Research article

Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions

  • Received: 10 March 2021 Accepted: 11 June 2021 Published: 16 June 2021
  • MSC : 26A51, 26A33, 33E12

  • In this paper we give Hadamard inequalities for exponentially $ (\alpha, h-m) $-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for Riemann-Liouville fractional integrals of convex, $ m $-convex, $ s $-convex, $ (\alpha, m) $-convex, $ (s, m) $-convex, $ (h-m) $-convex, $ (\alpha, h-m) $-convex, exponentially convex, exponentially $ m $-convex, exponentially $ s $-convex, exponentially $ (s, m) $-convex, exponentially $ (h-m) $-convex, exponentially $ (\alpha, h-m) $-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.

    Citation: Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung. Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions[J]. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521

    Related Papers:

  • In this paper we give Hadamard inequalities for exponentially $ (\alpha, h-m) $-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for Riemann-Liouville fractional integrals of convex, $ m $-convex, $ s $-convex, $ (\alpha, m) $-convex, $ (s, m) $-convex, $ (h-m) $-convex, $ (\alpha, h-m) $-convex, exponentially convex, exponentially $ m $-convex, exponentially $ s $-convex, exponentially $ (s, m) $-convex, exponentially $ (h-m) $-convex, exponentially $ (\alpha, h-m) $-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006.
    [2] V. Mladenov, N. Mastorakis, Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling, Belgrade: WSEAS Press, 2014.
    [3] F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equations, 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z
    [4] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77–89.
    [5] T. Tunç, H. Budak, F. Usta, M. Z. Sarikaya, On new generalized fractional integral operators and related fractional inequalities, Konuralp J. Math., 8 (2020), 268–278.
    [6] S. Iqbal, K. H. Kristina, J. Pečarić, Weighted Hardy-type inequalities for monotone convex functions with some applications, Fractional Differ. Calculus, 3 (2013), 31–53.
    [7] A. O. Akdemir, E. Deniz, E. Yüksel, On some integral inequalities via conformable fractional untegrals, Appl. Math. Nonlinear Sci., 2021. Available from: https://doi.org/10.2478/amns.2020.2.00071.
    [8] E. Set, J. Choi, A. Gözpinar, Hermite-Hadamard type inequalities for the generalized $k$-fractional integral operators, J. Inequalities Appl., 1 (2017), 1–17.
    [9] E. Set, A. Gözpinar, Hermite-Hadamard type inequalities for convex functions via generalized fractional integral operators, Topol. Algebra Appl., 5 (2016), 55–62.
    [10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, USA : Gordon and Breach Science Publishers, 1993.
    [11] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Math. Math. Sci., 7 (2012), 89–94.
    [12] S. Mubeen, A. Rehman, A note on $k$-Gamma function and Pochhammer $k$-symbol, J. Inform. Math. Sci., 6 (2014), 93–107.
    [13] A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for $(k, h)$-Riemann-Liouville fractional integral, New Trends Math. Sci., 4 (2016), 138–146. doi: 10.20852/ntmsci.2016217824
    [14] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: John Wiley and Sons, Inc., 1993.
    [15] W. F. He, G. Farid, K. Mahreen, M. Zahra, N. Chen, On an integral and consequent fractional integral operators via generalized convexity, AIMS Math., 5 (2020), 7632–7648.
    [16] X. L. Qiang, G. Farid, J. Pečarić, S. B. Akbar, Generalized fractional integral inequalities for exponentially $(s, m)$-convex functions, J. Inequal. Appl., 2020 (2020), 70. doi: 10.1186/s13660-020-02335-7
    [17] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially $p$-convex functions and exponentially $s$-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92.
    [18] M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci, 12 (2018), 405–409. doi: 10.18576/amis/120215
    [19] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
    [20] C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82.
    [21] P. O. Mohammed, T. Abdeljawad, S. D. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485.
    [22] M. E. Özdemir, A. A. Merve, H. Kavurmaci-Önalan, Hermite-Hadamard type inequalities for $s$-convex and $s$-concave functions via fractional integrals, Turkish J. Sci., 1 (2016), 28–40.
    [23] E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169.
    [24] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048
    [25] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. doi: 10.18514/MMN.2017.1197
    [26] G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478.
    [27] G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for $k$-fractional integrals, Konuralp J. Math., 4 (2016), 79–86.
    [28] M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving $\psi_{k}$-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920.
    [29] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95.
    [30] G. Farid, S. B. Akbar, L. N. Mishra, V. N. Mishra, Riemann-Liouville fractional versions of Hadamard inequality for strongly $m$-convex functions, unpublished work.
    [31] G. Farid, Y. Kwun, H. Yasmeen, A. Akkurt, S. M. Kang, Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions, unpublished work.
    [32] G. Farid, A. U. Rehman, Q. U. Ain, $k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions, Comput. Methods Differ. Equations, 8 (2020), 119–140.
    [33] G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for $m$-convex functions via Riemann-Liouville fractional integrals, Stud. Univ. Babeş-Bolyai Math., 62 (2017), 141–150.
    [34] G. Farid, A. U. Rehman, B. Tariq, A. Waheed, On Hadamard type inequalities for $m$-convex functions via fractional integrals, J. Inequal. Spec. Funct., 7 (2016), 150–167.
    [35] G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some fractional integral inequalities via strongly convex functions, Math. Probl. Eng., 2021 (2021), 6667226.
    [36] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146.
    [37] K. Liu, J. R. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27.
    [38] C. Miao, G. Farid, H. Yasmeen, Y. Bian, Generalized Hadamard fractional integral inequalities for strongly $(s, m)$-convex functions, J. Math., 2021 (2021), 6642289.
    [39] A. U. Rehman, G. Farid, S. Bibi, C. Y. Jung, S. M. Kang, $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m) $-convex functions, AIMS Math., 6 (2021), 882–892.
    [40] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Methods Appl. Sci., 44 (2021), 2314–2324.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2279) PDF downloads(101) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog