In this paper, strong convergence results for $ \alpha - $inverse strongly monotone operators under new algorithms in the framework of Hilbert spaces are discussed. Our algorithms are the combination of the inertial Mann forward-backward method with the CQ-shrinking projection method and viscosity algorithm. Our methods lead to an acceleration of modified inertial Mann Halpern and viscosity algorithms. Later on, numerical examples to illustrate the applications, performance, and effectiveness of our algorithms are presented.
Citation: Hasanen A. Hammad, Habib ur Rehman, Manuel De la Sen. Accelerated modified inertial Mann and viscosity algorithms to find a fixed point of $ \alpha - $inverse strongly monotone operators[J]. AIMS Mathematics, 2021, 6(8): 9000-9019. doi: 10.3934/math.2021522
In this paper, strong convergence results for $ \alpha - $inverse strongly monotone operators under new algorithms in the framework of Hilbert spaces are discussed. Our algorithms are the combination of the inertial Mann forward-backward method with the CQ-shrinking projection method and viscosity algorithm. Our methods lead to an acceleration of modified inertial Mann Halpern and viscosity algorithms. Later on, numerical examples to illustrate the applications, performance, and effectiveness of our algorithms are presented.
[1] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Berlin: Springer, 2011. |
[2] | H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367–426. doi: 10.1137/S0036144593251710 |
[3] | P. J. Chen, J. G. Huang, X. Q. Zhang, A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Probl., 29 (2013), 025011. doi: 10.1088/0266-5611/29/2/025011 |
[4] | P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168–1200. doi: 10.1137/050626090 |
[5] | G. López, V. Martín-Márquez, F. H. Wang, H. K. Xu, Forward-Backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., 2012 (2012), 109236. |
[6] | G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383–390. doi: 10.1016/0022-247X(79)90234-8 |
[7] | D. H. Peaceman, H. H. Rachford, The numerical solution of parabolic and eliptic differentials, J. Soc. Industr. Appl. Math., 3 (1955), 28–41. doi: 10.1137/0103003 |
[8] | P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control. Optim., 38 (2000), 431–446. doi: 10.1137/S0363012998338806 |
[9] | N. H. Xiu, C. Y. Wang, L. C. Kong, A note on the gradient projection method with exact stepsize rule, J. Comput. Math., 25 (2007), 221–230. |
[10] | H. K. Xu, Averaged mappings and the gradient-projection algorithm, J. Optimiz. Theory Appl., 150 (2011), 360–378. doi: 10.1007/s10957-011-9837-z |
[11] | R. E. Bruck, S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math., 3 (1977), 459–470. |
[12] | N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), 123–231. |
[13] | P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. doi: 10.1137/0716071 |
[14] | J. Douglas, H. H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables, T. Am. Math. Soc., 82 (1956), 421–439. doi: 10.1090/S0002-9947-1956-0084194-4 |
[15] | H. H. Bauschke, P. L. Combettes, A weak-to-strong convergence principle for Fejérmonotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001), 248–264. doi: 10.1287/moor.26.2.248.10558 |
[16] | K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semi groups, J. Math. Anal. Appl., 279 (2003), 372–379. doi: 10.1016/S0022-247X(02)00458-4 |
[17] | T. H. Kim, H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal.-Theor., 61 (2005), 51–60. doi: 10.1016/j.na.2004.11.011 |
[18] | Y. H. Yao, R. D. Chen, J. C. Yao, Strong convergence and certain control conditions for modified Mann iteration, Nonlinear Anal.-Theor., 68 (2008), 1687–1693. doi: 10.1016/j.na.2007.01.009 |
[19] | F. Alvarez, H. Attouch, An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11. doi: 10.1023/A:1011253113155 |
[20] | B. T. Polyak, Introduction to optimization, New York: Optimization Software, 1987. |
[21] | A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. doi: 10.1016/S0377-0427(02)00906-8 |
[22] | Q. L. Dong, H. B. Yuan, Y. J. Cho, T. M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12 (2018), 87–102. doi: 10.1007/s11590-016-1102-9 |
[23] | Q. L. Dong, D. Jiang, P. Cholamjiak, Y. Shehu, A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions, J. Fixed Point Theory Appl., 19 (2017), 3097–3118. doi: 10.1007/s11784-017-0472-7 |
