) > 0.

Then, the sequence (xk)k≥1 converges strongly to x := proj(A+B)−1(0)( f (x)).

Proof. Let Γk = JB
λk

(Id − λkA). By Lemma, we have for each k ∈ N Γk is nonexpansive mapping. By
Lemma 2.4, we obtain that (A + B)−1(0) = Fix(Γk).
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We expect that (xk)k≥1 is bounded. Since f is contraction mapping and proj(A+B)−1(0)(·) is
nonexpansive, we have proj(A+B)−1(0)( f (·)) is contraction mapping. Then, there exists the unique fixed
point x ∈ (A + B)−1(0) such that x = proj(A+B)−1(0)( f (x)). Thus x ∈ Fix(Γk). It follows that

‖zk − x‖ = ‖αkwk + (1 − αk)Γkwk − x‖

≤ αk‖wk − x‖ + (1 − αk)‖Γkwk − x‖

≤ ‖wk − x‖, (3.1)

and

‖yk − x‖ = ‖βkwk + (1 − βk)Γkzk − x‖

≤ βk‖wk − x‖ + (1 − βk)‖Γkzk − x‖

≤ βk‖wk − x‖ + (1 − βk)‖zk − x‖. (3.2)

On the other hand, we consider

‖wk − x‖ = ‖xk + θk(xk − xk−1 − x)‖
≤ ‖xk − x‖ + θk‖xk − xk−1‖. (3.3)

Combining (3.1)–(3.3), we obtain that

‖xk+1 − x‖ = ‖γk f (xk) + (1 − γk)yk − x‖

≤ γk‖ f (xk) − x‖ + (1 − γk)‖yk − x‖

≤ γk‖ f (xk) − f (x)‖ + γk‖ f (x) − x‖ + (1 − γk)‖wk − x‖

≤ γkc‖xk − x‖ + γk‖ f (x) − x‖ + (1 − γk)‖xk − x‖

+ (1 − γk)θk‖xk − xk−1‖

≤ (1 − γk(1 − c))‖xk − x‖ + γk‖ f (x) − x‖

+ (1 − γk)θk‖xk − xk−1‖

≤ (1 − γk(1 − c))‖xk − x‖ + γk‖ f (x) − x‖

+ (1 − γk(1 − c))θk‖xk − xk−1‖. (3.4)

Since limk→∞
θk
γk
‖xk − xk−1‖ = 0, there exists M > 0 such that

(1 − γk(1 − c))θk

γk
‖xk − xk−1‖ ≤ M for all k ∈ N.

From (3.4), we can obtain that

‖xk+1 − x‖ ≤ (1 − γk(1 − c))‖xk − x‖ + γk(1 − c)
(
‖ f (x) − x‖ + M

1 − c

)
.

It follows that

‖xk+1 − x‖ ≤ max
{
‖xk − x‖,

‖ f (x) − x‖ + M
1 − c

}
AIMS Mathematics Volume 9, Issue 9, 23632–23650.
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...

≤ max
{
‖x1 − x‖,

‖ f (x) − x‖ + M
1 − c

}
. (3.5)

Therefore, (xk)k≥1 is bounded. So (wk)k≥1, (zk)k≥1 and (yk)k≥1 also bounded. Using the condition (2.1)
in Lemma 2.1 and the definition of (zk)k≥1 and (yk)k≥1, we get that

‖zk − x‖2 = ‖αkwk + (1 − αk)Γkwk − x‖2

≤ αk‖wk − x‖2 + (1 − αk)‖Γkwk − x‖2, (3.6)

and

‖yk − x‖2 = ‖βkwk + (1 − βk)Γkzk − x‖2

≤ βk‖wk − x‖2 + (1 − βk)‖Γkzk − x‖2. (3.7)

Now, consider terms ‖Γkwk − x‖2 and ‖Γkzk − x‖2 using Lemma 2.3, we have

‖Γkwk − x‖2 = ‖Γkwk − Γkx‖2

≤ ‖wk − x‖2 − λk(2µ − λk)‖Awk − Ax‖2

− ‖wk − λkAwk − Γkwk + λkAx‖2, (3.8)

and

‖Γkzk − x‖2 = ‖Γkzk − Γkx‖2

≤ ‖zk − x‖2 − λk(2µ − λk)‖Azk − Ax‖2

− ‖zk − λkAzk − Γkzk + λkAx‖2. (3.9)

