In this article, we study complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. The results obtained in sub-linear expectation spaces extend the corresponding ones in probability space.
Citation: Mingzhou Xu, Kun Cheng, Wangke Yu. Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations[J]. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094
In this article, we study complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. The results obtained in sub-linear expectation spaces extend the corresponding ones in probability space.
[1] | S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Stochastic analysis and applications, Berlin: Springer, 2007,541–561. https://doi.org/10.1007/978-3-540-70847-6_25 |
[2] | S. Peng, Nonlinear expectations and stochastic calculus under uncertainty, Berlin: Springer, 2019. https://doi.org/10.1007/978-3-662-59903-7 |
[3] | L. Zhang, Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm, Commun. Math. Stat., 3 (2015), 187–214. https://doi.org/10.1007/s40304-015-0055-0 doi: 10.1007/s40304-015-0055-0 |
[4] | L. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1 |
[5] | L. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2 |
[6] | Q. Wu, Precise asymptotics for complete integral convergence under sublinear expectations, Math. Probl. Eng., 2020 (2020), 3145935. https://doi.org/10.1155/2020/3145935 doi: 10.1155/2020/3145935 |
[7] | M. Xu, K. Cheng, How small are the increments of G-Brownian motion, Stat. Probabil. Lett., 186 (2022), 109464. https://doi.org/10.1016/j.spl.2022.109464 doi: 10.1016/j.spl.2022.109464 |
[8] | J. Xu, L. Zhang, Three series theorem for independent random variables under sub-linear expectations with applications, Acta Math. Appl. Sin. Engl. Ser., 35 (2019), 172–184. https://doi.org/10.1007/s10114-018-7508-9 doi: 10.1007/s10114-018-7508-9 |
[9] | J. Xu, L. Zhang, The law of logarithm for arrays of random variables under sub-linear expectations, Acta Math. Appl. Sin. Engl. Ser., 36 (2020), 670–688. https://doi.org/10.1007/s10255-020-0958-8 doi: 10.1007/s10255-020-0958-8 |
[10] | Q. Wu, Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053 |
[11] | L. Zhang, J. Lin, Marcinkiewicz's strong law of large numbers for nonlinear expectations, Stat. Probabil. Lett., 137 (2018), 269–276. https://doi.org/10.1016/j.spl.2018.01.022 doi: 10.1016/j.spl.2018.01.022 |
[12] | H. Zhong, Q. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 261. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1 |
[13] | Z. Hu, Y. Yang, Some inequalities and limit theorems under sublinear expectations, Acta Math. Appl. Sin. Engl. Ser., 33 (2017), 451–462. https://doi.org/10.1007/s10255-017-0673-2 doi: 10.1007/s10255-017-0673-2 |
[14] | Z. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0 |
[15] | X. Chen, Q. Wu, Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations, AIMS Mathematics, 7 (2022), 9694–9715. https://doi.org/10.3934/math.2022540 doi: 10.3934/math.2022540 |
[16] | L. Zhang, Strong limit theorems for extended independent random variables and extended negatively dependent random variables under sub-linear expectations, Acta Math. Sci., 42 (2022), 467–490. https://doi.org/10.1007/s10473-022-0203-z |
[17] | F. Hu, Z. Chen, D. Zhang, How big are the increments of G-Brownian motion, Sci. China Math., 57 (2014), 1687–1700. https://doi.org/10.1007/s11425-014-4816-0 doi: 10.1007/s11425-014-4816-0 |
[18] | F. Gao, M. Xu, Large deviations and moderate deviations for independent random variables under sublinear expectations, Sci. China Math., 41 (2011), 337–352. https://doi.org/10.1360/012009-879 doi: 10.1360/012009-879 |
[19] | A. Kuczmaszewska, Complete convergence for widely acceptable random variables under the sublinear expectations, J. Math. Anal. Appl., 484 (2020), 123662. https://doi.org/10.1016/j.jmaa.2019.123662 doi: 10.1016/j.jmaa.2019.123662 |
[20] | M. Xu, K. Cheng, Precise asymptotics in the law of the iterated logarithm under sublinear expectations, Math. Probl. Eng., 2021 (2021), 6691857. https://doi.org/10.1155/2021/6691857 doi: 10.1155/2021/6691857 |
[21] | M. Xu, K. Cheng, Equivalent conditions of complete th moment convergence for weighted sums of IID random variables under sublinear expectations, Discrete Dyn. Nat. Soc., 2021 (2021), 7471550. https://doi.org/10.1155/2021/7471550 doi: 10.1155/2021/7471550 |
[22] | M. Xu, K. Cheng, Convergence for sums of iid random variables under sublinear expectations, J. Inequal. Appl., 2021 (2021), 157. https://doi.org/10.1186/s13660-021-02692-x doi: 10.1186/s13660-021-02692-x |
[23] | M. Xu, K. Cheng, Note on precise asymptotics in the law of the iterated logarithm under sublinear expectations, Math. Probl. Eng., 2022 (2022), 6058563. https://doi.org/10.1155/2022/6058563 doi: 10.1155/2022/6058563 |
[24] | P. Hsu, H. Robbins, Complete convergence and the law of large numbers, PNAS, 33 (1947), 25–31. https://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25 |
[25] | Y. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177–201. |
[26] | Y. Zhang, X. Ding, Further research on complete moment convergence for moving average process of a class of random variables, J. Inequal. Appl., 2017 (2017), 46. https://doi.org/10.1186/s13660-017-1322-2 doi: 10.1186/s13660-017-1322-2 |
[27] | B. Meng, D. Wang, Q. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables, Commun. Stat.-Theor. M., 51 (2022), 3847–3863. https://doi.org/10.1080/03610926.2020.1804587 doi: 10.1080/03610926.2020.1804587 |
[28] | M. Ko, Complete moment convergence of moving average process generated by a class of random variables, J. Inequal. Appl., 2015 (2015), 225. https://doi.org/10.1186/s13660-015-0745-x doi: 10.1186/s13660-015-0745-x |
[29] | B. Meng, D. Wang, Q. Wu, Convergence of asymptotically almost negatively associated random variables with random coefficients, Commun. Stat.-Theor. M., in press. https://doi.org/10.1080/03610926.2021.1963457 |
[30] | S. Hosseini, A. Nezakati, Complete moment convergence for the dependent linear processes with random coefficients, Acta Math. Sin., Engl. Ser., 35 (2019), 1321–1333. https://doi.org/10.1007/s10114-019-8205-z doi: 10.1007/s10114-019-8205-z |
[31] | W. Stout, Almost sure convergence, New York: Academic Press, 1974. |