In this paper, we are interested in diffusion equations with conformable derivatives with variable order. We will study two different types of models: the initial value model and the nonlocal in time model. With different values of input values, we investigate the well-posedness of the mild solution in suitable spaces. We also prove the convergence of mild solution of the nonlocal problem to solutions of the initial problem. The main technique of our paper is to use the theory of Fourier series in combination with evaluation techniques for some generalized integrals. Our results are one of the first directions on the diffusion equation with conformable variable derivative in Hilbert scales.
Citation: Phuong Nguyen Duc, Ahmet Ocak Akdemir, Van Tien Nguyen, Anh Tuan Nguyen. Remarks on parabolic equation with the conformable variable derivative in Hilbert scales[J]. AIMS Mathematics, 2022, 7(11): 20020-20042. doi: 10.3934/math.20221095
[1] | Abdon Atangana, Ali Akgül . Analysis of a derivative with two variable orders. AIMS Mathematics, 2022, 7(5): 7274-7293. doi: 10.3934/math.2022406 |
[2] | Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang . Multipoint flux mixed finite element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962 |
[3] | Umair Ali, Sanaullah Mastoi, Wan Ainun Mior Othman, Mostafa M. A Khater, Muhammad Sohail . Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation. AIMS Mathematics, 2021, 6(9): 10055-10069. doi: 10.3934/math.2021584 |
[4] | Jeong-Kweon Seo, Byeong-Chun Shin . Reduced-order modeling using the frequency-domain method for parabolic partial differential equations. AIMS Mathematics, 2023, 8(7): 15255-15268. doi: 10.3934/math.2023779 |
[5] | Ricardo Almeida . Variational problems of variable fractional order involving arbitrary kernels. AIMS Mathematics, 2022, 7(10): 18690-18707. doi: 10.3934/math.20221028 |
[6] | Fawaz K. Alalhareth, Seham M. Al-Mekhlafi, Ahmed Boudaoui, Noura Laksaci, Mohammed H. Alharbi . Numerical treatment for a novel crossover mathematical model of the COVID-19 epidemic. AIMS Mathematics, 2024, 9(3): 5376-5393. doi: 10.3934/math.2024259 |
[7] | A. S. Mohamed . Fibonacci collocation pseudo-spectral method of variable-order space-fractional diffusion equations with error analysis. AIMS Mathematics, 2022, 7(8): 14323-14337. doi: 10.3934/math.2022789 |
[8] | Hongmei Li . Convergence of smooth solutions to parabolic equations with an oblique derivative boundary condition. AIMS Mathematics, 2024, 9(2): 2824-2853. doi: 10.3934/math.2024140 |
[9] | Shuqin Zhang, Jie Wang, Lei Hu . On definition of solution of initial value problem for fractional differential equation of variable order. AIMS Mathematics, 2021, 6(7): 6845-6867. doi: 10.3934/math.2021401 |
[10] | Yumei Chen, Jiajie Zhang, Chao Pan . Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855 |
In this paper, we are interested in diffusion equations with conformable derivatives with variable order. We will study two different types of models: the initial value model and the nonlocal in time model. With different values of input values, we investigate the well-posedness of the mild solution in suitable spaces. We also prove the convergence of mild solution of the nonlocal problem to solutions of the initial problem. The main technique of our paper is to use the theory of Fourier series in combination with evaluation techniques for some generalized integrals. Our results are one of the first directions on the diffusion equation with conformable variable derivative in Hilbert scales.
Fractional calculus has recently attracted the attention of many researchers and has become an attractive field of study with its different application areas. Some researchers have discovered that fractional differential equations with different singular or non-singular kernel need to be determined by real-world problems in the fields of engineering and science. Some definitions/approaches, for example, Riemann-Liouville, Hadamard, Katugampola, Riesz, Caputo-Fabrizio, and Atangana-Baleanu operators, were presented and tested using a variety of theories. Many important analytical methods have been used to achieve analytical solutions to fractional diffusion equations. By replacing many differential operators of fractional order with different PDE types of integer order, we form different types of boundary value problems with fractional order. However, the types of diffusion equations with fractional derivatives in Hilbert scales space are not really abundant because of their difficulty. We can list a few interesting works on PDEs with fractional derivatives, for example, [7,8,9,12,13,14,16,21,22,27,28,29] and the references therein.
Let T be a positive number. In this paper, we consider the initial value problem for the conformable heat equation (or called parabolic equation with conformable operator)
{∂β(t)∂tβ(t)y+Ay(x,t)=F(x,t),x∈Ω,t∈(0,T),y(x,t)=0,x∈∂Ω,t∈(0,T), | (1.1) |
where ∂β(t)∂tβ(t)y=T0β(t)y(t) is defined in Definition (2.3). Here Ω⊂RN (N≥1) is a bounded domain with the smooth boundary ∂Ω. We are interested to study two following conditions
y(x,0)=y0(x),x∈Ω. | (1.2) |
or nonlocal in time condition
y(x,0)+hy(x,T)=y0(x),h>0,x∈Ω. | (1.3) |
The condition (1.2) is also known as initial conditions, which is familiar to mathematicians in the field of PDEs. Let us provide some remarks on the condition (1.3). Non-local conditions present and explain some more realistic perspectives for some particular phenomena for which usual initial conditions are replaced by multi-time point data such as studying atomic reactors [1,2,26]. In terms of mathematical aspect, since these conditions provide different data from the usual initial/terminal conditions problems with associated nonlocal conditions possess particular properties. In particular, it is well-known that while the problem for the usual parabolic equation is well-posed with the initial Cauchy condition at t=0 and such problem is ill-posed with given data at terminal time t=T>0, the well-posedness can be witnessed for the problems involving forward parabolic equations with non-local in time conditions connecting the values at different times [5]. In fact, throughout this work, we can see that the techniques to derive well-posed results for the initial value problem and the nonlocal in time problem are quite different. The above remarks play an important role in our motivation for deciding to carry out this study. As far as we know, there is very little documentation on the solution connection boundary conditions at different points in time, for example, at the beginning and at the end. Consideration of non-local initial conditions or non-local final conditions derived from actual processes.
Before we cover our problem, we give some background on conformable derivatives. A Conformable derivative can be first stated by Khalil and his colleagues [3] for functions f:[0,∞]→+∞, it can be considered as the general form of the classical derivative and follows the same properties as the classical derivative. Furthermore, the physical meaning of the conformable derivative is assumed to be a modification of the classical derivative of direction and magnitude. More precisely, the general conformable derivative possesses similar physical and geometrical interpretations of Newton's derivative. However, while Newton's derivative describes the velocity of a particle or slope of a tangent, the general conformable derivative can be regarded as a special velocity, its direction and strength rely on a particular function [23].
Let us take M as a Banach space, and the function f:[0,∞)→M and C∂β∂tβ be the conformable derivative of order 0<β≤1 locally defined by
C∂βf(t)∂tβ:=limh→0f(t+ht1−β)−f(t)hin M, | (1.4) |
for each t>0. For additive information about the above definition, we refer the reader to [3,4,6,10,11,20]. An easy observation is that if β=1 then the definition given above is the definition of the classical derivative. To further understand the relationship between conformable and classical derivatives, we direct the reader to the interesting paper [15]. This paper can be considered as one of the first works to investigate diffusion equations with conformable derivative in the Sobolev space. According to natural development, based on the conformable derivative, mathematicians have built a good theory for conformable derivative with orders dependent on a variable.
For the reader to better understand the history of this problem, we present a number of related works. Let us provide the comments of some fractional diffusion equations associated with fractional derivative whose order is a constant, i.e., β(t)=β.