Substituting (3.8) into (3.6), we have

‖zk − x‖2 ≤ ‖wk − x‖2 − (1 − αk)λk(2µ − λk)‖Awk − Ax‖2

− (1 − αk)‖wk − λkAwk − Γkwk + λkAx‖2. (3.10)

Substituting (3.9) into (3.7), we have

‖yk − x‖2 ≤ βk‖wk − x‖2 + (1 − βk)‖zk − x‖2

− (1 − βk)λk(2µ − λk)‖Azk − Ax‖2

− (1 − βk)‖zk − λkAzk − Γkzk + λkAx‖2. (3.11)

Combining (3.10) and (3.11), we can imply that

‖yk − x‖2 ≤ ‖wk − x‖2 + (1 − βk)(1 − αk)λk(2µ − λk)‖Awk − Ax‖2

− (1 − βk)(1 − αk)‖wk − λkAwk − Γkwk + λkAx‖2

− (1 − βk)λk(2µ − λk)‖Azk − Ax‖2

− (1 − βk)‖zk − λkAzk − Γkzk + λkAx‖2. (3.12)
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From (3.12), we obtain

‖xk+1 − x‖2 = 〈γk f (xn) + (1 − γk)yk − x, xk+1 − x〉

= 〈γk( f (xk) − x), xk+1 − x〉 + 〈(1 − γk)(yk − x), xk+1 − x〉

= γk〈 f (xk) − f (x), xk+1 − x〉 + γk〈 f (x) − x, xk+1 − x〉

+ (1 − γk)〈yk − x, xk+1 − x〉

≤ γk‖ f (xk) − f (x)‖‖xk+1 − x‖ + γk〈 f (x) − x, xk+1 − x〉

+ (1 − γk)‖yk − x‖‖xk+1 − x‖

≤
γk

2

(
‖ f (xk) − f (x)‖2 + ‖xk+1 − x‖2

)
+ γk〈 f (x) − x, xk+1 − x〉

+
(1 − γk)

2

(
‖yk − x‖2 + ‖xk+1 − x‖2

)
≤
γkc2

2
‖xk − x‖2 +

γk

2
‖xk+1 − x‖2 + γk〈 f (x) − x, xk+1 − x〉

+
(1 − γk)

2
‖wk − x‖2

−
(1 − γk)(1 − βk)(1 − αk)

2
λk(2µ − λk)‖Awk − Ax‖2

−
(1 − γk)(1 − βk)(1 − αk)

2
‖wk − λkAwk − Γkwk + λkAx‖2

−
(1 − γk)(1 − βk)λk(2µ − λk)

2
‖Azk − Ax‖2

−
(1 − γk)(1 − βk)

2
‖zk − λkAzk − Γkzk + λkAx‖2

+
(1 − γk)

2
‖xk+1 − x‖2

≤
γkc2

2
‖xk − x‖2 +

1
2
‖xk+1 − x‖2 + γk〈 f (x) − x, xk+1 − x〉

+
(1 − γk)

2

(
‖xk − x‖2 + 2θk〈xk − xk−1,wk − x〉

)
−

(1 − γk)(1 − βk)(1 − αk)
2

λk(2µ − λk)‖Awk − Ax‖2

−
(1 − γk)(1 − βk)(1 − αk)

2
‖wk − λkAwk − Γkwk + λkAx‖2

−
(1 − γk)(1 − βk)λk(2µ − λk)

2
‖Azk − Ax‖2

−
(1 − γk)(1 − βk)

2
‖zk − λkAzk − Γkzk + λkAx‖2

≤
(1 − γk(1 − c2))

2
‖xk − x‖2 +

1
2
‖xk+1 − x‖2 + γk〈 f (x) − x, xk+1 − x〉

+ (1 − γk)θk〈xk − xk−1,wk − x〉

−
(1 − γk)(1 − βk)(1 − αk)

