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1. Introduction

Fractional calculus has recently attracted the attention of many researchers and has become an
attractive field of study with its different application areas. Some researchers have discovered that
fractional differential equations with different singular or non-singular kernel need to be determined
by real-world problems in the fields of engineering and science. Some definitions/approaches,
for example, Riemann-Liouville, Hadamard, Katugampola, Riesz, Caputo-Fabrizio, and Atangana-
Baleanu operators, were presented and tested using a variety of theories. Many important analytical
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methods have been used to achieve analytical solutions to fractional diffusion equations. By replacing
many differential operators of fractional order with different PDE types of integer order, we form
different types of boundary value problems with fractional order. However, the types of diffusion
equations with fractional derivatives in Hilbert scales space are not really abundant because of their
difficulty. We can list a few interesting works on PDEs with fractional derivatives, for example,
[7-9,12-14,16,21,22,27-29] and the references therein.
Let T be a positive number. In this paper, we consider the initial value problem for the conformable

heat equation (or called parabolic equation with conformable operator)

GO

Wy + Ay(x,t)= F(x,1), xeQ, te(0,7),

(1.1)
y(x, )= 0, xe€edQ,te(0,T),

where 25y = T, y(t) is defined in Definition (2.3). Here Q ¢ R¥ (N > 1) is a bounded domain with
the smooth boundary 0. We are interested to study two following conditions

y(x,0) = yo(x), x€ Q. (1.2)
or nonlocal in time condition
v(x,0) + hy(x,T) = yo(x), h>0, xeQ. (1.3)

The condition (1.2) is also known as initial conditions, which is familiar to mathematicians in the
field of PDEs. Let us provide some remarks on the condition (1.3). Non-local conditions present
and explain some more realistic perspectives for some particular phenomena for which usual initial
conditions are replaced by multi-time point data such as studying atomic reactors [1,2,26]. In terms
of mathematical aspect, since these conditions provide different data from the usual initial/terminal
conditions problems with associated nonlocal conditions possess particular properties. In particular,
it is well-known that while the problem for the usual parabolic equation is well-posed with the initial
Cauchy condition at ¢t = 0 and such problem is ill-posed with given data at terminal time t = 7 > 0,
the well-posedness can be witnessed for the problems involving forward parabolic equations with non-
local in time conditions connecting the values at different times [5]. In fact, throughout this work, we
can see that the techniques to derive well-posed results for the initial value problem and the nonlocal
in time problem are quite different. The above remarks play an important role in our motivation for
deciding to carry out this study. As far as we know, there is very little documentation on the solution
connection boundary conditions at different points in time, for example, at the beginning and at the
end. Consideration of non-local initial conditions or non-local final conditions derived from actual
processes.

Before we cover our problem, we give some background on conformable derivatives. A
Conformable derivative can be first stated by Khalil and his colleagues [3] for functions f : [0, co] —
+00, it can be considered as the general form of the classical derivative and follows the same properties
as the classical derivative. Furthermore, the physical meaning of the conformable derivative is assumed
to be a modification of the classical derivative of direction and magnitude. More precisely, the
general conformable derivative possesses similar physical and geometrical interpretations of Newton’s
derivative. However, while Newton’s derivative describes the velocity of a particle or slope of a tangent,

AIMS Mathematics Volume 7, Issue 11, 20020-20042.



20022

the general conformable derivative can be regarded as a special velocity, its direction and strength rely
on a particular function [23].

Let us take M as a Banach space, and the function f : [0,c0) — M and %ﬁ be the conformable
derivative of order O < 8 < 1 locally defined by

P f@+ht'P) - f(0)

pyaa }11_{18 ; in M, (1.4)

for each > 0. For additive information about the above definition, we refer the reader to [3,4,6,10,11,
20]. An easy observation is that if 8 = 1 then the definition given above is the definition of the classical
derivative. To further understand the relationship between conformable and classical derivatives, we
direct the reader to the interesting paper [15]. This paper can be considered as one of the first works
to investigate diffusion equations with conformable derivative in the Sobolev space. According to
natural development, based on the conformable derivative, mathematicians have built a good theory
for conformable derivative with orders dependent on a variable.

For the reader to better understand the history of this problem, we present a number of related
works. Let us provide the comments of some fractional diffusion equations associated with fractional
derivative whose order is a constant, i.e., 5(f) = 5.