Now, we introduce some previous work mentioned on fractional diffusion equation with variable order. In [18], the authors considered the relaxation-type equation with fractional variable order as follows
{∂α(t)∂tα(t)y(t)+By(t)=F(t),0<α(t)≤1,y(0)=1, | (1.5) |
where ∂α(t)∂tα(t) is the left Caputo derivative of order α(t), B is the relaxation coefficient, f(t) denotes the external source term. The authors investigated the cable equation with fractional variable order [19]. In [24], the authors studied a dynamical system described by the following fractional differential equation with variable order
{∂α(t,y(t))∂tα(t)y(t)=F(t,y(t)),0<α(t,y(t))≤1,y(c)=y0,, | (1.6) |
The authors considered the following dynamical system with variable-order fractional derivative
{CDq(t)x(t)=f(t,x),x(a)=0, |
where q(t) is the variable-order of differentiation [25].
To the best of our knowledge, there are not any results for considering the well-posedness of two problem (3.1)–(1.2) and (3.1)–(1.3). We draw attention to the paper [17] since it mentioned variable conformable derivative. They investigated the fundamental solutions for initial value problem for linear diffusion differential equations with the conformable variable order derivative. Their techniques are based on upper and lower solutions and monotone iterative method. One difference is that they consider (3.1) on the unbounded domain, while we consider it on the bounded domain. Our approach in this paper is different from [17] because we have to learn the ideas of Fourier series. A new point of the current paper is that we carefully examine the well-posedness of our problem.
Let us assert that the problem with the variable conformable derivative is more difficult than the derivatives of constant derivative. The main reason is the appearance of integrals with exponents as functions, for example ∫t0rβ(r)−1dr causing many difficulties in calculation and evaluation. To overcome these difficulties, we need to have skillful judgment to control the components containing these singular integrals.
The main objective of this paper is to investigate the existence and regularization of solutions for two problems. With different assumptions of the input functions F and u0, we will show the space containing the solution. As introduced above, we have a challenge with components that contain singular integrals. Another interesting contribution is that we will examine the relationship between the solutions of two problems: nonlocal problem (3.1)–(1.3) and (3.1)–(1.2). The result is proven convergent of the mild solution to (3.1)–(1.3) when h→0+. This proof of convergent is understood as a non-trivial task.
The structure of the paper is given as follows. Section 3 examines the well-posedness for the initial value problem (3.1)–(1.2). The existence for the mild solution to (3.1)–(1.3) is investigated in section 4. We also derive that the convergence of the mild solution to problem (3.1)–(1.3) when h→0−.
In this section, we introduce notations and functional settings which will be used throughout this work. Recall that the spectral problem
{Aψj(x)=λjψj(x),x∈Ω,ψj(x)=0,x∈∂Ω, |
admits the eigenvalues 0<λ1≤λ2≤⋯≤λj≤… with λj→∞ as j→∞ and the corresponding set of eigenfunctions {ψj}j≥1⊂H10(Ω).
Definition 2.1. We recall the Hilbert scale space as follows
Zs(Ω)={f∈L2(Ω),∞∑j=1λ2sj(∫Ωf(x)ψj(x)dx)2<∞}, |
for any s≥0. It is well-known that Zs(Ω) is a Hilbert space corresponding to the norm
‖f‖Zs(Ω)=(∞∑n=1λ2sj(∫Ωf(x)ψj(x)dx)2)1/2,f∈Zs(Ω). |
In the following, we provide definitions of the left integral and the (left) variable order fractional derivative which are taken from [17].
Definition 2.2. Let f:[a,∞)→(0,1]. The left integral begin at a of variable function h:(a,∞)→R is given by
Iah(t)f(t)=t∫a(s−a)h(s)−1f(s)ds,t>a. | (2.1) |
Definition 2.3. The (left) variable order fractional derivative starting at a of a function f:[a,∞) of order h:[a,∞)→(0,1] is defined by
Tah(t)f(t)=limϵ→0f(t+ϵ(t−a)1−h(t))−f(t)ϵ,t>a. | (2.2) |
When a=0, one can write Th(t). Moreover if Tah(t)f(t) exists on (a,∞) then Tah(t)f(a)=limt→a+Tah(t)f(t).
In addition, if the fractional derivative of order h(t)∈(0,1] of f exists for all t∈(a,∞), we simply say f is h(t)− differentiable.
In this section, we focus on the initial value problem
{∂β(t)∂tβ(t)y+Ay(x,t)=F(x,t),x∈Ω,t∈(0,T),y(x,t)=0,x∈∂Ω,t∈(0,T),y(x,0)=y0(x),x∈Ω, | (3.1) |
where y0 and F will be defined later. Our main purpose in this section is to study the well-posedness of Problem (3.1). We use the Fourier analysis to construct the mild solution. Let us assume that y(x,t)=∑∞j=1⟨y(.,t),ψj⟩ψj(x) where ⟨y(.,t),ψj⟩:=∫Ωy(x,t)ψj(x)dx. Taking the inner product ⟨⋅,⋅⟩ of the main equation of Problem (3.1) with ψj gives
{∂β(t)∂tβ(t)⟨y(.,t),ψj⟩+λj⟨y(.,t),ψj⟩=⟨F(.,t),ψj⟩,t∈(0,T),⟨y(.,0),ψj⟩=⟨y0,ψj⟩. | (3.2) |
By the result in [17], we obtain the following equality
⟨y(.,t),ψj⟩=exp(−λj∫t0rβ(r)−1dr)⟨y0,ψj⟩+∫t0rβ(r)−1exp(−λj∫trzβ(z)−1dz)⟨F(.,r),ψj⟩dr, | (3.3) |
where we remind that β:[0,∞)→(0,1]. By the definition of Fourier series, we have the following formula of the mild solution
y(x,t)=∑jexp(−λj∫t0rβ(r)−1dr)⟨y0,ψj⟩ψj(x)+∑j[∫t0rβ(r)−1exp(−λj∫trzβ(z)−1dz)⟨F(.,r),ψj⟩dr]ψj(x)=:J1+J2. | (3.4) |
Lemma 3.1. Let m=min0≤t≤1|β(t)| and b=max0≤t≤1|β(t)|.
i) If 0≤t≤1 then
tbb≤|∫t0rβ(r)−1dr|≤tmm. | (3.5) |
ii) If t≥1 then
1b+tm−1m≤|∫t0rβ(r)−1dr|≤1m+tb−1b. | (3.6) |
Proof. We claim (i) as follows. Since β(r)≥m and 0<β(r)≤1, we know that 0≤1−β(r)≤1−m. Since 0≤r≤t<1, we know that 1r>1. It follows that
(1r)1−β(r)≤(1r)1−m. | (3.7) |
This implies that
|∫t0rβ(r)−1dr|=∫t0(1r)1−β(r)dr≤∫t0(1r)1−mdr=tmm. | (3.8) |
Since 1−β(r)≥1−b≥0, we know that
(1r)1−β(r)≥(1r)1−b. |
It implies the following lower bound
|∫t0rβ(r)−1dr|=∫t0(1r)1−β(r)dr≥∫t0(1r)1−bdr=tbb. | (3.9) |
We next provide the proof of (ii). Since t≥1, we derive
∫t0rβ(r)−1dr=∫10rβ(r)−1dr+∫t1rβ(r)−1dr. | (3.10) |
Using (3.5) with t=1, we obtain the following upper and lower bound
1b≤∫10rβ(r)−1dr≤1m. | (3.11) |
Our next aim is to consider the term ∫t1rβ(r)−1dr. It is easy to observe that
1−b≤1−β(r)≤1−m. |
From the fact that 0<1r<1, we get the upper bound below
∫t1rβ(r)−1dr=∫t1(1r)1−β(r)dr≤∫t1(1r)1−bdr=tb−1b, | (3.12) |
and also, the lower bound
∫t1rβ(r)−1dr=∫t1(1r)1−β(r)dr≥∫t1(1r)1−mdr=tm−1m. | (3.13) |
Connecting all the above inequalities (3.11), (3.12) and (3.13) gives us the assertion (3.6).
