This article aimed to investigate the almost sure convergence theorem of widely negative orthant dependent (WNOD) random variables under sub-linear expectation space. The conclusions in this essay are an extension of the corresponding conclusions in the classical probability space.
Citation: Baozhen Wang, Qunying Wu. Almost sure convergence for a class of dependent random variables under sub-linear expectations[J]. AIMS Mathematics, 2024, 9(7): 17259-17275. doi: 10.3934/math.2024838
This article aimed to investigate the almost sure convergence theorem of widely negative orthant dependent (WNOD) random variables under sub-linear expectation space. The conclusions in this essay are an extension of the corresponding conclusions in the classical probability space.
[1] | S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type, Stochast. Anal. Appl. Abel Symposium, 2006,541–567. |
[2] | S. G. Peng, Multi-dimensional G-brownian motion and related stochastic calculus under gexpectation, Stochast. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015 |
[3] | Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0 |
[4] | H. Cheng, Strong laws of large numbers for sub-linear expectation under controlled 1st moment condition, Chinese Ann. Math., 39 (2018), 791–804. https://doi.org/10.1007/s11401-018-0096-2 doi: 10.1007/s11401-018-0096-2 |
[5] | X. Feng, Y. Lan, Strong limit theorems for arrays of rowwise independent random variables under sublinear expectation, Acta Math. Hung., 159 (2019), 299–322. https://doi.org/10.1007/s10474-019-00938-1 doi: 10.1007/s10474-019-00938-1 |
[6] | H. Cheng, A strong law of large numbers for sub-linear expectation under a general moment condition, Stat. Probab. Lett., 119 (2016), 248–258. https://doi.org/10.1016/j.spl.2016.08.015 doi: 10.1016/j.spl.2016.08.015 |
[7] | Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053 |
[8] | X. Y. Chen, F. Liu, Strong laws of large numbers for negatively dependent random variables under sublinea rexpectations, Commun. Stat. Theory Meth., 46 (2017), 12387–12400. https://doi.org/10.1080/03610926.2017.1300274 doi: 10.1080/03610926.2017.1300274 |
[9] | M. M. Gao, F. Hu, J. B. Sun, A strong law of large number for negatively dependent and non identical distributed random variables in the framework of sublinear expectation, Commun. Stat. Theory Meth., 48 (2019), 5058–5073. https://doi.org/10.1080/03610926.2018.1508708 doi: 10.1080/03610926.2018.1508708 |
[10] | Z. W. Liang, Q. Y. Wu, Several Different types of convergence for ND random variables under sublinear expectations, Discrete Dyn. Nat. Soc., 2021 (2021), 6653435. https://doi.org/10.1155/2021/6653435 doi: 10.1155/2021/6653435 |
[11] | L. X. Zhang, Exponential inequalities for under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1 |
[12] | R. X. Wang, Q. Y. Wu, Some types of convergence for negatively dependent random variables under sublinear expectations, Discrete Dyn. Nat. Soc., 2019 (2019), 9037258. https://doi.org/10.1155/2019/9037258 doi: 10.1155/2019/9037258 |
[13] | X. W. Feng, Law of the logarithm for weighted sums of negatively dependent random variables under sublinear expectation, Stat. Probab. Lett., 149 (2019), 132–141. https://doi.org/10.1016/j.spl.2019.01.033 doi: 10.1016/j.spl.2019.01.033 |
[14] | L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under sub-linear expectations, Acta Math. Sci., 42 (2022), 467–490. https://doi.org/10.1007/s10473-022-0203-z doi: 10.1007/s10473-022-0203-z |
[15] | L. Wang, Q. Y. Wu, Almost sure convergence theorems for arrays under sub-linear expectations, AIMS Math., 7 (2022), 17767–17784. https://doi.org/10.3934/math.2022978 doi: 10.3934/math.2022978 |
[16] | Y. W. Lin, X. W. Feng, Complete convergence and strong law of large numbers for arrays of random variables under sublinear expectations, Commun. Stat. Theory Meth., 49 (2020), 5866–5882. https://doi.org/10.1080/03610926.2019.1625924 doi: 10.1080/03610926.2019.1625924 |
[17] | K. S. Hwang, Almost sure convergence of weighted sums for widely negative dependent random variables under sub-linear expectations, Adv. Stud. Contemp. Math., 32 (2022), 463–475. |
[18] | K. K. Anna, Complete convergence and complete moment convergence for widely negative orthant dependent random variables under the sub-linear expectations, Stochastics, 95 (2023), 1101–1119. https://doi.org/10.1080/17442508.2022.2164695 doi: 10.1080/17442508.2022.2164695 |
[19] | J. G. Yan, Almost sure convergence for weighted sums of WNOD random variables and its applications to non parametric regression models, Commun. Stat. Theory Meth., 47 (2018), 3893–3909 https://doi.org/10.1080/03610926.2017.1364390 doi: 10.1080/03610926.2017.1364390 |
[20] | E. Seneta, Regularly Varying Functions, Berlin: Springer, 1976. |