In this paper, we define refined $ (\alpha, h-m) $-convex function with respect to a strictly monotone function. This function provides refinements of various well-known classes of functions for specific strictly monotone functions. By applying definition of this new function we prove the Hadamard inequalities for Riemann-Liouville fractional integrals. These inequalities give the refinements of fractional Hadamard inequalities for convex, $ (\alpha, m) $-convex, $ (h-m) $-convex, $ (s, m) $-convex, $ h $-convex and many other related well-known classes of functions implicitly. Also, Hadamard type inequalities for $ k $-fractional integrals are given.
Citation: Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon. On Hadamard inequalities for refined convex functions via strictly monotone functions[J]. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
In this paper, we define refined $ (\alpha, h-m) $-convex function with respect to a strictly monotone function. This function provides refinements of various well-known classes of functions for specific strictly monotone functions. By applying definition of this new function we prove the Hadamard inequalities for Riemann-Liouville fractional integrals. These inequalities give the refinements of fractional Hadamard inequalities for convex, $ (\alpha, m) $-convex, $ (h-m) $-convex, $ (s, m) $-convex, $ h $-convex and many other related well-known classes of functions implicitly. Also, Hadamard type inequalities for $ k $-fractional integrals are given.
[1] | G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving $m$-convexity and $(s, m)$-convexity, Facta Univ. Ser. Math. Inform., 28 (2013), 107–126. |
[2] | M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard type inequalities for $m$-convex and $(\alpha, m)$-convex functions, J. Inequal. Pure Appl. Math., 9 (2008), 1–25. |
[3] | S. S. Dragomir, J. Pečariç, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[4] | G. Farid, A. U. Rehman, Q. U. Ain, $k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions, Comput. Methods Differ. Equ., 8 (2020), 119–140. https://doi.org/10.22034/CMDE.2019.9462 doi: 10.22034/CMDE.2019.9462 |
[5] | E. Set, B. Çelik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6 (2016), 137–149. |
[6] | A. W. Roberts, D. E. Varberg, Convex functions, New York: Academic Press, 1973. |
[7] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, 1992. |
[8] | M. Bombardelli, S. Varošanec, Properties of $h$-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073 |
[9] | H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aequationes Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981 |
[10] | V. G. Mihesan, A generalization of the convexity, In: Seminar on functional equations, approximation and convexity, Romania: Cluj-Napoca, 1993. |
[11] | S. Mehmood, G. Farid, Fractional integral inequalities for exponentially $m$-convex functions, Open J. Math. Sci., 4 (2020), 78–85. https://doi.org/10.30538/oms2020.0097 doi: 10.30538/oms2020.0097 |
[12] | M. E. Özdemir, Some inequalities for the $s$-Godunova-Levin type functions, Math. Sci., 9 (2015), 27–32. https://doi.org/10.1007/s40096-015-0144-y doi: 10.1007/s40096-015-0144-y |
[13] | T. Yan, G. Farid, H. Yasmeen, C. Y. Jung, On Hadamard type fractional inequalities for Riemann-Liouville integrals via a generalized convexity, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6010028 doi: 10.3390/fractalfract6010028 |
[14] | M. Zahra, M. Ashraf, G. Farid, K. Nonlaopon, Some new kinds of fractional integral inequalities via refined $(\alpha, h-m)$-convex function, Math. Probl. Eng., 2021 (2021), 1–15. https://doi.org/10.1155/2021/8331092 doi: 10.1155/2021/8331092 |
[15] | G. H. Toader, Some generalization of convexity, Proc. Colloq. Approx. Optim., 1984,329–338. |
[16] | S. M. Yuan, Z. M. Liu, Some properties of $\alpha$-convex and $\alpha$-quasiconvex functions with respect to $n$-symmetric points, Appl. Math. Comput., 188 (2007), 1142–1150. https://doi.org/10.1016/j.amc.2006.10.060 doi: 10.1016/j.amc.2006.10.060 |
[17] | S. Hussain, M. I. Bhatti, M. Iqbal, Hadamard-type inequalities for $s$-convex functions I, Punjab Univ. J. Math., 41 (2009), 51–60. |
[18] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[19] | S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[20] | M. E. Özdemir, M. Avcı, E. Set, On some inequalities of Hermite-Hadamard type via $m$-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. https://doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037 |
[21] | M. A. Latif, S. S. Dragomir, On Hermite-Hadamard type integral inequalities for $n$-times differentiable log-preinvex functions, Filomat, 29 (2015), 1651–1661. https://doi.org/10.2298/FIL1507651L doi: 10.2298/FIL1507651L |
[22] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Fractional integral inequalities via Hadamard's fractional integral, Abstr. Appl. Anal., 2014 (2014), 1–11. https://doi.org/10.1155/2014/563096 doi: 10.1155/2014/563096 |
[23] | M. E. Özdemir, M. Avcı-Ardıç, H. Kavurmaci-Önalan, Hermite-Hadamard type inequalities for $s$-convex and $s$-concave functions via fractional integrals, Turkish J. Sci., 1 (2016), 28–40. |
[24] | M. Tunç, E. Göv, Ü. Şanal, On $tgs$-convex function and their inequalities, Facta Univ. Ser. Math. Inform., 30 (2015), 679–691. |
[25] | G. Farid, M. Zahra, Y. C. Kwun, S. M. Kang, Fractional Hadamard-type inequalities for refined $(\alpha, h-m)-p$-convex function and their consequences, Math. Methods Appl. Sci., 2022, In press. |