Lemma 3.2. Let m=min0≤t≤1|β(t)| and b=max0≤t≤1|β(t)|.
i) If 0≤r≤t≤1 then
tb−rbb≤∫trzβ(z)−1dz≤tm−rmm. | (3.14) |
ii) If 0<r≤1≤t, we get
1−rbb+tm−1m≤∫trzβ(z)−1dz≤1−rmm+tb−1b. | (3.15) |
iii) If 0≤1≤r≤t then
tm−rmm≤∫trzβ(z)−1dz≤tb−rbb. | (3.16) |
Proof. The proof of this lemma is almost the same as that of Lemma (3.1). Our claim is divided into three cases.
∙ The case 0<t≤1. For this case, it is easy to see that
(1z)1−b≤(1z)1−β(z)≤(1z)1−m. |
This implies that
∫tr(1z)1−bdz≤∫trzβ(z)−1dz=∫tr(1z)1−β(z)dz≤∫tr(1z)1−mdz. | (3.17) |
It is easy to verify that
∫tr(1z)1−bdz=∫trzb−1dz=tb−rbb | (3.18) |
and
∫tr(1z)1−mdz=∫trzm−1dz=tm−rmm. | (3.19) |
Hence, we obtain that for any 0<r≤t≤1
tb−rbb≤∫trzβ(z)−1dz≤tm−rmm. | (3.20) |
∙ The case 0≤r≤t≤1. For this case, we get the following identity
∫trzβ(z)−1dz=∫1rzβ(z)−1dz+∫t1zβ(z)−1dz. | (3.21) |
By setting t=1 into (3.20), we arrive at
1−rbb≤∫1rzβ(z)−1dz≤1−rmm. | (3.22) |
This implies the following estimate
1−rbb+tm−1m≤∫1rzβ(z)−1dz+∫t1zβ(z)−1dz≤1−rmm+tb−1b, | (3.23) |
which allows us to deduce the desired result.
∙ The case 0≤1≤r≤t. Under this case, we obtain that if r≤z≤t then
(1z)1−m≤(1z)1−β(z)≤(1z)1−b. |
This implies that
∫tr(1z)1−mdz≤∫trzβ(z)−1dz≤∫tr(1z)1−bdz. | (3.24) |
Hence, we find that
tm−rmm≤∫trzβ(z)−1dz≤tb−rbb. | (3.25) |
The well-posedness of Problem (3.1) is described by the following theorem.
Theorem 3.3. i) Let y0∈Zs−ε(Ω) for ε>0 and F∈L∞(0,T;Zs(Ω)). Then we get
‖y(.,t)‖Zs(Ω)≲ | (3.26) |
ii) Let y_0 \in \mathbb Z^{s- \varepsilon } (\Omega) for \varepsilon > 0 and F \in L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega)) for any 0 < \delta < \frac{1}{2} . Let us assume that 2m > b . Then we obtain
\begin{align} \Big\| {y} (., t) \Big\|_{\mathbb Z^s (\Omega)} \lesssim \left( T^{b \varepsilon}+1\right) t^{-b \varepsilon}\big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)} + t^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}. \end{align} | (3.27) |
Proof. Let us recall the mild solution
\begin{align} y(x, t)& = \sum\limits_{j} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle \psi_j (x){}\\ &+ \sum\limits_{j} \Big[ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Big] \psi_j(x){}\\ & = J_1+ J_2. \end{align} | (3.28) |
Step 1. Estimate of the term J_1 . Using the inequality e^{-a} \le C(\varepsilon) a^{-\varepsilon} for any \varepsilon > 0 , we find that
\begin{align} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \le C(\varepsilon) \lambda_j^{-\varepsilon} \left( \int_0^t r^{\beta(r)-1} dr \right)^{-\varepsilon}. \end{align} | (3.29) |
\bullet If 0 < t\le 1 in view of (3.5), we obtain
\begin{align} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \le C_1 \lambda_j^{-\varepsilon} t^{-b \varepsilon}, \end{align} | (3.30) |
where
C_1 = C(\varepsilon) b^\varepsilon. |
By Parseval's equality and using (3.30), we derive that
\begin{align} &\Big\| \sum\limits_{j} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle \psi_j (x) \Big\|_{\mathbb Z^s (\Omega)}^2{}\\ & = \sum\limits_{j} \lambda_j^{2s} \exp \Big(-2 \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \langle y_0 , \psi_j \rangle^2 \le C_1^2 t^{-2b \varepsilon} \sum\limits_{j} \lambda_j^{2s-2\varepsilon} \langle y_0 , \psi_j \rangle^2. \end{align} | (3.31) |
This implies that for t \le 1
\begin{align} \Big\| \sum\limits_{j} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle \psi_j (x) \Big\|_{\mathbb Z^s (\Omega)} \le C_1 t^{-b \varepsilon} \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}. \end{align} | (3.32) |
\bullet If t \ge 1 thanks to (3.6) of Lemma (3.1), we obtain
\begin{align} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \le C(\varepsilon) \lambda_j^{-\varepsilon} \left( \frac{1}{b}+ \frac{t^m-1}{m} \right)^{-\varepsilon}. \end{align} | (3.33) |
Since t\ge 1 , it is obvious to see that the following inequality is satisfied
\left( \frac{1}{b}+ \frac{t^m-1}{m} \right)^{-\varepsilon} \le b^\varepsilon. |
From the previous observations, we get that
\begin{align} \Bigg\| \sum\limits_{j} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle \psi_j (x) \Bigg\|_{\mathbb Z^s (\Omega)} &\le C_1 \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)} {}\\ &\le C_1 T^{b \varepsilon} t^{-b \varepsilon}\big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)} . \end{align} | (3.34) |
Combining (3.32) and (3.34), we deduce the following estimate for any 0 \le t \le T
\begin{align} \Big\| \sum\limits_{j} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle \psi_j (x) \Big\|_{\mathbb Z^s (\Omega)} & = \Big\| J_1 (., t) \Big\|_{\mathbb Z^s (\Omega)} {}\\ & \le C_1 \left( T^{b \varepsilon}+1\right) t^{-b \varepsilon}\big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)} . \end{align} | (3.35) |
Step 2. Estimate of the term J_2 .
By Parseval's equality and Hölder's inequality, we find that
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)}^2& = \sum\limits_{j} \lambda_j^{2s} \Big[ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Big]^2{}\\ &\le \sum\limits_{j} \lambda_j^{2s} \Big[ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) dr \Big] {}\\ &\quad \quad \quad \quad \quad \quad \Big[ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle^2 dr \Big]. \end{align} | (3.36) |
Let us now consider possible cases as follows.
Case 1: 0 < t\le 1 and F \in L^\infty (0, T; \mathbb Z^s (\Omega)) .
In view of (3.14) and the fact that \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \le 1 , we derive
\begin{align} \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) dr \le \int_0^t r^{\beta(r)-1} dr \le \frac{t^m}{m}. \end{align} | (3.37) |
It follows from (3.36) that
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)}^2 &\le \frac{t^m}{m} \sum\limits_{j} \lambda_j^{2s}\Big[ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle^2 dr \Big]{}\\ &\le \frac{t^m}{m} \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \big\| F(., r) \big\|_{\mathbb Z^s (\Omega)}^2 dr{}\\ &\le \frac{t^m}{m} \int_0^t r^{\beta(r)-1} \big\| F(., r) \big\|_{\mathbb Z^s (\Omega)}^2 dr \le \frac{t^m}{m} \Big\| F \Big\|^2_{L^\infty (0, T; \mathbb Z^s (\Omega))} \left( \int_0^t r^{\beta(r)-1} dr\right). \end{align} | (3.38) |
From (3.14) we obtain that the following estimate
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \frac{t^{m}}{m} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (3.39) |
Case 2: t \ge 1 and F \in L^\infty (0, T; \mathbb Z^s (\Omega)) .