2
λk(2µ − λk)‖Awk − Ax‖2
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−
(1 − γk)(1 − βk)(1 − αk)

2
‖wk − λkAwk − Γkwk + λkAx‖2

−
(1 − γk)(1 − βk)λk(2µ − λk)

2
‖Azk − Ax‖2

−
(1 − γk)(1 − βk)

2
‖zk − λkAzk − Γkzk + λkAx‖2. (3.13)

Then (3.13) reducing to the following:

‖xk+1 − x‖2 ≤ (1 − γk(1 − c2))‖xk − x‖2 + 2γk〈 f (x) − x, xk+1 − x〉

+ 2(1 − γk)θk〈xk − xk−1,wk − x〉

− (1 − γk)(1 − βk)(1 − αk)λk(2µ − λk)‖Awk − Ax‖2

− (1 − γk)(1 − βk)(1 − αk)‖wk − λkAwk − Γkwk + λkAx‖2

− (1 − γk)(1 − βk)λk(2µ − λk)‖Azk − Ax‖2

− (1 − γk)(1 − βk)‖zk − λkAzk − Γkzk + λkAx‖2. (3.14)

For each k ∈ N, we set
S k = ‖xk+1 − x‖2,
ρk = γk(1 − c2), πk = ρkσk,

σk = 2
(1−c2)〈 f (x) − x, xk+1 − x〉 + 2(1−γk)θk

γk(1−c2) 〈xk − xk−1,wk − x〉 and

ηk = (1 − γk)(1 − βk)(1 − αk)λk(2µ − λk)‖Awk − Ax‖2

+ (1 − γk)(1 − βk)(1 − αk)‖wk − λkAwk − Γkwk + λkAx‖2

+ (1 − γk)(1 − βk)λk(2µ − λk)‖Azk − Ax‖2

+ (1 − γk)(1 − βk)‖zk − λkAzk − Γkzk + λkAx‖2.

As a result, inequality (3.14) reduces to the following:

S k+1 ≤ (1 − ρk)S k + ρkσk and S k+1 ≤ S k − ηk + πk.

By the condition (i), we get that
∑

k≥1 ρk = ∞ and limk→∞ πk = 0. In order to complete proof, by
applying Lemma 2.2, it is sufficient to show that limk→∞ ηki = 0 implies lim supi→∞ σki ≤ 0 for any
subsequence (ηki)i≥1 of (ηk)k≥1.

Let (ηki)i≥1 be a subsequence of (ηk)k≥1 such that limi→∞ ηki = 0. Therefore, by the assumptions of
Lemma 2.2, we can conclude that

lim
i→∞
‖Awki − Ax‖ = 0;

lim
i→∞
‖Azki − Ax‖ = 0;

lim
i→∞
‖wki − λki Awki − Γkiwki + λki Ax‖ = 0;

lim
i→∞
‖zki − λki Azki − Γkizki + λki Ax‖ = 0.

This implies that

lim
i→∞
‖Γkiwki − wki‖ = 0; (3.15)
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lim
i→∞
‖Γkizki − zki‖ = 0. (3.16)

From (3.1), we have

‖wki − xki‖ = θki‖xki − xki−1‖ → 0 (i→ ∞). (3.17)

On the other hand, we get

‖Γkizki − wki‖ ≤ ‖Γkizki − zki‖ + ‖zki − wki‖

= ‖Γkizki − zki‖ + (1 − αki)‖Γkiwki − wki‖. (3.18)

From (3.15) and (3.16), we obtain that

lim
i→∞
‖Γkizki − wki‖ = 0. (3.19)

Given that lim infk→+∞ λk > 0, we can find a positive real number λ > 0 such that λk ≥ λ for all k ∈ N.
Specifically, this implies that λki ≥ λ for all i ∈ N. By the condition (2.4) of Lemma 2.4, one has

‖ΓA,B
λ wki − wki‖ ≤ 2‖Γkiwki − wki‖. (3.20)

From (3.20), we can imply that

lim
i→∞
‖ΓA,B

λ wki − wki‖ = 0. (3.21)

Let

zt = t f (x) + (1 − t)ΓA,B
λ zt, t ∈ (0, 1). (3.22)