Now, we introduce some previous work mentioned on fractional diffusion equation with variable
order. In [18], the authors considered the relaxation-type equation with fractional variable order as

follows
a(t)

5700 y(t) + By(t) = F(¢), O<a(<1, (L.5)

y(0) =1,

where % is the left Caputo derivative of order a(f), B is the relaxation coeflicient, f(f) denotes the
external source term. The authors investigated the cable equation with fractional variable order [19]. In
[24], the authors studied a dynamical system described by the following fractional differential equation
with variable order

§Ey)
9120 y(0) = F(t,y(0)), 0<a(ty@®) <1, 16
)’(C) = Yo, )

The authors considered the following dynamical system with variable-order fractional derivative

D1x(t) = f(t, x),
x(a) =0,

where ¢(?) is the variable-order of differentiation [25].

To the best of our knowledge, there are not any results for considering the well-posedness of two
problem (3.1)—(1.2) and (3.1)—(1.3) . We draw attention to the paper [17] since it mentioned variable
conformable derivative. They investigated the fundamental solutions for initial value problem for linear
diffusion differential equations with the conformable variable order derivative. Their techniques are
based on upper and lower solutions and monotone iterative method. One difference is that they consider
(3.1) on the unbounded domain, while we consider it on the bounded domain. Our approach in this
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paper is different from [17] because we have to learn the ideas of Fourier series. A new point of the
current paper is that we carefully examine the well-posedness of our problem.

Let us assert that the problem with the variable conformable derivative is more difficult than the
derivatives of constant derivative. The main reason is the appearance of integrals with exponents as
functions, for example fot rP0-1dr causing many difficulties in calculation and evaluation. To overcome
these difficulties, we need to have skillful judgment to control the components containing these singular
integrals.

The main objective of this paper is to investigate the existence and regularization of solutions for
two problems. With different assumptions of the input functions F and u,, we will show the space
containing the solution. As introduced above, we have a challenge with components that contain
singular integrals. Another interesting contribution is that we will examine the relationship between
the solutions of two problems: nonlocal problem (3.1)—(1.3) and (3.1)—(1.2). The result is proven
convergent of the mild solution to (3.1)—(1.3) when &2 — 0*. This proof of convergent is understood as
a non-trivial task.

The structure of the paper is given as follows. Section 3 examines the well-posedness for the initial
value problem (3.1)—(1.2). The existence for the mild solution to (3.1)—(1.3) is investigated in section
4. We also derive that the convergence of the mild solution to problem (3.1)—(1.3) when 4 — 0~.

2. Preliminary results

In this section, we introduce notations and functional settings which will be used throughout this
work. Recall that the spectral problem

AYi(x) = Afi(x), x€Q,
Yi(x) =0, x € 0Q,

admits the eigenvalues 0 < 4; <1, <--- < 4; <... withA; — oo as j — oo and the corresponding set
of eigenfunctions {i;};»1 C Hy(€).

Definition 2.1. We recall the Hilbert scale space as follows

- 2
Z'Q = {f el’@, ) 4 f S (dx) < oo} :
j=1 Q
for any s > 0. It is well-known that Z*(€2) is a Hilbert space corresponding to the norm
oo 1/2
2
1/ lzs0) = (Z P f FOOW(x)dx) ) . fEZNQ).
n=1 Q

In the following, we provide definitions of the left integral and the (left) variable order fractional
derivative which are taken from [17].

Definition 2.2. Let f : [a, o) — (0, 1]. The left integral begin at a of variable function 4 : (a, c0) — R

is given by

L f(0) = f (s — @)Y f(s)ds, t>a. 2.1)
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Definition 2.3. The (left) variable order fractional derivative starting at a of a function f : [a, c0) of
order & : [a, o0) — (0, 1] is defined by

ft+e(t—a) ™) - f(1) s

€

T;:(;)f(t) = 161_{% (2.2)

When a = 0, one can write T},;). Moreover if T,f([) f(¢) exists on (a, c0) then T,f(t) f(a) = lim,_, ,+ TZ(:) f().

In addition, if the fractional derivative of order A(t) € (0, 1] of f exists for all 7 € (a, ), we simply
say f is h(t)— differentiable.

3. Linear inhomogeneous problem with initial condition

In this section, we focus on the initial value problem

0]
50) + AV D) = F(x0), xeQ, 1e(0,7),

y(x, 1) = 0, xedQ,re0,7), G.1)
y(-x9 0) = )’O(X)a X € Qy

where yo and F will be defined later. Our main purpose in this section is to study the well-posedness
of Problem (3.1). We use the Fourier analysis to construct the mild solution. Let us assume that

y(x,t) = Z;;(y(., D, ) i(x) where (y(.,1),¥;) = ny(x, Y j(x)dx. Taking the inner product -, -) of
the main equation of Problem (3.1) with y; gives