Using (3.38) and by a similar claim in case 1, we get that
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)}^2 &\le \sum\limits_{j} \lambda_j^{2s} \Big[ \int_0^t r^{\beta(r)-1} dr \Big] \Big[ \int_0^t r^{\beta(r)-1} \langle F(., r) , \psi_j \rangle^2 dr \Big]{}\\ &\le \Big[ \int_0^t r^{\beta(r)-1} dr \Big]^2 \Big\| F \Big\|^2_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (3.40) |
In view of (3.6), we obtain
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \Big( \int_0^t r^{\beta(r)-1} dr \Big) \Big\| F \Big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))} \le \left( \frac{1}{m}+ \frac{t^b-1}{b} \right) \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))} . \end{align} | (3.41) |
Since b \ge m , we have the following inequality
\frac{1}{m}+ \frac{t^b-1}{b} \le \frac{1}{m}+ \frac{t^b-1}{m} = \frac{t^b}{m}. |
Therefore, we derive that for any t \ge 1
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \frac{t^{b}}{m} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (3.42) |
Combining case 1 and case 2, we get the following estimate for any t > 0 and F \in L^\infty (0, T; \mathbb Z^s (\Omega))
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \frac{t^{b}+ t^m}{m} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (3.43) |
Case 3: 0 < t\le 1 and F \in L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega)) .
Using the inequality e^{-a} \le C(\delta) a^{-\delta} for any \delta > 0 , we obtain that
\begin{align} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \le C(\delta) \lambda_j^{-\delta} \Big(\int_r^t z^{\beta(z)-1} dz \Big)^{-\delta}. \end{align} | (3.44) |
From the fact that t \le 1 , we use (3.14) to get
\begin{align} \Big(\int_r^t z^{\beta(z)-1} dz \Big)^{-\delta} \le \Big( \frac{t^b-r^b}{b} \Big)^{-\delta} = b^\delta \left( t^b-r^b \right)^{-\delta}. \end{align} | (3.45) |
Hence, we get the following estimate
\begin{align} \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) dr \; \le\; C(\delta, b) \lambda_j^{-\delta} \int_0^t r^{\beta(r)-1} \left( t^b-r^b \right)^\delta dr{}\\ \; \le\; C(\delta, b) \lambda_j^{-\delta} \int_0^t r^{m-1} \left( t^b-r^b \right)^{-\delta} dr, \end{align} | (3.46) |
where we have used (3.7). Let us now treat the integral term on the right hand side of (3.46). By applying Hölder inequality and noting that 2m > b , we derive that
\begin{align} \int_0^t r^{m-1} \left( t^b-r^b \right)^{-\delta} dr & = \int_0^t r^{\frac{2m-b-1}{2}} r^{\frac{b-1}{2}} \left( t^b-r^b \right)^{-\delta} dr {}\\ & \le \Big( \int_0^t r^{2m-b-1} dr \Big)^{1/2} \quad \Big( \int_0^t r^{b-1} \left( t^b-r^b \right)^{-2\delta} dr \Big)^{1/2} {}\\ & = \sqrt{ \frac{t^{2m-b}}{2m-b}} \sqrt{ \int_0^t r^{b-1} \left( t^b-r^b \right)^{-2\delta} dr }. \end{align} | (3.47) |
Set r' = r^b , then dr' = br^{b-1} dr . Then, since 2 \delta < 1 , we have
\begin{align} \int_0^t r^{b-1} \left( t^b-r^b \right)^{-2\delta} dr = \frac{1}{b} \int_0^{t^b} \left( t^b- r' \right)^{-2\delta} dr' = \frac{1}{b} \frac{ t^{b(1-2\delta)} }{1-2\delta}. \end{align} | (3.48) |
Combining (3.46), (3.47) and (3.48), we get the following estimate for t\le 1
\begin{align} \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) dr \le \overline C_1 \lambda_j^{-\delta} t^{m- b\delta}, \end{align} | (3.49) |
where
\overline C_1 = \frac{ C(\delta, b) }{ \sqrt{b} \sqrt{1-2\delta} \sqrt{2m-b}}. |
This inequality together with (3.36) yields
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)}^2 &\le \overline C_1 t^{m- b\delta} \sum\limits_{j} \lambda_j^{2s-\delta} \Big[ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle^2 dr \Big]{}\\ &\le \overline C_1 C(\delta, b) t^{m- b\delta} \sum\limits_{j} \lambda_j^{2s-2\delta} \int_0^t r^{m-1} \left( t^b-r^b \right)^{-\delta} \langle F(., r) , \psi_j \rangle^2 dr{}\\ &\le \overline C_2 t^{m- b\delta} \int_0^t r^{m-1} \left( t^b-r^b \right)^{-\delta} \big\| F(., r) \big\|_{\mathbb Z^{s-\delta} (\Omega)}^2 dr, \end{align} | (3.50) |
where \overline C_2 = \overline C_1 C(\delta, b) . It is obvious to see that
\begin{align} \int_0^t r^{m-1} \left( t^b-r^b \right)^{-\delta} \big\| F(., r) \big\|_{\mathbb Z^{s-\delta} (\Omega)}^2 dr &\le \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))} \int_0^t r^{m-1} \left( t^b-r^b \right)^{-\delta} dr. \end{align} | (3.51) |
In the previous claim, we showed that
\begin{align} \int_0^t r^{m-1} \left( t^b-r^b \right)^{-\delta} dr \le \frac{t^{m-b \delta}}{ \sqrt{b} \sqrt{1-2\delta} \; \sqrt{2m-b} }. \end{align} | (3.52) |
Combining (3.50), (3.51) and (3.52), we obtain that for any 0 < t\le 1
\begin{align} \Big\| J_2 (., t) \Big\|_{\mathbb Z^s (\Omega)} \le \overline C_3 t^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}, \end{align} | (3.53) |
where we denote by
\overline C_3 = \frac{ C(\delta, b) }{ ({1-2\delta}) ({2m-b})b } . |
Case 4: t \ge 1 and F \in L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega)) .