By utilizing Theorem 2.5, zt exhibits strong convergence towards the unique fixed point x =

proj(A+B)−1(0)( f (x)) as t → 0. Consequently, we can conclude that

‖zt − wki‖
2 = ‖t( f (x) − wki) + (1 − t)(ΓA,B

λ zt − wki)‖
2

≤ (1 − t)2‖ΓA,B
λ zt − wki‖

2 + 2t〈 f (x) − zt, zt − wki〉

+ 2t〈zt − wki , zt − wki〉

≤ (1 − t)2(‖ΓA,B
λ zt − ΓA,B

λ wki‖ + ‖ΓA,B
λ wki − wki‖)

2

+ 2t〈 f (x) − zt, zt − wki〉 + 2t‖zt − wki‖
2

≤ (1 − t)2(‖zt − wki‖ + ‖ΓA,B
λ wki − wki‖)

2

+ 2t〈 f (x) − zt, zt − wki〉 + 2t‖zt − wki‖
2. (3.23)

The inequality (3.23) reduces the following:

〈zt − f (x), zt − wki〉

≤
(1 − t)2

2t
(‖zt − wki‖ + ‖ΓA,B

λ wki − wki‖)
2 +

(2t − 1)
2t

‖zt − wki‖
2. (3.24)
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Combining (3.19) and (3.24), we get that

lim sup
i→+∞

〈zt − f (x), zt − wki〉 ≤
1
2t

[(1 − t)2 + (2t − 1)]M2
0 , (3.25)

where M0 = supi∈N,t∈(0,1) ‖zt − wki‖. We take k → +∞ in (3.25), we obtain that

lim sup
i→∞

〈x − f (x), x − wki〉 ≤ 0. (3.26)

Let us consider,

〈z − f (x), z − xki〉 = 〈z − f (x), z − wki〉 + θki〈z − f (x), xki − xki−1〉

≤ 〈z − f (x), z − wki〉 + θki‖z − f (x)‖‖xki − xki−1‖. (3.27)

From (3.27), one has

lim sup
i→∞

〈x − f (x), x − xki〉 ≤ 0. (3.28)

Next, we claim that limi→+∞ ‖xki+1 − xki‖ = 0. By Algorithm 1, we have the following estimates:

‖xki+1 − xki‖ ≤ γki‖ f (x) − xki‖ + (1 − γki)‖yki − xki‖

≤ γki‖ f (x) − xki‖ + (1 − γki)(‖yki − wki‖ + ‖wki − xki‖)
≤ γki‖ f (x) − xki‖ + (1 − γki)‖wki − xki‖

+ (1 − γki)(1 − βki)‖Γkizki − wki‖. (3.29)

From (3.29), using the boundedness of (xk)k≥1, the condition 3.1, and (3.17) and (3.19), we obtain that

lim
i→+∞

‖xki+1 − xki‖ = 0. (3.30)

Combining (3.30) and (3.28), we infer that

lim sup
i→∞

〈x − f (x), x − xki+1〉 ≤ 0.

Hence, lim supi→∞ σki ≤ 0. By Lemma 2.2, we observe that limk→∞ S k = 0, that is xk → x as k → ∞.
We thus complete the proof. �

Remark 3.2. The condition (ii) in Theorem 3.1 is satisfied when we set θk such that 0 ≤ θk ≤ θk, where

θk =

min
{
θ, εk
‖xk−xk−1‖

}
, if xk , xk−1,

θ, otherwise,

and (εk)k≥1 is a positive sequence such that limk→∞
εk
γk

= 0.

4. Applications

In this section, we delve into the practical applications of our proposed method as outlined in this
paper, focusing on its utility in convex minimization problems and image restoration problems.

AIMS Mathematics Volume 9, Issue 9, 23632–23650.



23643

4.1. Convex minimization problems

Consider a convex and differentiable function h : H → R and a convex, lower-semicontinuous
function g : H → R. To solve the following convex minimization problem: Find x ∈ H such that

h(x) + g(x) = min
x∈H
{h(x) + g(x)}. (4.1)

By using Fermat’s rule, the problem (4.1) can be written in the form of the following problem as: Find
x ∈ H such that

0 ∈ ∇h(x) + ∂g(x),

where ∇h is a gradient of h and ∂g is a subdifferential of g.