(0

<}’(-,t), ’7[/j> + /1/<)’(, t)’ l/’j) = <F(’ t)’ ¢[>7 re (0’ T)’

orP® (3.2)
By the result in [17], we obtain the following equality
!
OG0y = exp (=4, [ 7)o
0
t t
+ f PO exp (- 4 f PO dNF ), pdr, (3.3)
0 r

where we remind that 8 : [0, 00) — (0, 1]. By the definition of Fourier series, we have the following
formula of the mild solution

y(x, 1) = Z CXP( - /lj‘fo ’ﬂ(r)_ld”)@o,lﬁﬂlﬁj(x)
J

+ Z | fo e exp( - 4 f t PO ECr) wdr|(x)
J

= J + ). (3.4)
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Lemma 3.1. Let m = ming<,<; |B8(¢)| and b = maxo<<; |B(?)|.
i)If0 <t <1 then

I ! "
Lo ] f rﬁ(’)_ldr’ < (3.5)
b 0 m

ii) Ift > 1 then

1o ’ 1 Ao
s 'f PO dr] < — + r-1 (3.6)
b 0 m b

m

Proof. We claim (i) as follows. Since S(r) > mand 0 < 8(r) < 1, we know that 0 < 1 —B(r) < 1 —m.
Since 0 < r < ¢ < 1, we know that > 1. It follows that

1 1-4(r) 1 1-m
Tl
r r
’ ¢ 1-B(r) ¢ 1-m m
| f P01 = f (1) dr < f (1) ar=". (3.8)
0 0o\’ o\ n

Since 1 —B(r) > 1 — b > 0, we know that

This implies that

It implies the following lower bound

¢ t 1-5(r) / 1-b
‘frﬂ(r)—ldr‘:f(l) drzf(l) ar=" (3.9)
0 0 r 0 r b

We next provide the proof of (ii). Since ¢t > 1, we derive

¢ 1 !
f PO dr = f PO dr + f PO dr. (3.10)
0 0 !

Using (3.5) with ¢ = 1, we obtain the following upper and lower bound

1 ! 1
f PO dr < —. (3.11)
0

- <
b m
Our next aim is to consider the term fll PO-1dr. Tt is easy to observe that
l—b<1-B(r)<1-m

From the fact that 0 < % < 1, we get the upper bound below

! (1 1-B(r) (1 1-b b1
f 501 gy f (_) dr < f (_) ar=""1 (3.12)
1 1 r 1 r b

and also, the lower bound

¢ 11 1-p(r) 1 1-m m_
f,ﬁ(r)—ldr:f(_) drzf(_) ar= (3.13)
1 1 r 1 r m

Connecting all the above inequalities (3.11), (3.12) and (3.13) gives us the assertion (3.6). O
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Lemma 3.2. Let m = ming<,<; |B8(¢)| and b = maxo<<; |B(?)|.
i)IfO0<r<t<1then

t—rb ! -
d sfzﬂ@‘ldzs . (3.14)
b . m
i) If0<r<1<t weget
1-r m—1 ! - -1
AL f gortg < L2 oL (3.15)
b m - m b
i) If0 <1 <r<tthen
m __ ! b _ b
L-r . f Folgr < L0 (3.16)
m , b

Proof. The proof of this lemma is almost the same as that of Lemma (3.1). Our claim is divided into
three cases.
e The case 0 < ¢ < 1. For this case, it is easy to see that

B =)=
- <= <(|-] .
z z z
! 1 1-b 1 ! 1 1-B(2) 1 1 I-m
f(z) dzsfzﬂ(”‘ldz:f(z) dzsf(g) dz. (3.17)

It is easy to verify that
t 1\ ' b
Il (_) o= [ a5 (3.18)
r\Z r b

| I=m ! M — pm
f(_) dz:fzm—ldzz - (3.19)
r \< r m

Hence, we obtain that forany 0 < r <t <1

b _ b ! m_ pm
S f Polgr < =1 (3.20)
b . m

This implies that

and

e The case 0 < r <t < 1. For this case, we get the following identity

! 1 !
f o1 f PO gz 4 f HO-14, 3.21)
r r 1

By setting ¢ = 1 into (3.20), we arrive at

1-r ‘ 1
. f Fortgs < 11 (3.22)
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This implies the following estimate

1-r" -1 ! ! - -1
d_— < f P9 dz + f P97 dz < + : (3.23)
r 1 m

b m b

which allows us to deduce the desired result.
e The case 0 < 1 < r < ¢t. Under this case, we obtain that if » < z < ¢ then

1 1-m 1 1-B(z) 1 1-b
_ <|- <|-— .
B =G =0
1 1 1-m ! f 1 1-b
[ aeforecfe

This implies that

Hence, we find that

o f gy < L0 (3.25)
m r
]
The well-posedness of Problem (3.1) is described by the following theorem.
Theorem 3.3. i) Let yy € Z°°(Q) fore > 0 and F € L*(0, T;Z°(Q)). Then we get
by 4m
o]l (T + 1) + Py 2O (3.26)

ii) Let yo € Z°7°(Q) for e > 0 and F € L~(0,T;Z°°(Q)) for any 0 < 6 < % Let us assume that 2m > b.
Then we obtain

e < (77 + 1) Pl + Nl oz (3.27)
Proof. Let us recall the mild solution
NEDE Z exp ( f PO dr) v, v (x)
+ Z f P exp (- f PO AN F (), yydr | ()
= Jl + J,. (3.28)