We need to deal with the integral term
\mathrm{I} = \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) dr. |
To this end, we derive the following equality
\begin{align} \mathrm{I} & = \int_0^1 r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^1 z^{\beta(z)-1} dz \Big) dr+ \int_1^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) dr{}\\ & = \mathrm{I}_1+ \mathrm{I}_2. \end{align} | (3.54) |
For the term \mathrm{I}_1 , we put t = 1 into (3.49) to obtain
\begin{align} \mathrm{I}_1 \le \overline C_1 \lambda_j^{-\delta}. \end{align} | (3.55) |
For the second term \mathrm{I}_2 , we note that 1 \le r \le t . Hence r^{\beta(r)-1} \le r^{b-1} . In view of the inequality e^{-a} \le C(\delta) a^{-\delta} for any \delta > 0 , we get
\begin{align} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \le C(\delta) \lambda_j^{-\delta} \left( \int_r^t z^{\beta(z)-1} dz \right)^{-\delta} . \end{align} | (3.56) |
Using (3.16) and (3.56), we find that
\begin{align} \mathrm{I}_2 \le C(\delta) \lambda_j^{-\delta} \int_1^t r^{b-1} \left( \int_r^t z^{\beta(z)-1} dz \right)^{-\delta} dr . \end{align} | (3.57) |
In view of (3.16), we can check easily that
\left( \int_r^t z^{\beta(z)-1} dz \right)^{-\delta} \le \left( \frac{t^m-r^m}{m} \right)^{-\delta} = m^\delta \left( t^m -r^m \right)^{-\delta}. |
It follows from (3.57) that
\begin{align} \mathrm{I}_2 \le C(\delta) m^\delta \lambda_j^{-\delta} \int_1^t r^{b-1} \left( t^m -r^m \right)^{-\delta} dr. \end{align} | (3.58) |
Next, using Hölder inequality to derive that
\begin{align} \int_1^t r^{b-1} \left( t^m -r^m \right)^{-\delta} dr & = \int_1^t r^{\frac{2b-m-1}{2}} r^{\frac{m-1}{2}} \left( t^m -r^m \right)^{-\delta} dr {}\\ &\le \Big( \int_1^t r^{2b-m-1} dr \Big)^{1/2} \Big( \int_1^t r^{m-1} \left( t^m -r^m \right)^{-2\delta} dr \Big)^{1/2} {}\\ & = \sqrt{ \frac{t^{2b-m}-1}{2b-m} }\Big( \int_1^t r^{m-1} \left( t^m -r^m \right)^{-2\delta} dr \Big)^{1/2} . \end{align} | (3.59) |
It is not difficult to compute that
\begin{align} \int_1^t r^{m-1} \left( t^m -r^m \right)^{-2\delta} dr = \frac{1}{m} \int_1^{t^m} \left( t^m -(r')^m \right)^{-2\delta} dr' = \frac{ \left( t^m-1\right)^{1-2\delta} }{m (1-2\delta)}. \end{align} | (3.60) |
From the above two observations, we find that
\begin{align} \int_1^t r^{b-1} \left( t^m -r^m \right)^{-\delta} dr \le \overline C_4 \sqrt{t^{2b-m}-1} \left( t^m-1\right)^{\frac{1}{2}-\delta} , \end{align} | (3.61) |
where
\overline C_4 = \frac{1}{ \sqrt{2b-m} \sqrt{m (1-2\delta) } }. |
This combined with (3.58) yields to the following bound
\begin{align} \mathrm{I}_2 &\le \overline C_5 \lambda_j^{-\delta} \sqrt{t^{2b-m}-1} \left( t^m-1\right)^{\frac{1}{2}-\delta} {}\\ &\le \overline C_5 \lambda_j^{-\delta} t^{b-\frac{m}{2}} t^{m (\frac{1}{2}-\delta)} = \overline C_5 t^{m- b\delta} \lambda_j^{-\delta} , \end{align} | (3.62) |
where \overline C_5 = C(\delta) m^\delta\overline C_4 . Combining (3.54), (3.55) and (3.57) and noting that 1 \le t^{m- b\delta} we derive that
\begin{align} \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) dr \le \overline C_6 t^{m- b\delta} \lambda_j^{-\delta}, \quad \overline C_6 = \max(\overline C_1, \overline C_5). \end{align} | (3.63) |
Therefore, we obtain that for t \ge 1
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)}^2 & = \sum\limits_{j} \lambda_j^{2s} \Big[ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Big]^2{}\\ & = \sum\limits_{j} \lambda_j^{2s} \Big[ \int_0^1 r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^1 z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Big]^2 {}\\ &+ \sum\limits_{j} \lambda_j^{2s} \Big[ \int_1^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Big]^2{}\\ & = I + \overline I(t). \end{align} | (3.64) |
It is obvious to see that the following inequality holds
\begin{align} I = \Big\| J_2 (., 1) \Big\|_{\mathbb Z^s (\Omega)}^2 \le |\overline C_3|^2 \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}^2, \end{align} | (3.65) |
where we hace applied (3.53). This together with (3.36) and (3.56) allow us to obtain that
\begin{align} \overline I(t) &\le \overline C_6 t^{m- b\delta} \sum\limits_{j} \lambda_j^{2s-\delta} \Big( \int_1^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle^2 dr \Big){}\\ &\le \overline C_6 C(\delta) t^{m- b\delta} \sum\limits_{j} \lambda_j^{2s-2\delta} \Big( \int_1^t r^{\beta(r)-1} \left( \int_r^t z^{\beta(z)-1} dz \right)^{-\delta} \langle F(., r) , \psi_j \rangle^2 dr \Big){}\\ &\le \overline C_6 C(\delta) t^{m- b\delta} \Big( \int_1^t r^{\beta(r)-1} m^\delta \left( t^m -r^m \right)^{-\delta} dr \Big) \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}^2{}\\ &\le \overline C_7 t^{m- b\delta} \Big( \int_1^t r^{b-1} \left( t^m -r^m \right)^{-\delta} dr \Big) \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}^2, \end{align} | (3.66) |
where \overline C_7 = \overline C_6 C(\delta) m^\delta. By looking at the estimate (3.61), we infer the following estimate
\begin{align} \overline I(t) \le \overline C_7 \overline C_4 t^{2m- 2b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}^2, \end{align} | (3.67) |
where \overline C_8 = \overline C_7 \overline C_4 . Combining (3.64), (3.65) and (3.67), we derive the following bound
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)}^2 \le |\overline C_3|^2 \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}^2+ \overline C_8 t^{2m- 2b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}^2. \end{align} | (3.68) |
Since t \ge 1 , we follows from (3.68) that
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \overline C_9 t^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}. \end{align} | (3.69) |
Summarizing two cases 3 and 4, we provide the following statement
\begin{align} \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \overline C_{10} t^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}, \quad t > 0. \end{align} | (3.70) |
Hence, the proof of (3.26) is finished by combining (3.35) and (3.43). At the same time, the proof of (3.27) is derived from (3.35) and (3.70).
In this section, we focus the nonlocal value problem
\begin{equation} \left\{\begin{array}{lllllccccc} \frac{ \partial^{\beta(t)} }{\partial t^{\beta(t)}} y +\mathcal A y (x, t) = F(x, t), & \qquad x \in \Omega, t\in(0, T), \\ y(x, t) = 0, & \qquad x \in \partial \Omega , t\in(0, T), \\ y(x, 0)+ h y(x, T) = y_0(x), & \qquad x \in \Omega. \end{array} \right. \end{equation} | (4.1) |
Our main purpose in this section is to study the well-posedness of problem (4.1) and the convergence of the mild solution when h \to 0^ + .
Theorem 4.1.
i) Let y_0 \in \mathbb Z^{s- \varepsilon } (\Omega) for \varepsilon > 0 and F \in L^\infty (0, T; \mathbb Z^s (\Omega)) . Then Problem (4.1) has a unique solution y_h such that
\begin{align} \Big\| y_h(., t)\Big\|_{\mathbb Z^s (\Omega)} & \lesssim t^{-b \varepsilon} \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}+ h t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))}+ \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (4.2) |
where the hidden constant depends on T, b, \varepsilon, m .
ii) Let y_0 \in \mathbb Z^{s- \varepsilon } (\Omega) for \varepsilon > 0 and F \in L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega)) for any 0 < \delta < \frac{1}{2} . Let us assume that 2m > b . Then we get
\begin{align} \Big\| y_h(., t)\Big\|_{\mathbb Z^s (\Omega)} \lesssim t^{-b \varepsilon} \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}+ h t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}+ t^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}, \end{align} | (4.3) |
where the hidden constant depends on T, b, \varepsilon, m, \delta .