Remark 4.1. [38] If a function K : H → H is (1/L)-Lipschitz continuous, then K is L-inverse
strongly monotone.

Remark 4.2. [39] If a function P : H → R is a convex lower-semicontinuous, then ∂P is
maximal monotone.

By applying Theorem 3.1 and set A = ∇h and B = ∂g, we can obtain the following result.

Theorem 4.3. LetH be a real Hilbert space. Let h : H → R be a convex differentiable function with
a (1/L)-Lipschitz continuous gradient ∇h and g : H → R be a convex lower-semicontinuous such that
(∇h + ∂g)−1(0) , ∅. Let f : H → H be a contraction mapping with constant c ∈ (0, 1). Let (xk)k≥1 be
generated by x0, x1 ∈ H 

wk = xk + θk(xk − xk−1),
zk = αkwk + (1 − αk)J∂g

λk
(wk − λk∇hwk),

yk = βkwk + (1 − βk)J∂g
λk

(zk − λk∇hzk),
xk+1 = γk f (xn) + (1 − γk)yk, for all k ≥ 1.

(4.2)

Assume that the following conditions hold:

(i) limk→∞ γk = 0 and
∑

k≥1 γk = +∞.
(ii) limk→∞

θk
γk
‖xk − xk−1‖ = 0.

(iii) 0 < lim infk→+∞ λk ≤ lim supk→+∞ λk < 2L.
(iv) lim infk→+∞(1 − αk)(1 − βk) > 0.

Then, the sequence (xk)k≥1 converges strongly to x := proj(∇h+∂g)−1(0)( f (x)).

Next, we present some comparisons among three algorithms: Our proposed algorithm, Kitkuan
et al.’s algorithm (2019) (1.6), as presented in [32], and Tan’s algorithm (2024), as described in [31,
Algorithm 1.3].

Example 4.4. Let K ∈ Rl×s and b ∈ Rl with l > s. Let g : Rs → R be defined by g(x) = ‖x‖1 for all
x ∈ Rs, and h : Rs → R be defined by h(x) = 1

2‖Kx − b‖22 for all x ∈ Rs. To find the solution of the
minimization problem as follows:

minimize
1
2
‖Kx − b‖22 + ‖x‖1,

subject to x ∈ Rs. (4.3)
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By setting this, we obtain that for each x = (x1, x2, ..., xs) ∈ Rs

J∂g
λk

(x) = (max{0, 1 −
λk

|x1|
}x1,max{0, 1 −

λk

|x2|
}x2, ...,max{0, 1 −

λk

|xs|
}xs),

∇h(x) = KT (Kx − b) and ∇h is ‖K‖2-Lipschitz continuous, where KT is a transpose of K.
To begin, we randomly select vectors x0, x1 ∈ R

s, along with b ∈ Rl and the matrix K ∈ Rl×s.

Subsequently, we set f (x) = x
6 for all x ∈ Rs and choose the parameters in this example as follows:

αk = 1
100k+1 , βk = 1

k+1 , γk = 1
100k+1 , λk = 1

‖K‖2+1 and

θk =

 min
{

1
2 ,

1
(k+1)2‖xk−xk−1‖

}
, if xk , xk−1,

1
2 , otherwise.

(4.4)

We compare our proposed algorithm with Kitkuan et al.’s algorithm (2019) (1.6), as presented in [32],
and Tan’s algorithm (2024), as described in [31, Algorithm 1.3]. For Tan’s algorithm (2024), we choose
the following parameter values: ζk = θk, δ = 1.5, ϕ = 1

20 , and χk = λk. We evaluate all three algorithms
and record the number of iterations (k) and the CPU times (seconds) by using the stopping criteria:
‖xk − xk−1‖ ≤ 10−6.

Table 1 shows the performance of three algorithms in solving problem (4.3) with different sizes of
matrix K. Our algorithm consistently achieves optimality tolerance in the shortest CPU time across all
cases. Additionally, it is notable that our algorithm requires fewer iterations compared to Kitkuan et
al.’s algorithm (2019) and Tan’s algorithm (2024) for each matrix size K.