Step 1. Estimate of the term J;. Using the inequality e™ < C(g)a® for any € > 0, we find that
exp f PO ldr < C(e)A;° ( f - ‘dr) . (3.29)
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e If 0 <t <1 in view of (3.5), we obtain
exp f P 1dr < G4t ~be,

where
C, =C(e)b°.

By Parseval’s equality and using (3.30), we derive that

| D exp(-2 f 0y 0|
J

Z5(Q)

= Z /lis exp( - 24; [) rﬂ(’)_ldr)@o, Yy < Cire Z /lis_zg(yo, vy
J

J

This implies that for 7 < 1

”ZeXp f P07 dr )y, Wj(x)H <Cit?

75(Q) M OHZH(Q)'

e If t > 1 thanks to (3.6) of Lemma (3.1), we obtain

1 m-1\"°
eXp frﬂ(’) 1alr < C(e)A;° ( )
m

Since ¢ > 1, it is obvious to see that the following inequality is satisfied

I m-1\°
- < b°.
(b+ m ) -

From the previous observations, we get that

‘ 2 exp( f 0 dr)yo. )

J
Combining (3.32) and (3.34), we deduce the following estimate forany 0 <t < T

| S exp (= [ oo
J

< Cilol
Z5(@)

< Cl Tbst—bs

Z5-2(Q)

Yo

Hjl("f)

Z5(Q) Z5(Q)

<C (T”s + 1)be

Step 2. Estimate of the term J,.
By Parseval’s equality and Holder’s inequality, we find that

o 2/125 f A= lexp fzﬁ(z) le (F( ), ¢j>dr]

Jaco)]

75—€ (Q) *

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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< 2/12‘ f o= 1exp fzﬁ@ ldz dr

[ fo 0 exp (- 4, f PO, ), 9)dr

Let us now consider possible cases as follows.
Casel1: 0<t<1land F € L*(0,T;Z°(Q)).

In view of (3.14) and the fact that exp( -4 fr ! Zﬂ(z)—ldz) < 1, we derive

! t ! tm
f -1 exp( — /ljf Zﬁ(Z)_ldz)dr < f PO qr < —,
0 r 0 m

It follows from (3.36) that

HJQ( )“ZA(Q) gz /l?g[ft B0-1 exp( - f’ Zﬁ(z)—ldz)(F(.,r), l/,j>2dr]

t’" ,

m f PO exp (- fzﬁ@ 'dz)|[F . r)”zm)

P f PO F( 1)
0

From (3.14) we obtain that the following estimate

IA
|

|ZS(Q)dr < H

“ ol )st(g) m F||L°°(0,T;ZS(Q))'

Case2:t>1and F € L0, T;Z*(Q)).
Using (3.38) and by a similar claim in case 1, we get that

HJQ( l)“Z() ] /lzs[fot’ﬂm_]dr][fot’ﬂ(r)_l<F("r)’wj>2dr]

L[ e
In view of (3.6), we obtain

Hh(”t)st(g) < (fot ,ﬁ(r)—ldr)HF

Since b > m, we have the following inequality

L>(0,T:Z5 (Q))

<[+ =]l
L®(0.T:Z5(Q)  \m b L=(0,T525(Q)"

1 -1 1 -1 ¢
—+ <—+ =—
m b m m m
Therefore, we derive that for any # > 1
HJZ( ) Q) E”F“LW(O,T;Z-‘(Q))'

ﬁ F ? frg(r)_ldr .
m L20,T52°(Q) \ Jo

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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Combining case 1 and case 2, we get the following estimate for any # > 0 and F' € L*(0, T; Z*(Q2))

2+
”JZ( )Hzm) ”F”L”"(OTZ*(Q))

Case 3: 0 <t<land F € L*(0,T;Z°(Q)).

Using the inequality e~ < C(6)a™° for any § > 0, we obtain that

-5
exp f Zﬁ(z) le < C(é)/l f Zﬁ(z) le
From the fact that 7 < 1, we use (3.14) to get

! _ = P — b\~ 5 -5
([#oa)” <(S55) =w(e-r)".