Proof. Let us first establish the fomula of the mild solution to nonlocal problem (4.1). Suppose that Problem (4.1) has a solution y_h . From (3.3), we get
\begin{align} \langle y_h(., t) , \psi_j \rangle& = \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \langle y_0 , \psi_j \rangle {}\\ &+ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \end{align} | (4.4) |
By let t = T into the above expression, we see that
\begin{align} \langle y_h(., T) , \psi_j \rangle& = \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle {}\\ &+ \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr. \end{align} | (4.5) |
From the above two equalities and the nonlocal-in-time condition
y_h(x, 0)+ h y_h(x, T) = f(x), |
we deduce the following equality
\begin{align} &\Big[ 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) \Big] \langle y_0 , \psi_j \rangle{}\\ &+ h \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr{}\\ & = \langle f , \psi_j \rangle . \end{align} | (4.6) |
This implies that the following equality is satisfied
\begin{align} \langle y_0 , \psi_j \rangle = \frac{\langle f , \psi_j \rangle -h \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr }{ 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) }. \end{align} | (4.7) |
Combining (4.4) and (4.7), we derive that
\begin{align} \langle y_h(., t) , \psi_j \rangle& = \frac{\exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \langle y_0 , \psi_j \rangle}{1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big)} {}\\ &+ \int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \\ &- \frac{ -h \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr }{ 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) }.{} \end{align} | (4.8) |
By the theory of Fourier series, the mild solution is given by
y_h(x, t) = \sum\limits_{j = 1}^\infty \frac{\exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \langle y_0 , \psi_j \rangle}{1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big)} \psi_j(x){}\\ -h \sum\limits_{j = 1}^\infty \frac{ \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr }{ 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) } \psi_j(x){}\\ + \sum\limits_{j = 1}^\infty \Big[\int_0^t r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^t z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr\Big] \psi_j(x){}\\ = \mathbb K_1 (x, t)+ \mathbb K_2 (x, t)+ \mathbb K_3 (x, t). | (4.9) |
Let us consider the first term \mathbb K_1 . By Parseval's equality, using (3.30), (3.35) and noting that 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) > 1 , we derive
\begin{align} \Big\| \mathbb K_1 \Big\|_{\mathbb Z^s (\Omega)}^2 & = \sum\limits_{j} \lambda_j^{2s} \Bigg( \frac{\exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) }{1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big)} \Bigg)^2 \langle y_0 , \psi_j \rangle^2{}\\ &\le \sum\limits_{j} \lambda_j^{2s} \exp \Big(-2 \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle^2{}\\ &\le C_1^2 \left( T^{b \varepsilon}+1\right)^2 t^{-2b \varepsilon} \sum\limits_{j} \lambda_j^{2s-2\varepsilon} \langle y_0 , \psi_j \rangle^2{}\\ & = C_1^2 \left( T^{b \varepsilon}+1\right)^2 t^{-2b \varepsilon} \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}^2, \end{align} | (4.10) |
where we have used (3.31). Therefore, we obtain that the following estimate
\begin{align} \Big\| \mathbb K_1 \Big\|_{\mathbb Z^s (\Omega)} \le C_1 \left( T^{b \varepsilon}+1\right) t^{-b \varepsilon} \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}. \end{align} | (4.11) |
Proof of i). Suppose F \in L^\infty (0, T; \mathbb Z^s (\Omega)) .
We deal with the second term \mathbb K_2 . We first obtain
\Big\| \mathbb K_2 \Big\|_{\mathbb Z^s (\Omega)}^2 {}\\ = h^2 \sum\limits_{j} \lambda_j^{2s} \Bigg( \frac{ \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr }{ 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) } \Bigg)^2{}\\ \le h^2 \sum\limits_{j} \lambda_j^{2s} \exp \Big(-2 \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\\ \Bigg( \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Bigg)^2{}\\ \le h^2 C_1^2 t^{-2b \varepsilon} \sum\limits_{j} \lambda_j^{2s-2\varepsilon} \Bigg( \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Bigg)^2. | (4.12) |
From (3.43), we can easily to verify that
\begin{align} \Big\| J_2(., T) \Big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}^2& = \sum\limits_{j} \lambda_j^{2s-2\varepsilon} \Bigg( \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Bigg)^2{}\\ &\le \left( \frac{T^{b}+ T^m}{m} \right)^2 \big\| F \big\|^2_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))}. \end{align} | (4.13) |
Combining (4.12) and (4.13), we derive the following bound
\begin{align} \Big\| \mathbb K_2 \Big\|_{\mathbb Z^s (\Omega)} \le C_1 h \left( \frac{T^{b}+ T^m}{m} \right) t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))}. \end{align} | (4.14) |
Let us now treat the third term \mathbb K_3 . In view of (3.43), we infer that
\begin{align} \Big\| \mathbb K_3(., t) \Big\|_{\mathbb Z^s (\Omega)} = \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \frac{t^{b}+ t^m}{m} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (4.15) |
Combining (4.9), (4.11), (4.14) and (4.15) yields
\begin{align} \Big\| y_h(., t)\Big\|_{\mathbb Z^s (\Omega)} &\le \sum\limits_{j = 1}^3 \Big\| \mathbb K_j(., t) \Big\|_{\mathbb Z^s (\Omega)} \le C_1 \left( T^{b \varepsilon}+1\right) t^{-b \varepsilon} \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}{}\\ &+C_1 h \left( \frac{T^{b}+ T^m}{m} \right) t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))}+ \frac{t^{b}+ t^m}{m} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (4.16) |
Proof of ii). Suppose that F \in L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega)) .
From (3.70), we obtain the following bound
\begin{align} \Big\| J_2(., T) \Big\|_{\mathbb Z^s (\Omega)} \le \overline C_{10} T^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}, \quad t > 0, \end{align} | (4.17) |
where we note that t^{m- b\delta} \le T^{m- b\delta} . This estimate together with (4.12) yield
\begin{align} \Big\| \mathbb K_2 \Big\|_{\mathbb Z^s (\Omega)} \le C_1 \overline C_{10} T^{m- b\delta} h t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}. \end{align} | (4.18) |
In view of (3.70), we infer that
\begin{align} \Big\| \mathbb K_3(., t) \Big\|_{\mathbb Z^s (\Omega)} = \Big\| J_2(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \overline C_{10} t^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}. \end{align} | (4.19) |
Combining (4.9), (4.11), (4.18) and (4.19), we deduce that
\begin{align} \Big\| y_h(., t)\Big\|_{\mathbb Z^s (\Omega)} &\le \sum\limits_{j = 1}^3 \Big\| \mathbb K_j(., t) \Big\|_{\mathbb Z^s (\Omega)} \le C_1 \left( T^{b \varepsilon}+1\right) t^{-b \varepsilon} \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon} (\Omega)}{}\\ &+C_1 \overline C_{10} T^{m- b\delta} h t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}+ \overline C_{10} t^{m- b\delta} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\delta} (\Omega))}. \end{align} | (4.20) |
The proof is completed.
The following theorem shows the convergence of the mild solution to (3.1)-(1.3) when h \to 0^- .
Theorem 4.2. i) Let y_0 \in \mathbb Z^{s- \varepsilon } (\Omega) and F \in L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega)) for any 0 < \varepsilon < \frac{1}{b} . Then, h\in(0, 1) and k\in(1, 2) we get
\begin{align} \Big\| y_h(., t)- y(., t) \Big\|_{L^p(0, T; \mathbb Z^s (\Omega))} \le C \Big( h^{ \frac{2-k}{2} } \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}(\Omega)}+ h \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))} \Big), \end{align} | (4.21) |
where C depends on T, b, \varepsilon, p .
ii) Let y_0 \in \mathbb Z^{s- \varepsilon } (\Omega) for \varepsilon > 0 and F \in L^\infty (0, T; \mathbb Z^{s} (\Omega)) for any \varepsilon > 0 . Let us assume that 2m > b . Then we get
\begin{align} \Big\| y_h(., t)- y(., t) \Big\|_{L^\infty(0, T; \mathbb Z^s (\Omega))} \le C \Big( h^{ \frac{2-k}{2} } \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}(\Omega)}+ h \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s} (\Omega))} \Big), \; \; 0 < h < 1, \end{align} | (4.22) |
where the hidden constant depends on T, b, \varepsilon, m .