Table 1. The comparison of three algorithms with different sizes of matrix K.

(s, l)
Our algorithm Kitkuan et al.’s algorithm (2019) Tan’s algorithm (2024)

CPU time (s) Iterations CPU time (s) Iterations CPU time (s) Iterations
(20,500) 0.1991 8113 0.3707 25476 0.7224 23631
(50,500) 0.5676 7095 0.8174 17998 1.1194 9539

(300,500) 0.6786 3757 1.2733 12185 8.9313 35344
(20,1000) 0.3004 8475 0.5241 22350 0.6597 12788
(50,1000) 0.5820 4968 0.7979 13085 2.6585 18461

(300,1000) 1.2100 4577 1.7316 11568 26.6996 72012
(500,1000) 1.7890 4705 2.5680 12714 58.4649 106069
(20,2000) 0.6905 5459 0.7423 10751 3.7730 23994
(50,2000) 1.0284 6016 1.0665 13636 8.7545 42958

(300,2000) 2.0282 4260 3.3280 7027 100.4799 129957
(500,2000) 3.6868 4829 3.7700 9385 201.6677 183047

(1000,2000) 5.2149 3979 6.1491 6603 793.1800 317432

4.2. Image restoration problems

In this subsection, we showcase the efficacy of the proposed algorithm by employing it to tackle
image restoration problems, specifically focusing on deblurring and denoising images. The image
restoration problem can be defined as the inversion of the following degradation model:

y = Hx + w, (4.5)

AIMS Mathematics Volume 9, Issue 9, 23632–23650.



23645

where y, H, x, and w denote the degraded image, degradation or blurring operator, original image, and
noise operator, respectively.

To approximate the reconstructed image by solving the regularized least-squares
minimization problem:

min
x

{
1
2
‖Hx − y‖22 + µφ(x)

}
, (4.6)

where µ > 0 is the regularization parameter and φ(·) represents the regularizer. The l1 norm serves
as a regularization functional, commonly utilized to eliminate noise in restoration problems, known as
Tikhonov regularization [40]. The problem (4.6) can be reformulated as follows:

find x ∈ arg min
x∈Rs

{
1
2
‖Hx − y‖22 + µ‖x‖1

}
, (4.7)

where y denotes the degraded image, and H represents a bounded linear operator. We can see that
problem (4.7) can be formed in the problem (1.1) by setting B = ∂‖ · ‖1, µ = 0.001 and A = ∇L(·) where
L(x) = 1

2‖Hx − y‖22. By using this, we observe that A(x) = ∇L(x) = HT (Hx − y). First, we degrade
image by adding random noise and different types of blurring. The Gaussian blur (size 20 by 20 with
the standard deviation 20), the average blur (size 10 by 10), and the motion blur (the linear motion of
a camera by 20 pixels with an angle of 40 degrees). Next, we solve problem (4.7) using our algorithm
in Theorem 4.3 and putting f (x) = x

2 for all x ∈ Rs, αk = 1
k+1 , βk = 1

k+1 , γk = 1
100k+1 , λk = 0.7 and θk is

defined as (4.4).

The comparisons of the performance among our proposed algorithm, Kitkuan et al.’s
algorithm (2019), and Tan’s algorithm (2024) are presented. In the case of the Kitkuan et al.’s
algorithm (2019) (1.6) was presented in [32], we set f (x) = x

2 for all x ∈ Rs, γk = 1
100k+1 , λk = 0.7 and

θk is defined as (4.4). For the Tan’s algorithm (2024) presented in [31, Algorithm 1.3], we choose the
following parameter values: ζk = θk, δ = 1.5, ϕ = 1

20 , and χk = λk. The reconstructed image’s quality
is evaluated using the signal-to-noise ratio (SNR) formula:

SNR(k) = 20 log10

‖x‖22
‖x − xk‖

2
2

,

where x represents the original image, while xk stands for the image restored at iteration k.

The effectiveness of image restoration using our proposed algorithm, Kitkuan et al.’s
algorithm (2019), and Tan’s algorithm (2024) is depicted in Figures 1–3.