Hence, we get the following estimate

! !
f -1 exp( - /ljf zﬂ(Z)_ldz)dr
0 r

IA

!
C(o, b)/l;df Pl (tb - rb)é dr
0

!
< C(6,b)A7° f P =) ar,
0

(3.43)

(3.44)

(3.45)

(3.46)

where we have used (3.7). Let us now treat the integral term on the right hand side of (3.46). By

applying Holder inequality and noting that 2m > b, we derive that

' -6 T bt bel -5
fr‘m—l(ﬂ?_rb) dr:fr 2 rT(tb_rb) dr
0 0
"ot N2 f’ bt (b2 2
<([ )™ ([
=4/ o \/ft rb=1 (10 — )™ dr.

Set ' = r?, then dr’ = br’~'dr. Then, since 26 < 1, we have

f d b(1-26)
bt (s p\20 _1 b A2, 1¢
j;r (t—r) dr—gﬁ (t —r) dr_zl—Zé'

Combining (3.46), (3.47) and (3.48), we get the following estimate for 7 < 1

frg(’) lexp fzﬁ(Z) 1dz r< CiA70m ",

_— C(6,b)
Y bVI—2V2m—b

where

(3.47)

(3.48)

(3.49)
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This inequality together with (3.36) yields

Jacn)

< C,C(6,byf"" Z Az f A rb)_6 (F(,r),y)dr
0

J

< Gyt Ot r (tb - rb)_6 ||F(., r)| 2

7,5—6 ( Q) dr

where C, = C,C(6, b). It is obvious to see that

! -5
[ =Y W < WPl [ 7 (=)

In the previous claim, we showed that

t -5 tm—bé
f P (tb - rb) dr < .
0 Vb1 =26 V2m-b
Combining (3.50), (3.51) and (3.52), we obtain that forany 0 < ¢ < 1

10|, <Tem|F|

Z5(Q) L>(0,T:Z59(Q))°

where we denote by
— C(0,b)

3T (1 =26)2m—b)b

Case4:t>1and F € L~(0,T;Z%(Q)).

We need to deal with the integral term

! !
I= f P01 exp( - /ljf zﬂ(Z)_]dz)dr
0 r

To this end, we derive the following equality

1 1 , ¢
I= f -1 exp( - /ljf Z'B(Z)_ldz)dr + f A=l exp( — /ljf Z'B(Z)_ldz)dr
0 r 1 r

=L +1.
For the term I;, we put = 1 into (3.49) to obtain

I, < 51/1;5.

ZS(Q) _bgz/l% 6 f ,ﬁ(r) leXp f Z’B(Z) le <F( I’) ¢;>2dr]

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

For the second term I,, we note that 1 < r < t. Hence ! < r»~!. In view of the inequality

e < C(6)a™® for any 6§ > 0, we get

eXp fzﬁ(z) ldZ < C((S),l (f Zﬁ(z) ldz)

(3.56)
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Using (3.16) and (3.56), we find that

1 ! -6
L < C©)1;° f ! ( f zﬁ(Z)_ldz) dr.
1 r

In view of (3.16), we can check easily that

f -0 m _ =
(f zﬂ@—ldz) s(t mr’") =m® (" - r")°.

It follows from (3.57) that

!
L < CEm’ 4}’ f P = dr.
1

Next, using Holder inequality to derive that

t t
- omel moi _
frb_](t’”—rm) ‘5dr:fr T (=) dr
1 1

<([ e ) | et =y )

[o-m _ 1, 1/2
=\ 25 (f RN (A dr) .

(tm _ 1)1—26
m(l —26)

It is not difficult to compute that

¢ 1"
f Fnl (tm _ rm)—26 dr = lf (tm _ (r/)m)—Zd dr =
1 mJi

From the above two observations, we find that
t
—_ 1
f rb—l (tm _ rm)—6 dr < C4 1/t2b_m -1 (tm _ 1)5—6 ,
1

where
— 1

Cy= .
V2b — mm(1 —26)
This combined with (3.58) yields to the following bound

12 < 65/1;-6 \/m(tm _ 1)%_5
< Es/l]_.‘stb—% tm(%—(s) — Esfm_b‘s/l]‘.‘s,

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

where Cs = C(6)m’C,. Combining (3.54), (3.55) and (3.62) and noting that 1 < #"~*° we derive that

t !
[ oten (=4, [ #rtac)ar < Carta, Co= max(@1.C),

0 r

(3.63)
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Therefore, we obtain that for ¢ > 1

. )Hm) X f PO exp (- f POIANF ), dr|
:Z,@S[ f PO exp (- 4, f POVANF )y pr|
+Z/lzs f B0 1exp fzﬁ(z) le (F( ", %)dr]

=1+1().
It is obvious to see that the following inequality holds
L2(0,T;Z5-9(Q))’

= oo, <O

where we hace applied (3.53). This together with (3.36) and (3.56) allow us to obtain that