[24] | B. Halpern, Fixed points of nonexpanding maps, Bull. Am. Math. Soc., 73 (1967), 957–961. doi: 10.1090/S0002-9904-1967-11864-0 |
[25] | B. Tan, S. X. Li, Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems, J. Nonlinear Var. Anal., 4 (2020), 337–355. |
[26] | M. Tian, G. Xu, Inertial modified Tseng's extragradient algorithms for solving monotone variational inequalities and fixed point problems, J. Nonlinear Funct. Anal., 2020 (2020), 35. |
[27] | F. U. Ogbuisi, The projection method with inertial extrapolation for solving split equilibrium problems in Hilbert spaces, Appl. Set-Valued Anal. Optim., 3 (2021), 239–255. |
[28] | H. A. Hammad, H. ur Rahman, M. De la Sen, Shrinking projection Methods for accelerating relaxed inertial Tseng-type algorithm with applications, Math. Probl. Eng., 2020 (2020), 7487383. |
[29] | A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55. doi: 10.1006/jmaa.1999.6615 |
[30] | X. L. Qin, S. Y. Cho, S. M. Kang, On hybrid projection methods for asymptotically quasi-$\psi $-nonexpansive mappings, Appl. Math. Comput., 215 (2010), 3874–3883. |
[31] | S. Y. Cho, S. M. Kang, Approximation of common solutions of variational inequalities via strict pseudocontractions, Acta Math. Sci., 32 (2012), 1607–1618. doi: 10.1016/S0252-9602(12)60127-1 |
[32] | H. A. Hammad, H. ur Rahman, Y. U. Gaba, Solving a split feasibility problem by the strong convergence of two projection algorithms in Hilbert spaces, J. Funct. Spaces, 2021 (2021), 5562694. |
[33] | H. A. Hammad, H. ur Rehman, M. De la Sen, Advanced algorithms and common solutions to variational inequalities, Symmetry, 12 (2020), 1198. doi: 10.3390/sym12071198 |
[34] | M. O. Aibinu, J. K. Kim, on the rate of convergence of viscosity implicit iterative algorithms, Nonlinear Funct. Anal. Appl., 25 (2020), 135–152. |
[35] | M. O. Aibinu, J. Kim, Convergence analysis of viscosity implicit rules of nonexpansive mappings in Banach spaces, Nonlinear Funct. Anal. Appl., 24 (2019), 691–713. |
[36] | Y. Kimura, Shrinking projection methods for a family of maximal monotone operators, Nonlinear Funct. Anal. Appl., 16 (2011), 481–489. |
[37] | T. Suzuki, Moudafi's viscosity approximations with meir-keeler contractions, J. Math. Anal. Appl., 325 (2007), 342–352. doi: 10.1016/j.jmaa.2006.01.080 |
[38] | A. Beck, M. Teboulle, Fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM J. Imaging Sci., 2 (2009), 183–202. doi: 10.1137/080716542 |
[39] | H. Attouch, J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually faster than $ 1/k^{2}$, SIAM J. Optim., 26 (2016), 1824–1834. doi: 10.1137/15M1046095 |
[40] | W. Cholamjiak, P. Cholamjiak, S. Suantai, An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl., 20 (2018), 42. doi: 10.1007/s11784-018-0526-5 |
[41] | W. Takahashi, Nonlinear functional analysis, Yokohama: Yokohama Publishers, 2000. |
[42] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, New York: Springer, 2009. |
[43] | C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal.-Theor., 64 (2006), 2400–2411. doi: 10.1016/j.na.2005.08.018 |
[44] | K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge, UK: Cambridge University Press, 1990. |
[45] | T. M. Tuyen, H. A. Hammad, Effect of shrinking projection and CQ-methods on two inertial forward–backward algorithms for solving variational inclusion problems, Rend. Circ. Mat. Palermo, II. Ser, DOI: 10.1007/s12215-020-00581-8. |
[46] | B. Tan, Z. Zhou, S. X. Li, Strong convergence of modified inertial Mann algorithms for nonexpansive mappings, Mathematics, 8 (2020), 462. doi: 10.3390/math8040462 |
[47] | Q. L. Dong, Y. J. Cho, L. L. Zhong, T. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70 (2018), 687–704. doi: 10.1007/s10898-017-0506-0 |
[48] | H. Y. Zhou, Y. Zhou, G. H. Feng, Iterative methods for solving a class of monotone variational inequality problems with applications, J. Inequal. Appl., 2015 (2015), 68. doi: 10.1186/s13660-015-0590-y |
[49] | A. Beck, S. Sabach, Weiszfeld's method: Old and new results, J. Optim. Theory Appl., 164 (2015), 1–40. doi: 10.1007/s10957-014-0586-7 |
[50] | Q. L. Dong, H. B. Yuan, Accelerated mann and CQ algorithms for finding a fixed point of a nonexpansive mapping, Fixed Point Theory Appl., 2015 (2015), 125. doi: 10.1186/s13663-015-0374-6 |