In this paper, we consider the existence of positive solutions for a system of fractional $ q $-difference equations with generalized $ p $-Laplacian operators. By using Guo-Krasnosel'skii fixed point theorem, we obtain some existence results of positive solutions for this system with two parameters under some different combinations of superlinearity and sublinearity of the nonlinear terms. In the end, we give two examples to illustrate our main results.
Citation: Hongyu Li, Liangyu Wang, Yujun Cui. Positive solutions for a system of fractional $ q $-difference equations with generalized $ p $-Laplacian operators[J]. Electronic Research Archive, 2024, 32(2): 1044-1066. doi: 10.3934/era.2024051
In this paper, we consider the existence of positive solutions for a system of fractional $ q $-difference equations with generalized $ p $-Laplacian operators. By using Guo-Krasnosel'skii fixed point theorem, we obtain some existence results of positive solutions for this system with two parameters under some different combinations of superlinearity and sublinearity of the nonlinear terms. In the end, we give two examples to illustrate our main results.
[1] | Y. Zhao, S. Sun, Z. Han, Q. Li, The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2086–2097. https://doi.org/10.1016/j.cnsns.2010.08.017 doi: 10.1016/j.cnsns.2010.08.017 |
[2] | X. Zhang, J. Jiang, L. Liu, Y. Wu, Extremal solutions for a class of tempered fractional turbulent flow equations in a porous medium, Math. Probl. Eng., 2020 (2020), 2492193. https://doi.org/10.1155/2020/2492193 doi: 10.1155/2020/2492193 |
[3] | Z. Bai, H. L$\ddot{\mathrm{u}}$, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052 |
[4] | X. Zhang, L. Yu, J. Jiang, Y. Wu, Y. Cui, Positive solutions for a weakly singular Hadamard-type fractional differential equation with changing-sign nonlinearity, J. Funct. Space, 2020 (2020), 5623589. https://doi.org/10.1155/2020/5623589 doi: 10.1155/2020/5623589 |
[5] | X. Zhang, P. Chen, H. Tian, Y. Wu, The iterative properties for positive solutions of a tempered fractional equation, Fractal Fract., 7 (2023), 761. https://doi.org/10.3390/fractalfract7100761 doi: 10.3390/fractalfract7100761 |
[6] | X. Zhang, L. Yu, J. Jiang, Y. Wu, Y. Cui, Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis, J. Funct. Space, 2020 (2020), 8392397. https://doi.org/10.1155/2020/8392397 doi: 10.1155/2020/8392397 |
[7] | X. Zhang, P. Xu, Y. Wu, B. Wiwatanapataphee, The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model, Nonlinear Anal.-Model. Control, 27 (2022), 428–444. https://doi.org/10.15388/namc.2022.27.25473 doi: 10.15388/namc.2022.27.25473 |
[8] | X. Zhang, P. Chen, H. Tian, Y. Wu, Upper and lower solution method for a singular tempered fractional equation with a $p$-Laplacian operator, Fractal Fract., 7 (2023), 522. https://doi.org/10.3390/fractalfract7070522 doi: 10.3390/fractalfract7070522 |
[9] | Y. Li, G. Li, Positive solutions of $ p $-Laplacian fractional differential equations with integral boundary value conditions, J. Nonlinear Sci. Appl., 9 (2016), 717–726. |
[10] | T. Chen, W. Liu, Z. Hu, A boundary value problem for fractional differential equation with $p$-Laplacian operator at resonance, Nonlinear Anal. Theory Methods Appl., 75 (2012), 3210–3217. https://doi.org/10.1016/j.na.2011.12.020 doi: 10.1016/j.na.2011.12.020 |
[11] | L. Zhang, W. Zhang, X. Liu, M. Jia, Positive solutions of fractional $ p $-laplacian equations with integral boundary value and two parameters, J. Inequal. Appl., 2020 (2020), 2. https://doi.org/10.1186/s13660-019-2273-6 doi: 10.1186/s13660-019-2273-6 |
[12] | A. Ahmadkhanlu, On the existence and multiplicity of positive solutions for a $ p $-Laplacian fractional boundary value problem with an integral boundary condition, Filomat, 37 (2023), 235–250. https://doi.org/10.2298/FIL2301235A doi: 10.2298/FIL2301235A |
[13] | X. Zhang, D. Kong, H. Tian, Y. Wu, B. Wiwatanapataphee, An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation, Nonlinear Anal.-Model. Control, 27 (2022), 789–802. https://doi.org/10.15388/namc.2022.27.27491 doi: 10.15388/namc.2022.27.27491 |
[14] | Z. Han, H. Lu, C. Zhang, Positive solutions for eigenvalue problems of fractional differential equation with generalized $ p $-Laplacian, Appl. Math. Comput., 257 (2015), 526–536. https://doi.org/10.1016/j.amc.2015.01.013 doi: 10.1016/j.amc.2015.01.013 |
[15] | F. H. Jackson, On $ q $-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[16] | W. A. Al-Salam, Some fractional $ q $-integrals and $ q $-derivatives, Proc. Edinb. Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469 |
[17] | R. P. Agarwal, Certain fractional $ q $-integrals and $ q $-derivatives, Proc. Camb. Philos. Soc., 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060 |