1(1) < Cet" ™ Z 3( f t PO exp (- 4, f t PN F (7)) dr)
1 r

J
t t —0
_660(5)11"—1’5243*25( f rﬂ(”‘l( f zﬁ(Z)‘ldz) (F(. 1),y dr)

< CeC@)" f PO (" — Py dr)|[F

L>(0,T;Z°79(Q))

< 671""_1’6(f1 PP -y dr)”F”LM(OT% -5(Q))’

where C; = CcC(6)m°. By looking at the estimate (3.61), we infer the following estimate
7 = 7 2m=268 || ||
I(t) < C1Cyt ||F||L°°(0,T;Zs-6(g))’

where Cg = C;C4. Combining (3.64), (3.65) and (3.67), we derive the following bound

+ C 2m— 2b6||F||

L2(0,T;Z5-5(Q)) L>(0,T;Z57%(Q))"

2
260, < ICPIE
Since ¢ > 1, we follows from (3.68) that

< Cot"||F|

H]z(-, )‘ e Lo(0,T5Z579(Q)"

Summarizing two cases 3 and 4, we provide the following statement

_b6||F||L“(O,T;Z~"5(Q))’ t>0.

o

Z5(Q)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

Hence, the proof of (3.26) is finished by combining (3.35) and (3.43). At the same time, the proof of

(3.27) is derived from (3.35) and (3.70).

O
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4. Linear problem with nonlocal in time condition

In this section, we focus the nonlocal value problem

HPO

570 + Ay(x, 1) = F(x,1), xeQ, te(0,7),
y(x, 1) = 0, xedQ,ie0,7) (4.1)
y(x, 0) + hy(x, T) = yo(x), x€Q.

Our main purpose in this section is to study the well-posedness of problem (4.1) and the convergence
of the mild solution when 4 — 0.

Theorem 4.1.
i) Let yo € Z*7°(Q) for e > 0 and F € L*(0,T;Z*(XY)). Then Problem (4.1) has a unique solution yj,
such that

(4.2)

Zs= S(Q) bs” ||L°°(O,T;Z-"‘E(Q)) + ”F ||L°°(O,T;ZS(Q))'

“)’h(-, 1))

ZS(Q)

where the hidden constant depends on T, b, &, m.
ii) Let yy € Z°~5(Q) for e > 0 and F € L*(0,T;Z*°(Q)) forany 0 < § < % Let us assume that 2m > b.
Then we get

b

ZS—S (Q) + t

m bé” ||
F L=(0,T5257%(Q))’

4.3)

zs (Q)
where the hidden constant depends on T, b, g, m, 0.

Proof. Let us first establish the fomula of the mild solution to nonlocal problem (4.1). Suppose that
Problem (4.1) has a solution y,. From (3.3), we get

<yh( t) '//]> —exp f,ﬂ(r) ldr <y0"//]>

. f A0 exp (- 4, f POTANE ), ) (44)
0 r

By let t = T into the above expression, we see that
O T ) = exp( - 4 f 07 dr v, )

f PO exp ( f PO FCr) v dr. (4.5)
From the above two equalities and the nonlocal-in-time condition

Ya(x,0) + hyp(x, T) = f(x),

we deduce the following equality

[1 + hexp( f - 1dr)](y0,t//]>

0
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T T
hf B0-1 exp(—/ljf PN F(r), uj)dr
0

r

=¥ (4.6)

This implies that the following equality is satisfied

oy —h [y PO exp (= A; [T PO dZKEC ) w)dr
Yo ¥y = - : 4.7)
1+ hexp( - A; fo rﬁ(’)‘ldr)

Combining (4.4) and (4.7), we derive that

exXp ( - /lj j(j rﬂ(’)_ldr)(yo, l//]>

1+ hexp( - /l'fT rﬁ(’)‘ldr)

f P07 exp ( f POV F ).y dr (4.8)

—h exp( - /ljfo A= 1dr) fo 0= 1exp( - /ljfr zﬁ(Z)‘ldz)(F(., N,y )dr
L+ hexp( =4, [ m0-1dr) '

<yh('a t)a %) =

By the theory of Fourier series, the mild solution is given by

© exp(—A; [ PO dr)(yo, ;)
EDEDY =k ; Joo.t: vi(x)
j=1 1+ hexp( - /lj j(; }’ﬁ(r)_ld}”)

. exp<—a, Ji o) 7 0 exp (=, S aENEC,v

_ h Y (x)
1+hexp(—/l-fTrﬁ<”)—1dr) i
Z f PO exp (- f PO FCr),)dr]y (0
Ki(x, 1) + Ky(x, 1) + Ks(x, 1). 4.9)

Let us consider the first term K. By Parseval’s equality, using (3.30), (3.35) and noting that 1 +/4 exp (—
A; fOT rﬂ(”‘ldr) > 1, we derive
exp( -4, fot rﬁ(’)‘ldr)

2
HKIHZ&(Q) - Z‘ /l? (1 + hexp( -4 fOT PO-1dr

< Z A7 exp( —24; f: rﬁ(r)_ldr)@o, ;)
J

<C? (Tbs + 1)2 ~2be Z /lis—Zs 0o, )

J

2
)) DS
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_ 2 be 2 —2be 2
=G (T + 1) d ||y0||ZS‘£(Q)’ (4.10)
where we have used (3.31). Therefore, we obtain that the following estimate

HKI yo”zs-s(g)' (4.11)

< C, (Tbs + 1) £e

Z5(Q)

Proof of i). Suppose F € L™ (0, T; Z*(Q)).
We deal with the second term K,. We first obtain

e
Z5(Q)

exp(—4
) 2/12;( p
2
< h2 Z/IZA CXp 2/1 f rﬂ(r) ldr (f rB(r) 1eXp f Z,B(Z) ldZ <F( I") W;)d”)

2
< hZC%begZA?—%( f PO exp (-2 f POy >dr) . (4.12)
0

J

J o otdr) [0 exp (= 4; [ PO dZ)FCL ), wj>dr)2
1+ hexp( - /l-fT rﬂ(r)—ldr)

From (3.43), we can easily to verify that

HJZ( HZ o Z 225 zg(f B0~ 1exp f A= ldz (F( r), wj>dr)2

T”+T
<
m

) (13— (4.13)

Combining (4.12) and (4.13), we derive the following bound

“KZ"Z“(Q) = Clh( ) A T4 FRp— (4.14)

Let us now treat the third term Kj3. In view of (3.43), we infer that

Tb + T

t + 1"
HK3(" t)H H S )Hz (@ " ”F”Lm(o,T;zm))' .15
Combining (4.9), (4.11), (4.14) and (4.15) yields
3
Hyh(" t)st(Q) = Z "Kj(" t)HZA(Q) <G (Tb‘9 + l)t_bSHyOHZH(Q)
=1
T +T™ b o+
+ Clh( ) ’ F||L°°(0TZ (Q)) —” ||L°0(OTZ Q)" (4.16)
Proof of ii). Suppose that F € L*(0, T; Z*7°(Q)).
From (3.70), we obtain the following bound
”JZ(" T)”zs(ﬁ) < CoT"™||F ”Lw(o,T;Zf-ﬁ(Q))’ >0, @.17)
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where we note that "% < T, This estimate together with (4.12) yield

HKZHZS(Q) < C\CoT" P ht || F e v s (4.18)
In view of (3.70), we infer that
HK3("I)HZS(Q) B ”'12("t)st'(g) = alotm_b(s'|F||L°°(0,T;Z“*"'(Q>>' (4.19)
Combining (4.9), (4.11), (4.18) and (4.19), we deduce that
3
Hyh(" t)”ZS(Q) = Zl “Kj("t) 'ZS(Q) <G (Tb‘E + 1) £ yo”zx—s(g)
=
+ Claon_béht_bSHF ||L°°(O,T;ZS*‘5(Q)) + Crot" _M”F ||LM(0,T;ZH‘(Q))' (4.20)
The proof is completed. O

The following theorem shows the convergence of the mild solution to (3.1)-(1.3) when 4 — 0~.

Theorem 4.2. i) Let yy € Z°°%(Q) and F € L*(0,T;2°¢(Q)) for any 0 < ¢ < i. Then, h € (0,1) and
ke (1,2) we get

< C(h%”y()”zsfs@) + h”F”Lw(O,T;ZS*‘E(Q)))’ “.21)

1) —=y(., 1 <
1) = ¢ (.

where C depends on T, b, &, p.
ii) Let yg € Z°°%(Q) fore > 0and F € L*(0,T;Z°(Q)) for any € > 0. Let us assume that 2m > b. Then
we get

2k
L®(0.TZ5()) < C(h ’ ”yO

[EYSHESYT + ||

) O<h<l, (422

Z5-5(Q) Lo(0,TZ5())
where the hidden constant depends on T, b, g, m.

Proof. First, we focus on the formulas of solutions (4.9) and (3.28). Taking the difference, we get

yu(x, 1) = y(x, 1)
® _ 2. [ B0 ‘ ;
2 i(h ﬂp (f ri f;:ﬁ);yo;jr])) b= Yexp (= [ o001
o exp (= A; [/ A0 dr) [T O exp (= Ay [T PO A2, u)dr
= 1+h exp( -4 fOT rﬁ(’)‘ldr)
= Ko(x, 1) + Kp(x, ). (4.23)

—h

W i(x)

By a simple transformation, it is easy to verify that
ol exp( -4, fot rﬂ(’)‘ldr) exp( -4, fOT rﬂ(r)‘ldr)

Ko(x,1) = h
’ =1 1+ hexp( -4 fOT rﬁ(’)‘ldr)

Vos i) (). (4.24)
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We need to consider the term
hexp( = A; [/ P0"1dr)
1+hexp(=4; f) #0-1dr)
hexp( = a; [ #0-\dr)

= — — . (4.25)
A1y T B4y
(1 + hexp( — A fOT rﬁ(’)‘ldr))br'ﬁ(’)’l‘“(l + hexp( A f PBO-1dy ))fo A Tar
We consider the denominator component of the above fraction. In view of the inequality
1+z>z§, l<k<2, z>0,
we get the following inequality
JAO-1g, K AO-1 g
(1 + hexp ,ﬂ(r) ]dr B A0l S g AO-lar eXp f B ldr
and
1T B0-1g,
(1 + hexp( f 0= ‘dr)) fo A0t
Since k < 2, the latter three observations infer that
- kfo’rﬂ(’) Lar k—2 - k [y PO~ Var
Ky() <h 20777 exp (/I-T f - ldr) <h 20t (4.26)
From this result and (4.26), we derive that
T
2s (r)—1 \2
oo, = D 2 feto] exp (24, fo 07 dr)yo, ¥)
J
5 k fy PO Lar T
<h kot Zﬂ? exp (- 24, f PO dr o, ). (4.27)
- 0
J
Using (3.35), we obtain
ft B)-1g,
T (T p0-1g,
[otn],, <n 2 e,
- k fy ALy
< C (TP + 1) b 2677y |
Lk !B,
= Cy (T + 1)h 2020y ey (4.28)

It is obvious to check that the following estimate holds

k[ A0y 5 _ g
1 - fOT > : (4.29)
2 [ rPoidr 2
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Since 0 < h < 1, we get

- k [y AOLar
A ETRY s (4.30)

Combining (4.28) and (4.30), we deduce that

< C (T + 1) h% ||y

HKO(., I)H 4.31)

Z5(Q) Z57¢(Q)

Next, we consider [[Ky(., #)||z«q) in two cases corresponding to part i) and part ii). We use the results in
the proof of Theorem (4.1).

Case 1. Proof of (4.21).

Since F is in the space L*(0, T; Z°7¢(Q2)), we follows from (4.14) that

HKZHZS(Q) = Clh(Tb . T’") _bgnF ||L°°<0,T;ZS*E<9»' (4.32)
Combining (4.23), (4.31) and (4.32), we find that
Hyh( =G )Hz Q) H °Hz~r(9) * ”KZHZS(Q)
< Cy (177 + 1) 17 |lyo .. ot clh(Tb " Tm)t_bg Fll oorzme0 (4.33)

. . T .
Let us choose € such that 0 < € < }7 Since 1 < p < bis, we know that the proper integral fo t7o%Pdt is
convergent. By a simple computation, we deduce that

(4.34)

[EYSHESY

LP(0,T525(€2)) = C(h%k”y OHZH(Q) + h||F||L°°(O,T;Z~‘*£(Q)))’

where C depends on T, b, &, p.
Case 2. Proof of (4.22).
From the definition of K, as in (4.23), we derive that

i
H 2 Z5(Q)

_ Z ) (exp -4 [ P0-1dr) fOT PP exp( -4 frT zﬂ(Z)‘ldz)(F(.,r),wj>dr)2
= A5
1+ hexp( -4 fT rﬂ(’)‘ldr)

2
< hZZ/lzs eXp 2/1 f ’.B(V) ldr (f }ﬁ(r) leXp f Zﬁ(Z) 1dZ)<F( r) (// >dr)

2
shZZﬁ?( f PO exp (- A f zﬂ@‘ldz)(F(.,r),wj)dr). (4.35)
J' 0 r

We have the following observation

2
([ ot [ sy e
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2 T2m
= H.lz(-, T)HZX(Q) < W”F”i“(O,T;ZS(Q))' (4.36)
Combining (4.23), (4.31) and (4.36), we find that

. - . <
H)’h( ) t) y( ’ I)HZ‘(Q) - HK()H23(Q) + HK2|'25(Q)

—be 2=k Tm
<C (T +1)07 Vol  h—[|Fl o200 (4.37)

From the right-hand side of the above estimate, we deduce the desired result (4.22). The proof of our
theorem is completed. O

5. Conclusions

This work considers a time-fractional parabolic equation with conformable variable derivative. We
derive the well-posedness for mild solutions in Hilbert spaces for linear initial problem and linear
nonlocal problem. We also shows the convergence of non-local solutions to local solutions. The
techniques obtained in this study can be further extended to complicated nonlinear problem.
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