The comparisons among our proposed algorithm, Kitkuan et al.’s algorithm (2019), and Tan’s
algorithm (2024) in image restoration problems are illustrated in Figure 4.

The experiments were carried out using MATLAB 9.19 (R2022b) and were performed on a
MacBook Pro 14-inch 2021 model, which is equipped with an Apple M1 Pro processor and 16 GB
of memory.
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(a) (b) (c) (d) (e)

Figure 1. Figure (a) illustrates the original pirate image; Figure (b) depicts the images
degraded by Gaussian blur and random noise; Figure (c) showcases the reconstructed images
using Kitkuan et al.’s algorithm (2019); Figure (d) showcases the reconstructed images using
Tan’s algorithm (2024); and Figure (e) presents the reconstructed images using our algorithm
as described in (4.2).

(a) (b) (c) (d) (e)

Figure 2. Figure (a) illustrates the original Lena image; Figure (b) depicts the images
degraded by average blur and random noise; Figure (c) showcases the reconstructed images
using Kitkuan et al.’s algorithm (2019); Figure (d) showcases the reconstructed images using
Tan’s algorithm (2024); and Figure (e) presents the reconstructed images using our algorithm
as described in (4.2).

(a) (b) (c) (d) (e)

Figure 3. Figure (a) illustrates the original dog image; Figure (b) depicts the images degraded
by motion blur and random noise; Figure (c) showcases the reconstructed images using
Kitkuan et al.’s algorithm (2019); Figure (d) showcases the reconstructed images using Tan’s
algorithm (2024); and Figure (e) presents the reconstructed images using our algorithm as
described in (4.2).
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(a) Pirate
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(c) Dog

Figure 4. (a) The performance of SNR for the pirate image using three algorithms shown in
Figure 1; (b) The performance of SNR for the Lena image using three algorithms displayed
in Figure 2; and (c) The performance of SNR for the dog image using three algorithms shown
in Figure 3.

5. Conclusions

We introduce a novel generalized viscosity forward-backward splitting scheme that incorporates
inertial terms aimed at addressing the monotone inclusion problem. We also include a proof of the
strong convergence of this algorithm under certain specified conditions for the relevant parameters.
Furthermore, we leverage these results to approximate solutions for convex minimization problems.
Additionally, we present a numerical example to compare our proposed algorithm with others in
convex minimization problems. Finally, we demonstrate the efficacy of our method in solving image
restoration problems.
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36. G. López, V. Martı́n-Márquez, F. H. Wang, H. K. Xu, Forward-backward splitting methods
for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012), 109236.
https://doi.org/10.1155/2012/109236

37. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J.
Math. Anal. Appl., 75 (1980), 287–292. https://doi.org/10.1007/BF03007664

38. J. B. Baillon, G. Haddad, Quelques proprietes des operateurs angle-bornes etn-cycliquement
monotones, Israel J. Math. 26 (1977), 137–150. https://doi.org/10.1007/BF03007664

39. R. T. Rockafellar, On the maximality of subdifferential mappings, Pac. J. Math., 33 (1970), 209–
216. https://doi.org/10.2140/pjm.1970.33.209

40. A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed problems, SIAM Rev. 21 (1979), 266–267.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 9, 23632–23650.

https://dx.doi.org/https://doi.org/10.69829/oper-024-0101-ta05
https://dx.doi.org/https://doi.org/10.1007/s10444-024-10156-1
https://dx.doi.org/https://doi.org/10.1007/s10444-024-10156-1
https://dx.doi.org/https://doi.org/10.1080/00207160.2019.1649661
https://dx.doi.org/https://doi.org/10.1080/02331934.2019.1646742
https://dx.doi.org/https://doi.org/10.1112/S0024610702003332
https://dx.doi.org/https://doi.org/10.1155/2012/109236
https://dx.doi.org/https://doi.org/10.1007/BF03007664
https://dx.doi.org/https://doi.org/10.1007/BF03007664
https://dx.doi.org/https://doi.org/10.2140/pjm.1970.33.209
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Applications
	Convex minimization problems
	Image restoration problems

	Conclusions