Proof. First, we focus on the formulas of solutions (4.9) and (3.28). Taking the difference, we get
\begin{align} &y_h (x, t)- y(x, t){}\\ & = \sum\limits_{j = 1}^\infty \frac{\exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \langle y_0 , \psi_j \rangle}{1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big)} \psi_j(x)-\sum\limits_{j} \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big)\langle y_0 , \psi_j \rangle \psi_j (x){}\\ &-h \sum\limits_{j = 1}^\infty \frac{ \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr }{ 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) } \psi_j(x){}\\ & = \mathbb K_0 (x, t)+ \mathbb K_2 (x, t). \end{align} | (4.23) |
By a simple transformation, it is easy to verify that
\begin{align} \mathbb K_0 (x, t) = h \sum\limits_{j = 1}^\infty \frac{\exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) }{1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big)} \langle y_0 , \psi_j \rangle \psi_j(x). \end{align} | (4.24) |
We need to consider the term
\mathbb K_4(t) = \frac{h\exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} \ \ \ dr \Big) }{1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} \ \ \ dr \Big)}{}\\ = \frac{h\exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} \ \ \ dr \Big) } { \Big(1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} \ \ \ dr \Big) \Big)^{\frac{\int_0^t r^{\beta(r)-1} \ \ \ dr }{\int_0^T r^{\beta(r)-1} \ \ \ dr } } \Big(1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} \ \ \ dr \Big) \Big)^{\frac{\int_t^T r^{\beta(r)-1} \ \ \ dr }{\int_0^T r^{\beta(r)-1} \ \ \ dr } } }. | (4.25) |
We consider the denominator component of the above fraction. In view of the inequality
1+z > z^{\frac{k}{2}}, \quad 1 < k < 2, \quad z > 0, |
we get the following inequality
\Big(1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) \Big)^{\frac{\int_0^t r^{\beta(r)-1} dr }{\int_0^T r^{\beta(r)-1} dr } } > h^{\frac{k\int_0^t r^{\beta(r)-1} dr }{2\int_0^T r^{\beta(r)-1} dr } } \exp \Big(- {\frac{ \lambda_j k}{2}} \int_0^t r^{\beta(r)-1} dr \Big) |
and
\Big(1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) \Big)^{\frac{\int_t^T r^{\beta(r)-1} dr }{\int_0^T r^{\beta(r)-1} dr } } > 1. |
Since k < 2 , the latter three observations infer that
\begin{align} \mathbb K_4(t) \le h^{1-\frac{k\int_0^t r^{ \ \beta(r)-1} \ \ \ dr }{2\int_0^T r^{ \ \beta(r)-1} \ \ \ dr } } \exp \Big( \lambda_j {\frac{k-2}{2}} \int_0^t r^{ \ \beta(r)-1} \ \ \ dr \Big) \le h^{1-\frac{k\int_0^t r^{ \ \beta(r)-1} \ \ \ dr }{2\int_0^T r^{ \ \beta(r)-1} \ \ \ dr } } . \end{align} | (4.26) |
From this result and (4.26), we derive that
\begin{align} \Big\| \mathbb K_0(., t)\Big\|_{\mathbb Z^s (\Omega)}^2& = \sum\limits_j \lambda_j^{2s} \Big|\mathbb K_4(t) \Big|^2 \exp \Big(-2 \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) \langle y_0 , \psi_j \rangle^2 {}\\ & \le h^{2-\frac{k\int_0^t r^{\beta(r)-1} dr }{\int_0^T r^{\beta(r)-1} dr } } \sum\limits_j \lambda_j^{2s} \exp \Big(-2 \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) \langle y_0 , \psi_j \rangle^2. \end{align} | (4.27) |
Using (3.35), we obtain
\begin{align} \Big\| \mathbb K_0(., t)\Big\|_{\mathbb Z^s (\Omega)}& \le h^{1-\frac{k\int_0^t r^{\beta(r)-1} dr }{2\int_0^T r^{\beta(r)-1} dr } } \Big\| J_1 (., T) \Big\|_{\mathbb Z^s (\Omega)} {}\\ &\le C_1 \left( T^{b \varepsilon}+1\right) h^{1-\frac{k\int_0^t r^{\beta(r)-1} dr }{2\int_0^T r^{\beta(r)-1} dr } } T^{-b \varepsilon}\big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}}{}\\ & = C_1 \left( T^{-b \varepsilon}+1\right) h^{1-\frac{k\int_0^t r^{\beta(r)-1} dr }{2\int_0^T r^{\beta(r)-1} dr } } \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}(\Omega)}. \end{align} | (4.28) |
It is obvious to check that the following estimate holds
\begin{equation} 1-\frac{k\int_0^t r^{\beta(r)-1} dr }{2\int_0^T r^{\beta(r)-1} dr } > \frac{2-k}{2}. \end{equation} | (4.29) |
Since 0 < h < 1 , we get
\begin{align} h^{1-\frac{k\int_0^t r^{\beta(r)-1} dr }{2\int_0^T r^{\beta(r)-1} dr } } \le h^{ \frac{2-k}{2} }. \end{align} | (4.30) |
Combining (4.28) and (4.30), we deduce that
\begin{align} \Big\| \mathbb K_0(., t)\Big\|_{\mathbb Z^s (\Omega) } \le C_1 \left( T^{-b \varepsilon}+1\right) h^{ \frac{2-k}{2} } \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}(\Omega)} \end{align} | (4.31) |
Next, we consider \| \mathbb K_2(., t)\|_{\mathbb Z^s (\Omega) } in two cases corresponding to part i) and part ii). We use the results in the proof of Theorem (4.1).
Case 1. Proof of (4.21).
Since F is in the space L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega)) , we follows from (4.14) that
\begin{align} \Big\| \mathbb K_2 \Big\|_{\mathbb Z^s (\Omega)} \le C_1 h \left( \frac{T^{b}+ T^m}{m} \right) t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))}. \end{align} | (4.32) |
Combining (4.23), (4.31) and (4.32), we find that
\begin{align} &\Big\| y_h(., t)- y(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \Big\| \mathbb K_0 \Big\|_{\mathbb Z^s (\Omega)}+ \Big\| \mathbb K_2 \Big\|_{\mathbb Z^s (\Omega)}{}\\ &\le C_1 \left( T^{-b \varepsilon}+1\right) h^{ \frac{2-k}{2} } \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}(\Omega)}+ C_1 h \left( \frac{T^{b}+ T^m}{m} \right) t^{-b \varepsilon} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))}. \end{align} | (4.33) |
Let us choose \varepsilon such that 0 < \varepsilon < \frac{1}{b} . Since 1 < p < \frac{1}{b \varepsilon} , we know that the proper integral \int_0^T t^{-b \varepsilon p} dt is convergent. By a simple computation, we deduce that
\begin{align} \Big\| y_h(., t)- y(., t) \Big\|_{L^p(0, T; \mathbb Z^s (\Omega))} \le C \Big( h^{ \frac{2-k}{2} } \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}(\Omega)}+ h \big\| F \big\|_{L^\infty (0, T; \mathbb Z^{s-\varepsilon} (\Omega))} \Big), \end{align} | (4.34) |
where C depends on T, b, \varepsilon, p .
Case 2. Proof of (4.22).
