The aim of this paper is to investigate the existence of weak solutions for a Kirchhoff-type differential inclusion wave problem involving a discontinuous set-valued term, the fractional $ p $-Laplacian and linear strong damping term. The existence of weak solutions is obtained by using a regularization method combined with the Galerkin method.
Citation: Mingqi Xiang, Binlin Zhang, Die Hu. Kirchhoff-type differential inclusion problems involving the fractional Laplacian and strong damping[J]. Electronic Research Archive, 2020, 28(2): 651-669. doi: 10.3934/era.2020034
The aim of this paper is to investigate the existence of weak solutions for a Kirchhoff-type differential inclusion wave problem involving a discontinuous set-valued term, the fractional $ p $-Laplacian and linear strong damping term. The existence of weak solutions is obtained by using a regularization method combined with the Galerkin method.
[1] | Wave equation with $p(x, t)$-Laplacian and damping term: Existence and blow-up. Differ. Equations Appl. (2011) 3: 503-525. |
[2] | Elliptic equations with nearly critical growth. J. Differential Equations (1987) 70: 349-365. |
[3] | Global nonexistence for nonlinear Kirchhoff systems. Arch. Rational Mech. Anal. (2010) 196: 489-516. |
[4] | Non-local diffusions, drifts and games. Nonlinear Partial Differential Equations, Abel Symposia, Springer, Heidelberg (2012) 7: 37-52. |
[5] | Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity. Adv. Nonlinear Anal. (2020) 9: 148-167. |
[6] | Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math. (1974) 26: 745-752. |
[7] | Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. (2012) 136: 521-573. |
[8] | A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. (2014) 94: 156-170. |
[9] | Systems of nonlinear wave equations with nonlinear viscosity. Pac. J. Math. (1988) 135: 29-55. |
[10] | Existence of solutions for nonlinear parabolic problems with $p(x)$-growth. J. Math. Anal. Appl. (2010) 362: 313-326. |
[11] | A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. (2019) 8: 267-277. |
[12] | G. Kirchhoff, Vorlesungen über Mathematische Physik, Mechanik, Teubner, Leipzig, 1883. |
[13] | O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23. American Mathematical Society, Providence, R.I., 1968. |
[14] | On the existence of weak solutions for quasilinear parabolic initial boundary value problem. Proc. Roy. Soc. Edinburgh Sect. A (1981) 89: 217-237. |
[15] | Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A (2000) 268: 298-305. |
[16] | Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. (2020) 9: 613-632. |
[17] | W. Lian, R. Z. Xu, V. Rǎdulescu, Y. B. Yang and N. Zhao, Global well-posedness for a class of fourth order nonlinear strongly damped wave equations, Adv. Calc. Var., (2019). doi: 10.1515/acv-2019-0039 |
[18] | Fractional magnetic Schrödinger-Kirchhoff problems with convolution and critical nonlinearities. Math. Method. Appl. Sci. (2020) 43: 2473-2490. |
[19] | On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. (2018) 75: 1778-1794. |
[20] | Q. Lin, X. T. Tian, R. Z. Xu and M. N. Zhang, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst. Ser. S, (2019). doi: 10.3934/dcdss.2020160 |
[21] | J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[22] | Some non-linear evolution equations. Bull. Soc. Math. Fr. (1965) 93: 43-96. |
[23] | On weak solutions for an evolution equation with exponent nonlinearities. Nonlinear Anal. (1977) 37: 1029-1038. |
[24] | Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions. Nonlinearity (2018) 31: 3228-3250. |
[25] | G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016. doi: 10.1017/CBO9781316282397 |
[26] | M. Q. Xiang, V. D. Rǎdulescu and B. L. Zhang, A critical fractional Choquard-Kirchhoff problem with magnetic field, Comm. Contem. Math., 21 (2019), 1850004, 36 pp. doi: 10.1142/s0219199718500049 |
[27] | M. Q. Xiang, V. Rǎdulescu and B. L. Zhang, Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Cal. Var. Partial Differential Equations, 58 (2019), 27 pp. doi: 10.1007/s00526-019-1499-y |
[28] | Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J. Evolution Equations (2019) 19: 615-643. |
[29] | Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian. J. Evolution Equations (2018) 18: 385-409. |
[30] | Degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian. Nonlinear Anal. Real World Appl. (2017) 37: 56-70. |
[31] | N. S. Papageorgiou, V. Rǎdulescu and D. Repovš, Relaxation methods for optimal control problems, Bull. Math. Sci., (2020). doi: 10.1142/S1664360720500046 |
[32] | On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities. Nonlinear Anal. (2003) 55: 103-113. |
[33] | A diffusion problem of Kirchhoff type involving the nonlocal fractional $p$-Laplacian. Discrete Contin. Dyn. Syst. (2017) 37: 4035-4051. |
[34] | Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations. Adv. Nonlinear Anal. (2016) 5: 27-55. |
[35] | Nonlocal perturbations of the fractional Choquard equation. Adv. Nonlinear Anal. (2019) 8: 694-706. |
[36] | J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, Nonlinear Partial Differential Equations, Abel Symp., Springer, Heidelberg, 7 (2012), 271–298. doi: 10.1007/978-3-642-25361-4_15 |
[37] | Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math. (1974) 26: 745-752. |
[38] | Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. (2019) 178: 190-204. |
[39] | Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. (2013) 264: 2732-2763. |
[40] | R. Z. Xu, X. C. Wang, Y. B. Yang and S. H. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. doi: 10.1063/1.5006728 |
[41] | The initial-boundary value problems for a class of six order nonlinear wave equation. Discrete Contin. Dyn. Syst. (2017) 37: 5631-5649. |