Research article Special Issues

Remarks on parabolic equation with the conformable variable derivative in Hilbert scales

  • Received: 28 May 2022 Revised: 01 September 2022 Accepted: 02 September 2022 Published: 13 September 2022
  • MSC : 35A05, 35A08

  • In this paper, we are interested in diffusion equations with conformable derivatives with variable order. We will study two different types of models: the initial value model and the nonlocal in time model. With different values of input values, we investigate the well-posedness of the mild solution in suitable spaces. We also prove the convergence of mild solution of the nonlocal problem to solutions of the initial problem. The main technique of our paper is to use the theory of Fourier series in combination with evaluation techniques for some generalized integrals. Our results are one of the first directions on the diffusion equation with conformable variable derivative in Hilbert scales.

    Citation: Phuong Nguyen Duc, Ahmet Ocak Akdemir, Van Tien Nguyen, Anh Tuan Nguyen. Remarks on parabolic equation with the conformable variable derivative in Hilbert scales[J]. AIMS Mathematics, 2022, 7(11): 20020-20042. doi: 10.3934/math.20221095

    Related Papers:

  • In this paper, we are interested in diffusion equations with conformable derivatives with variable order. We will study two different types of models: the initial value model and the nonlocal in time model. With different values of input values, we investigate the well-posedness of the mild solution in suitable spaces. We also prove the convergence of mild solution of the nonlocal problem to solutions of the initial problem. The main technique of our paper is to use the theory of Fourier series in combination with evaluation techniques for some generalized integrals. Our results are one of the first directions on the diffusion equation with conformable variable derivative in Hilbert scales.



    加载中


    [1] L. Bysezewski, Theorem about the existence and uniqueness of solution of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U
    [2] L. Bysezewski, Uniqueness of solutions of parabolic semilinear nonlocal boundary problems. J. Math. Anal. Appl., 165 (1992), 472–478. https://doi.org/10.1016/0022-247X(92)90052-F
    [3] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [4] A. A. Abdelhakim, J. A. Tenreiro Machado, A critical analysis of the conformable derivative, Nonlinear Dynam., 95 (2019), 3063–3073. https://doi.org/10.1007/s11071-018-04741-5 doi: 10.1007/s11071-018-04741-5
    [5] N. Dokuchaev, On recovering parabolic diffusions from their time-averages, Calc. Var. Partial Differential Equations, 58 (2019), 14. https://doi.org/10.1007/s00526-018-1464-1 doi: 10.1007/s00526-018-1464-1
    [6] A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces, Differ. Equ. Dyn. Syst., 27 (2019), 313–325. https://doi.org/10.1007/s12591-018-0426-6 doi: 10.1007/s12591-018-0426-6
    [7] R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.6652
    [8] R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM, 115 (2021), 16. https://doi.org/10.1007/s13398-021-01095-3 doi: 10.1007/s13398-021-01095-3
    [9] R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solutions Of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math., 20 (2021), 313–333.
    [10] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [11] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081
    [12] Y. Chen, H. Gao, M. J. Garrido-Atienza, B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Cont. Dyn.-S., 34 (2014), 79–98. https://doi.org/10.3934/dcds.2014.34.79 doi: 10.3934/dcds.2014.34.79
    [13] M. J. Garrido-Atienza, B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dyn. Differ. Equ., 23 (2011), 671–681. https://doi.org/10.1007/s10884-011-9222-5 doi: 10.1007/s10884-011-9222-5
    [14] E. Karapinar, H. D. Binh, N. H. Luc, N. H. Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Differ. Equ-Ny., 2021 (2021), 24. https://doi.org/10.1186/s13662-021-03232-z doi: 10.1186/s13662-021-03232-z
    [15] N. H. Tuan, T. B. Ngoc, D. Baleanu, D. O'Regan, On well-posedness of the sub-diffusion equation with conformable derivative model, Commun. Nonlinear Sci., 89 (2020), 26. https://doi.org/10.1016/j.cnsns.2020.105332 doi: 10.1016/j.cnsns.2020.105332
    [16] N. H. Tuan, T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proc. Amer. Math. Soc., 149 (2021), 143–161. https://doi.org/10.1090/proc/15131 doi: 10.1090/proc/15131
    [17] S. Zhang, S. Li, L. Hu, The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 113 (2019), 1601–1623. https://doi.org/10.1007/s13398-018-0572-2 doi: 10.1007/s13398-018-0572-2
    [18] H. Sun, W. Chen, H. Wei, Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phy. J. Special Top., 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6
    [19] N. H. Sweilam, M. Adel, A. F. Saadallah, T. M. Soliman, Numerical studies for variable order linear and nonlinear fractional cable equation, J. Comput. Theor. Nanosci., 12 (2015), 1–8.
    [20] B. Bayor, D. F. M. Torres, Existence of solution to a local fractional differential equation, J. Comput. Appl. Math., 312 (2017), 127–133. https://doi.org/10.1016/j.cam.2016.01.014 doi: 10.1016/j.cam.2016.01.014
    [21] B. Nghia, N. Luc, H. Binh, L. Long, Regularization method for the problem of determining the source function using integral conditions, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 351–361.
    [22] A. M. Nass, K. Mpungu, Symmetry analysis of time fractional convection-reaction-diffusion equation with a delay, Results Nonlinear Anal., 2 (2019), 113–124.
    [23] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903–917. http://dx.doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
    [24] A. Razminia, A. F. Dizaji, J. V. Majd, Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Model., 55 (2012), 1106–1117. https://doi.org/10.1016/j.mcm.2011.09.034 doi: 10.1016/j.mcm.2011.09.034
    [25] Y. Xu, Z. He, Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations, J. Appl. Math. Comput., 43 (2013), 295–306. https://doi.org/10.1007/s12190-013-0664-2 doi: 10.1007/s12190-013-0664-2
    [26] M. Ruzhansky, N. Tokmagambetov, B. T. Torebek, On a non-local problem for a multi-term fractional diffusion-wave equation, Fract. Calc. Appl. Anal., 23 (2020), 324–355. https://doi.org/10.1515/fca-2020-0016 doi: 10.1515/fca-2020-0016
    [27] N. H. Tuan, N. A. Tuan, C. Yang, Global well-posedness for fractional Sobolev-Galpern type equations, Discrete Contin. Dyn. Syst., 42 (2022), 2637–2665. https://doi.org/10.3934/dcds.2021206 doi: 10.3934/dcds.2021206
    [28] N. A. Tuan, T. Caraballo, N. H. Tuan, On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative, Proc. Roy. Soc. Edinburgh Sect. A, 152 (2022), 989–1031. https://doi.org/10.1017/prm.2021.44 doi: 10.1017/prm.2021.44
    [29] H. Dutta, A. 0. Akdemir, A. Atangana, Fractional order analysis: theory, methods and applications, Wiley, 2020.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1779) PDF downloads(122) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog