In this paper we give Hadamard inequalities for exponentially $ (\alpha, h-m) $-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for Riemann-Liouville fractional integrals of convex, $ m $-convex, $ s $-convex, $ (\alpha, m) $-convex, $ (s, m) $-convex, $ (h-m) $-convex, $ (\alpha, h-m) $-convex, exponentially convex, exponentially $ m $-convex, exponentially $ s $-convex, exponentially $ (s, m) $-convex, exponentially $ (h-m) $-convex, exponentially $ (\alpha, h-m) $-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.
Citation: Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung. Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions[J]. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
In this paper we give Hadamard inequalities for exponentially $ (\alpha, h-m) $-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for Riemann-Liouville fractional integrals of convex, $ m $-convex, $ s $-convex, $ (\alpha, m) $-convex, $ (s, m) $-convex, $ (h-m) $-convex, $ (\alpha, h-m) $-convex, exponentially convex, exponentially $ m $-convex, exponentially $ s $-convex, exponentially $ (s, m) $-convex, exponentially $ (h-m) $-convex, exponentially $ (\alpha, h-m) $-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006. |
[2] | V. Mladenov, N. Mastorakis, Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling, Belgrade: WSEAS Press, 2014. |
[3] | F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equations, 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z |
[4] | M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77–89. |
[5] | T. Tunç, H. Budak, F. Usta, M. Z. Sarikaya, On new generalized fractional integral operators and related fractional inequalities, Konuralp J. Math., 8 (2020), 268–278. |
[6] | S. Iqbal, K. H. Kristina, J. Pečarić, Weighted Hardy-type inequalities for monotone convex functions with some applications, Fractional Differ. Calculus, 3 (2013), 31–53. |
[7] | A. O. Akdemir, E. Deniz, E. Yüksel, On some integral inequalities via conformable fractional untegrals, Appl. Math. Nonlinear Sci., 2021. Available from: https://doi.org/10.2478/amns.2020.2.00071. |
[8] | E. Set, J. Choi, A. Gözpinar, Hermite-Hadamard type inequalities for the generalized $k$-fractional integral operators, J. Inequalities Appl., 1 (2017), 1–17. |
[9] | E. Set, A. Gözpinar, Hermite-Hadamard type inequalities for convex functions via generalized fractional integral operators, Topol. Algebra Appl., 5 (2016), 55–62. |
[10] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, USA : Gordon and Breach Science Publishers, 1993. |
[11] | S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Math. Math. Sci., 7 (2012), 89–94. |
[12] | S. Mubeen, A. Rehman, A note on $k$-Gamma function and Pochhammer $k$-symbol, J. Inform. Math. Sci., 6 (2014), 93–107. |
[13] | A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for $(k, h)$-Riemann-Liouville fractional integral, New Trends Math. Sci., 4 (2016), 138–146. doi: 10.20852/ntmsci.2016217824 |
[14] | K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: John Wiley and Sons, Inc., 1993. |
[15] | W. F. He, G. Farid, K. Mahreen, M. Zahra, N. Chen, On an integral and consequent fractional integral operators via generalized convexity, AIMS Math., 5 (2020), 7632–7648. |
[16] | X. L. Qiang, G. Farid, J. Pečarić, S. B. Akbar, Generalized fractional integral inequalities for exponentially $(s, m)$-convex functions, J. Inequal. Appl., 2020 (2020), 70. doi: 10.1186/s13660-020-02335-7 |
[17] | N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially $p$-convex functions and exponentially $s$-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. |
[18] | M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci, 12 (2018), 405–409. doi: 10.18576/amis/120215 |
[19] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215. |
[20] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82. |
[21] | P. O. Mohammed, T. Abdeljawad, S. D. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. |
[22] | M. E. Özdemir, A. A. Merve, H. Kavurmaci-Önalan, Hermite-Hadamard type inequalities for $s$-convex and $s$-concave functions via fractional integrals, Turkish J. Sci., 1 (2016), 28–40. |
[23] | E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169. |
[24] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048 |
[25] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. doi: 10.18514/MMN.2017.1197 |
[26] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478. |
[27] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for $k$-fractional integrals, Konuralp J. Math., 4 (2016), 79–86. |
[28] | M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving $\psi_{k}$-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920. |
[29] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. |
[30] | G. Farid, S. B. Akbar, L. N. Mishra, V. N. Mishra, Riemann-Liouville fractional versions of Hadamard inequality for strongly $m$-convex functions, unpublished work. |
[31] | G. Farid, Y. Kwun, H. Yasmeen, A. Akkurt, S. M. Kang, Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions, unpublished work. |
[32] | G. Farid, A. U. Rehman, Q. U. Ain, $k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions, Comput. Methods Differ. Equations, 8 (2020), 119–140. |
[33] | G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for $m$-convex functions via Riemann-Liouville fractional integrals, Stud. Univ. Babeş-Bolyai Math., 62 (2017), 141–150. |
[34] | G. Farid, A. U. Rehman, B. Tariq, A. Waheed, On Hadamard type inequalities for $m$-convex functions via fractional integrals, J. Inequal. Spec. Funct., 7 (2016), 150–167. |
[35] | G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some fractional integral inequalities via strongly convex functions, Math. Probl. Eng., 2021 (2021), 6667226. |
[36] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. |
[37] | K. Liu, J. R. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. |
[38] | C. Miao, G. Farid, H. Yasmeen, Y. Bian, Generalized Hadamard fractional integral inequalities for strongly $(s, m)$-convex functions, J. Math., 2021 (2021), 6642289. |
[39] | A. U. Rehman, G. Farid, S. Bibi, C. Y. Jung, S. M. Kang, $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m) $-convex functions, AIMS Math., 6 (2021), 882–892. |
[40] | P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Methods Appl. Sci., 44 (2021), 2314–2324. |