[18] | R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional $ q $-differences, Comput. Math. Appl., 61 (2011), 367–373. https://doi.org/10.1016/j.camwa.2010.11.012 doi: 10.1016/j.camwa.2010.11.012 |
[19] | C. Zhai, J. Ren, Positive and negative solutions of a boundary value problem for a fractional $ q $-difference equation, Adv. Differ. Equations, 2017 (2017). https://doi.org/10.1186/s13662-017-1138-x doi: 10.1186/s13662-017-1138-x |
[20] | J. Mao, Z. Zhao, C. Wang, The unique iterative positive solution of fractional boundary value problem with $ q $-difference, Appl. Math. Lett., 100 (2020), 106002. https://doi.org/10.1016/j.aml.2019.106002 doi: 10.1016/j.aml.2019.106002 |
[21] | M. Jiang, S. Zhong, Existence of solutions for nonlinear fractional $ q $-difference equations with Riemann-Liouville type $ q $-derivatives, J. Appl. Math. Comput., 47 (2015), 429–459. https://doi.org/10.1007/s12190-014-0784-3 doi: 10.1007/s12190-014-0784-3 |
[22] | X. Li, Z. Han, S. Sun, L. Sun, Eigenvalue problems of fractional $ q $-difference equations with generalized $ p $-Laplacian, Appl. Math. Lett., 57 (2016), 46–53. https://doi.org/10.1016/j.aml.2016.01.003 doi: 10.1016/j.aml.2016.01.003 |
[23] | J. Wang, C. Yu, B. Zhang, S. Wang, Positive solutions for eigenvalue problems of fractional $ q $-difference equation with $ \phi $-Laplacian, Adv. Differ. Equations, 2021 (2021), 499. https://doi.org/10.1186/s13662-021-03652-x doi: 10.1186/s13662-021-03652-x |
[24] | C. Yu, S. Li, J. Li, J. Wang, Triple-positive solutions for a nonlinear singular fractional $ q $-difference equation at resonance, Fractal Fract., 6 (2022), 689. https://doi.org/10.3390/fractalfract6110689 doi: 10.3390/fractalfract6110689 |
[25] | G. Wang, Twin iterative positive solutions of fractional $ q $-difference Schr$\ddot{\mathrm{o}}$dinger equations, Appl. Math. Lett., 76 (2018), 103–109. https://doi.org/10.1016/j.aml.2017.08.008 doi: 10.1016/j.aml.2017.08.008 |
[26] | X. Li, Z. Han, S. Sun, P. Zhao, Existence of solutions for fractional $ q $-difference equation with mixed nonlinear boundary conditions, Adv. Differ. Equations, 2014 (2014), 326. https://doi.org/10.1186/1687-1847-2014-326 doi: 10.1186/1687-1847-2014-326 |
[27] | S. Liang, J. Zhang, Existence and uniqueness of positive solutions for three-point boundary value problem with fractional $ q $-differences, J. Appl. Math. Comput., 40 (2012), 277–288. https://doi.org/10.1007/s12190-012-0551-2 doi: 10.1007/s12190-012-0551-2 |
[28] | X. Li, Z. Han, S. Sun, Existence of positive solutions of nonlinear fractional $ q $-difference equation with parameter, Adv. Differ. Equations, 2013 (2013), 260. https://doi.org/10.1186/1687-1847-2013-260 doi: 10.1186/1687-1847-2013-260 |
[29] | J. Ma, J. Yang, Existence of solutions for multi-point boundary value problem of fractional $ q $-difference equation, Electron. J. Qual. Theory Differ. Equations, 2011 (2011), 1–10. |
[30] | B. Ahmad, S. Etemad, M. Ettefagh, S. Rezapour, On the existence of solutions for fractional $ q $-difference inclusions with $ q $-antiperiodic boundary conditions, Math. Bull. Soc. Math. Sci. Rom., 59 (2016), 119–134. https://www.jstor.org/stable/26407454 |
[31] | S. Li, X. Zhang, Y. Wu, L. Caccetta, Extremal solutions for $p$-Laplacian differential systems via iterative computation, Appl. Math. Lett., 26 (2013), 1151–1158. https://doi.org/10.1016/j.aml.2013.06.014 doi: 10.1016/j.aml.2013.06.014 |
[32] | J. He, X. Song, The uniqueness of solution for a class of fractional order nonlinear systems with $ p $-Laplacian operator, Abstr. Appl. Anal., 2014 (2014), 921209. https://doi.org/10.1155/2014/921209 doi: 10.1155/2014/921209 |
[33] | X. Hao, H. Wang, L. Liu, Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and $ p $-Laplacian operator, Bound. Value Probl., 2017 (2017), 182. https://doi.org/10.1186/s13661-017-0915-5 doi: 10.1186/s13661-017-0915-5 |
[34] | X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a singular fractional differential system involving derivatives, Commun. Nonlinear Sci., 18 (2013), 1400–1409. https://doi.org/10.1016/j.cnsns.2012.08.033 doi: 10.1016/j.cnsns.2012.08.033 |
[35] | C. Yu, S. Wang, J. Wang, J. Li, Solvability criterion for fractional $ q $-integro-difference system with Riemann-Stieltjes integrals conditions, Fractal Fract., 6 (2022), 554. https://doi.org/10.3390/fractalfract6100554 doi: 10.3390/fractalfract6100554 |
[36] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 5 (2014). |
[37] | H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281 (2003), 287–306. https://doi.org/10.1016/S0022-247X(03)00100-8 doi: 10.1016/S0022-247X(03)00100-8 |