Research article Special Issues

Remarkable series concerning $ \binom{3n}{n} $ and harmonic numbers in numerators

  • Received: 26 March 2024 Revised: 11 May 2024 Accepted: 15 May 2024 Published: 20 May 2024
  • MSC : Primary 11B65; Secondary 33C20, 65B10

  • Three classes of infinite series containing binomial coefficient $ \binom{3n}{n} $, harmonic-like numbers, and an independent variable "$ y $" are examined. Several algebraic formulae in closed form are established, including, as special cases, three conjectured values for numerical series by Z.-W. Sun. This is fulfilled by integrating Lambert's series and manipulating the cubic transformations for the $ _3{F_2} $-series through the "coefficient extraction" method.

    Citation: Chunli Li, Wenchang Chu. Remarkable series concerning $ \binom{3n}{n} $ and harmonic numbers in numerators[J]. AIMS Mathematics, 2024, 9(7): 17234-17258. doi: 10.3934/math.2024837

    Related Papers:

  • Three classes of infinite series containing binomial coefficient $ \binom{3n}{n} $, harmonic-like numbers, and an independent variable "$ y $" are examined. Several algebraic formulae in closed form are established, including, as special cases, three conjectured values for numerical series by Z.-W. Sun. This is fulfilled by integrating Lambert's series and manipulating the cubic transformations for the $ _3{F_2} $-series through the "coefficient extraction" method.



    加载中


    [1] K. Adegoke, R. Frontczak, T. Goy, Combinatorial sums, series and integrals involving odd harmonic numbers, arXiv, 2024. https://doi.org/10.48550/arXiv.2401.02470
    [2] W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc., 28 (1928), 242–254. https://doi.org/10.1112/plms/s2-28.1.242 doi: 10.1112/plms/s2-28.1.242
    [3] W. N. Bailey, Generalized hypergeometric series, Cambridge: Cambridge University Press, 1935.
    [4] Y. A. Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, New York: Chapman and Hall/CRC, 2008. https://doi.org/10.1201/9781584889571
    [5] H. Chen, Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers, J. Integer Seq., 19 (2016), 16.1.5.
    [6] K. W. Chen, Y. H. Chen, Infinite series containing generalized harmonic functions, Notes Number Theory Discrete Math., 26 (2020), 85–104. https://doi.org/10.7546/nntdm.2020.26.2.85-104 doi: 10.7546/nntdm.2020.26.2.85-104
    [7] J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput., 218 (2011), 734–740. https://doi.org/10.1016/j.amc.2011.01.062 doi: 10.1016/j.amc.2011.01.062
    [8] W. Chu, Hypergeometric series and the Riemann zeta function, Acta Arith., 82 (1997), 103–118. https://doi.org/10.4064/aa-82-2-103-118 doi: 10.4064/aa-82-2-103-118
    [9] W. Chu, Generating functions and combinatorial identities, Glas. Mat., 33 (1998), 1–12.
    [10] W. Chu, Some binomial convolution formulas, Fibonacci Quart., 40 (2002), 19–32.
    [11] W. Chu, Infinite series on quadratic skew harmonic numbers, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 75. https://doi.org/10.1007/s13398-023-01407-9 doi: 10.1007/s13398-023-01407-9
    [12] W. Chu, Infinite series around multinomial coefficients and harmonic numbers, Kodai Math. J., 46 (2023), 115–144. https://doi.org/10.2996/kmj46201 doi: 10.2996/kmj46201
    [13] W. Chu, J. M. Campbell, Harmonic sums from the Kummer theorem, J. Math. Anal. Appl., 501 (2021), 125179. https://doi.org/10.1016/j.jmaa.2021.125179 doi: 10.1016/j.jmaa.2021.125179
    [14] C. Elsner, On recurrence formulae for sums involving binomial coefficients, Fibonacci Quart., 43 (2005), 31–45.
    [15] I. Gessel, D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal., 13 (1982), 295–308. https://doi.org/10.1137/0513021 doi: 10.1137/0513021
    [16] H. W. Gould, Some generalizations of Vandermonde's convolution, Amer. Math. Mon., 63 (1956), 84–91. https://doi.org/10.1080/00029890.1956.11988763 doi: 10.1080/00029890.1956.11988763
    [17] M. Jung, Y. J. Cho, J. Choi, Euler sums evaluatable from integrals, Commun. Korean Math. Soc., 19 (2004), 545–555. https://doi.org/10.4134/CKMS.2004.19.3.545 doi: 10.4134/CKMS.2004.19.3.545
    [18] C. L. Li, W. Chu, Infinite series about harmonic numbers inspired by Ramanujan-like formulae, Electron. Res. Arch., 31 (2023), 4611–4636. https://doi.org/10.3934/era.2023236 doi: 10.3934/era.2023236
    [19] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Mon., 92 (1985), 449–457. https://doi.org/10.1080/00029890.1985.11971651 doi: 10.1080/00029890.1985.11971651
    [20] L. Lewin, Polylogarithms and associated functions, New York: North-Holland, 1981.
    [21] E. D. Rainville, Special functions, New York: The Macmillan Company, 1960.
    [22] J. Riordan, Combinatorial identities, New York: John Wiley & Sons, 1968.
    [23] Z. W. Sun, Series with summands involving higher harmonic numbers, arXiv, 2023. https://doi.org/10.48550/arXiv.2210.07238
    [24] X. Y. Wang, W. Chu, Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients, Ramanujan J., 52 (2020), 641–668. https://doi.org/10.1007/s11139-019-00140-5 doi: 10.1007/s11139-019-00140-5
    [25] I. J. Zucker, On the series $ \sum_{k = 1}^{\infty} \binom2k{k}^{-1}k^{-n}$, J. Number Theory, 20 (1985), 92–102. https://doi.org/10.1016/0022-314X(85)90019-8 doi: 10.1016/0022-314X(85)90019-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog