We construct the global existence for a wave equation involving the fractional Laplacian with a logarithmic nonlinear source by using the Galerkin approximations. The corresponding results for equations with classical Laplacian are considered as particular cases of our assertions.
Citation: Bidi Younes, Abderrahmane Beniani, Khaled Zennir, Zayd Hajjej, Hongwei Zhang. Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity[J]. Electronic Research Archive, 2024, 32(9): 5268-5286. doi: 10.3934/era.2024243
We construct the global existence for a wave equation involving the fractional Laplacian with a logarithmic nonlinear source by using the Galerkin approximations. The corresponding results for equations with classical Laplacian are considered as particular cases of our assertions.
[1] | G. H. Pertz, C. J. Gerhardt, Leibnizens gesammelte Werke, Lebinizens mathematische Schriften, Erste Abtheilung, Band II, in Dritte Folge Mathematik (Erster Band). A. Asher & Comp., Briefwechsel zwischen Leibniz, (1849), 301–302. |
[2] | G. M. Bisci, V. D. Radulescu, Ground state solutions of scalar field fractional Schrodinger equations, Calc. Var. Partial Differ. Equations, 54 (2015), 2985–3008. https://doi.org/10.1007/s00526-015-0891-5 doi: 10.1007/s00526-015-0891-5 |
[3] | M. Caponi, P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099–2129. https://doi.org/10.1007/s10231-016-0555-x doi: 10.1007/s10231-016-0555-x |
[4] | L. K. Laouar, Kh. Zennir, S. Boulaaras, The sharp decay rate of thermoelastic transmission system with infinite memories, Rend. Circ. Mat. Palermo Ser. 2, 69 (2020), 403–423. https://doi.org/10.1007/s12215-019-00408-1 doi: 10.1007/s12215-019-00408-1 |
[5] | N. Pan, P. Pucci, B. L. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equations, 18 (2018), 385–409. https://doi.org/10.1007/s00028-017-0406-2 doi: 10.1007/s00028-017-0406-2 |
[6] | Kh. Zennir, Growth of solutions with positive initial energy to system of degenerately damped wave equations with memory, Lobachevskii J. Math., 35 (2014), 147–156. https://doi.org/10.1134/S1995080214020139 doi: 10.1134/S1995080214020139 |
[7] | D. Ouchenane, Kh. Zennir, M. Bayoud, Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukr. Math. J., 65 (2013), 723–739. https://doi.org/10.1007/s11253-013-0809-3 doi: 10.1007/s11253-013-0809-3 |
[8] | Kh. Zennir, T. Miyasita, Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory, Alexandria Eng. J., 59 (2020), 957–964. https://doi.org/10.1016/j.aej.2020.03.016 doi: 10.1016/j.aej.2020.03.016 |
[9] | Q. Lin, X. T. Tian, R. Z. Xu, M. N. Zhang, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 2095–2107. https://doi.org/10.3934/dcdss.2020160 doi: 10.3934/dcdss.2020160 |
[10] | A. Benaissa, D. Ouchenane, Kh. Zennir, Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Stud., 19 (2012), 523–535. |
[11] | A. Braik, Y. Miloudi, Kh. Zennir, A finite-time Blow-up result for a class of solutions with positive initial energy for coupled system of heat equations with memories, Math. Methods Appl. Sci., 41 (2018), 1674–1682. https://doi.org/10.1002/mma.4695 doi: 10.1002/mma.4695 |
[12] | A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. Theory Methods Appl., 94 (2014), 156–170. https://doi.org/10.1016/j.na.2013.08.011 doi: 10.1016/j.na.2013.08.011 |
[13] | G. Liu, S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on ${\mathbb R}^{N}$, Comput. Math. Appl., 70 (2015), 1345–1356. https://doi.org/10.1016/j.camwa.2015.07.021 doi: 10.1016/j.camwa.2015.07.021 |
[14] | J. L. Shomberg, Well-posedness of semilinear strongly damped wave equations with fractional diffusion operators and $C^0$ potentials on arbitrary bounded domains, Rocky Mt. J. Math., 49 (2019), 1307–1334. https://doi.org/10.1216/RMJ-2019-49-4-1307 doi: 10.1216/RMJ-2019-49-4-1307 |
[15] | E. Azroul, A. Benkirane, M. Shimi, Eigenvalue problem involving the fractional $p-$Laplacian operator, Adv. Oper. Theory, 4 (2009), 539–555. https://doi.org/10.15352/aot.1809-1420 doi: 10.15352/aot.1809-1420 |
[16] | A. G. Atta, W. M. Abd-Elhameed, Y. H. Youssri, Shifted fifth-kind Chebyshev polynomials Galerkin-based procedure for treating fractional diffusion-wave equation, Int. J. Mod. Phys. C, 33 (2022), 2250102. https://doi.org/10.1142/S0129183122501029 doi: 10.1142/S0129183122501029 |
[17] | R. M. Hafez, Y. H. Youssri, Fully Jacobi-Galerkin algorithm for two-dimensional time-dependent PDEs arising in physics, Int. J. Mod. Phys. C, 35 (2024), 2450034. https://doi.org/10.1142/S0129183124500347 doi: 10.1142/S0129183124500347 |
[18] | R. M. Hafez, Y. H. Youssri, Review on Jacobi-Galerkin spectral method for linear PDEs in applied mathematics, Contemp. Math., 5 (2024), 2051–2088. https://doi.org/10.37256/cm.5220244768 doi: 10.37256/cm.5220244768 |
[19] | S. M. Sayed, A. S. Mohamed, E. M. Abo-Eldahab, Y. H. Youssri, Legendre-Galerkin spectral algorithm for fractional-order BVPs: Application to the Bagley-Torvik equation, Math. Syst. Sci., 2 (2024), 2733. https://doi.org/10.54517/mss.v2i1.2733 doi: 10.54517/mss.v2i1.2733 |
[20] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[21] | S. Boulaaras, A. Draifia, Kh. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), 4795–4814. https://doi.org/10.1002/mma.5693 doi: 10.1002/mma.5693 |