From the definition of \mathbb K_2 as in (4.23), we derive that
\Big\| \mathbb K_2 \Big\|_{\mathbb Z^s (\Omega)}^2 {}\\ = h^2 \sum\limits_{j} \lambda_j^{2s} \Bigg( \frac{ \exp \Big(- \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr }{ 1+ h \exp \Big(- \lambda_j \int_0^T r^{\beta(r)-1} dr \Big) } \Bigg)^2{}\\ \le h^2 \sum\limits_{j} \lambda_j^{2s}\\ \exp \Big(-2 \lambda_j \int_0^t r^{\beta(r)-1} dr \Big) \Bigg( \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Bigg)^2{}\\ \le h^2 \sum\limits_{j} \lambda_j^{2s} \Bigg( \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Bigg)^2. | (4.35) |
We have the following observation
\begin{align} &\sum\limits_{j} \lambda_j^{2s} \Bigg( \int_0^T r^{\beta(r)-1} \exp \Big(- \lambda_j \int_r^T z^{\beta(z)-1} dz \Big) \langle F(., r) , \psi_j \rangle dr \Bigg)^2 {}\\ &\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = \Big\| J_2(., T) \Big\|^2_{\mathbb Z^s (\Omega)} \le \frac{T^{2m}}{m^2} \big\| F \big\|^2_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (4.36) |
Combining (4.23), (4.31) and (4.36), we find that
\begin{align} &\Big\| y_h(., t)- y(., t) \Big\|_{\mathbb Z^s (\Omega)} \le \Big\| \mathbb K_0 \Big\|_{\mathbb Z^s (\Omega)}+ \Big\| \mathbb K_2 \Big\|_{\mathbb Z^s (\Omega)}{}\\ &\le C_1 \left( T^{-b \varepsilon}+1\right) h^{ \frac{2-k}{2} } \big\| y_0 \big\|_{\mathbb Z^{s-\varepsilon}(\Omega)}+ h \frac{T^{m}}{m} \big\| F \big\|_{L^\infty (0, T; \mathbb Z^s (\Omega))}. \end{align} | (4.37) |
From the right-hand side of the above estimate, we deduce the desired result (4.22). The proof of our theorem is completed.
This work considers a time-fractional parabolic equation with conformable variable derivative. We derive the well-posedness for mild solutions in Hilbert spaces for linear initial problem and linear nonlocal problem. We also shows the convergence of non-local solutions to local solutions. The techniques obtained in this study can be further extended to complicated nonlinear problem.
The author Van Tien Nguyen thanks the support from FPT University.
The authors declare no conflict of interest.
[1] | L. Bysezewski, Theorem about the existence and uniqueness of solution of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U |
[2] | L. Bysezewski, Uniqueness of solutions of parabolic semilinear nonlocal boundary problems. J. Math. Anal. Appl., 165 (1992), 472–478. https://doi.org/10.1016/0022-247X(92)90052-F |
[3] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[4] |
A. A. Abdelhakim, J. A. Tenreiro Machado, A critical analysis of the conformable derivative, Nonlinear Dynam., 95 (2019), 3063–3073. https://doi.org/10.1007/s11071-018-04741-5 doi: 10.1007/s11071-018-04741-5
![]() |
[5] |
N. Dokuchaev, On recovering parabolic diffusions from their time-averages, Calc. Var. Partial Differential Equations, 58 (2019), 14. https://doi.org/10.1007/s00526-018-1464-1 doi: 10.1007/s00526-018-1464-1
![]() |
[6] |
A. Jaiswal, D. Bahuguna, Semilinear Conformable Fractional Differential Equations in Banach Spaces, Differ. Equ. Dyn. Syst., 27 (2019), 313–325. https://doi.org/10.1007/s12591-018-0426-6 doi: 10.1007/s12591-018-0426-6
![]() |
[7] | R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.6652 |
[8] |
R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM, 115 (2021), 16. https://doi.org/10.1007/s13398-021-01095-3 doi: 10.1007/s13398-021-01095-3
![]() |
[9] | R. S. Adiguzel, U. Aksoy, E. Karapinar, I. M. Erhan, On the solutions Of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math., 20 (2021), 313–333. |
[10] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[11] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 |
[12] |
Y. Chen, H. Gao, M. J. Garrido-Atienza, B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Cont. Dyn.-S., 34 (2014), 79–98. https://doi.org/10.3934/dcds.2014.34.79 doi: 10.3934/dcds.2014.34.79
![]() |
[13] |
M. J. Garrido-Atienza, B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dyn. Differ. Equ., 23 (2011), 671–681. https://doi.org/10.1007/s10884-011-9222-5 doi: 10.1007/s10884-011-9222-5
![]() |
[14] |
E. Karapinar, H. D. Binh, N. H. Luc, N. H. Can, On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Differ. Equ-Ny., 2021 (2021), 24. https://doi.org/10.1186/s13662-021-03232-z doi: 10.1186/s13662-021-03232-z
![]() |
[15] |
N. H. Tuan, T. B. Ngoc, D. Baleanu, D. O'Regan, On well-posedness of the sub-diffusion equation with conformable derivative model, Commun. Nonlinear Sci., 89 (2020), 26. https://doi.org/10.1016/j.cnsns.2020.105332 doi: 10.1016/j.cnsns.2020.105332
![]() |
[16] |
N. H. Tuan, T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proc. Amer. Math. Soc., 149 (2021), 143–161. https://doi.org/10.1090/proc/15131 doi: 10.1090/proc/15131
![]() |
[17] |
S. Zhang, S. Li, L. Hu, The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 113 (2019), 1601–1623. https://doi.org/10.1007/s13398-018-0572-2 doi: 10.1007/s13398-018-0572-2
![]() |
[18] |
H. Sun, W. Chen, H. Wei, Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phy. J. Special Top., 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6
![]() |
[19] | N. H. Sweilam, M. Adel, A. F. Saadallah, T. M. Soliman, Numerical studies for variable order linear and nonlinear fractional cable equation, J. Comput. Theor. Nanosci., 12 (2015), 1–8. |
[20] |
B. Bayor, D. F. M. Torres, Existence of solution to a local fractional differential equation, J. Comput. Appl. Math., 312 (2017), 127–133. https://doi.org/10.1016/j.cam.2016.01.014 doi: 10.1016/j.cam.2016.01.014
![]() |
[21] | B. Nghia, N. Luc, H. Binh, L. Long, Regularization method for the problem of determining the source function using integral conditions, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 351–361. |
[22] | A. M. Nass, K. Mpungu, Symmetry analysis of time fractional convection-reaction-diffusion equation with a delay, Results Nonlinear Anal., 2 (2019), 113–124. |
[23] |
D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903–917. http://dx.doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
![]() |
[24] |
A. Razminia, A. F. Dizaji, J. V. Majd, Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Model., 55 (2012), 1106–1117. https://doi.org/10.1016/j.mcm.2011.09.034 doi: 10.1016/j.mcm.2011.09.034
![]() |
[25] |
Y. Xu, Z. He, Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations, J. Appl. Math. Comput., 43 (2013), 295–306. https://doi.org/10.1007/s12190-013-0664-2 doi: 10.1007/s12190-013-0664-2
![]() |
[26] |
M. Ruzhansky, N. Tokmagambetov, B. T. Torebek, On a non-local problem for a multi-term fractional diffusion-wave equation, Fract. Calc. Appl. Anal., 23 (2020), 324–355. https://doi.org/10.1515/fca-2020-0016 doi: 10.1515/fca-2020-0016
![]() |
[27] |
N. H. Tuan, N. A. Tuan, C. Yang, Global well-posedness for fractional Sobolev-Galpern type equations, Discrete Contin. Dyn. Syst., 42 (2022), 2637–2665. https://doi.org/10.3934/dcds.2021206 doi: 10.3934/dcds.2021206
![]() |
[28] |
N. A. Tuan, T. Caraballo, N. H. Tuan, On the initial value problem for a class of nonlinear biharmonic equation with time-fractional derivative, Proc. Roy. Soc. Edinburgh Sect. A, 152 (2022), 989–1031. https://doi.org/10.1017/prm.2021.44 doi: 10.1017/prm.2021.44
![]() |
[29] | H. Dutta, A. 0. Akdemir, A. Atangana, Fractional order analysis: theory, methods and applications, Wiley, 2020. |
1. | Le Dinh Long, Vo Ngoc Minh, Yusuf Gurefe, Yusuf Pandir, GLOBAL EXISTENCE AND CONTINUOUS DEPENDENCE ON PARAMETERS OF CONFORMABLE PSEUDO-PARABOLIC INCLUSION, 2024, 14, 2156-907X, 986, 10.11948/20230246 |