Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Remarkable series concerning (3nn) and harmonic numbers in numerators

  • Three classes of infinite series containing binomial coefficient (3nn), harmonic-like numbers, and an independent variable "y" are examined. Several algebraic formulae in closed form are established, including, as special cases, three conjectured values for numerical series by Z.-W. Sun. This is fulfilled by integrating Lambert's series and manipulating the cubic transformations for the 3F2-series through the "coefficient extraction" method.

    Citation: Chunli Li, Wenchang Chu. Remarkable series concerning (3nn) and harmonic numbers in numerators[J]. AIMS Mathematics, 2024, 9(7): 17234-17258. doi: 10.3934/math.2024837

    Related Papers:

    [1] Yaning Li, Mengjun Wang . Well-posedness and blow-up results for a time-space fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162
    [2] Shaoqiang Shang, Yunan Cui . Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces. Electronic Research Archive, 2020, 28(1): 327-346. doi: 10.3934/era.2020019
    [3] Eteri Gordadze, Alexander Meskhi, Maria Alessandra Ragusa . On some extrapolation in generalized grand Morrey spaces with applications to PDEs. Electronic Research Archive, 2024, 32(1): 551-564. doi: 10.3934/era.2024027
    [4] Yangrong Li, Shuang Yang, Qiangheng Zhang . Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28(4): 1529-1544. doi: 10.3934/era.2020080
    [5] Huali Wang, Ping Li . Fractional integral associated with the Schrödinger operators on variable exponent space. Electronic Research Archive, 2023, 31(11): 6833-6843. doi: 10.3934/era.2023345
    [6] Peng Gao, Pengyu Chen . Blowup and MLUH stability of time-space fractional reaction-diffusion equations. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170
    [7] Ling-Xiong Han, Wen-Hui Li, Feng Qi . Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28(2): 721-738. doi: 10.3934/era.2020037
    [8] Shuguan Ji, Yanshuo Li . Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion. Electronic Research Archive, 2023, 31(12): 7182-7194. doi: 10.3934/era.2023363
    [9] Kun Cheng, Yong Zeng . On regularity criteria for MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239
    [10] Francisco Javier García-Pacheco, María de los Ángeles Moreno-Frías, Marina Murillo-Arcila . On absolutely invertibles. Electronic Research Archive, 2024, 32(12): 6578-6592. doi: 10.3934/era.2024307
  • Three classes of infinite series containing binomial coefficient (3nn), harmonic-like numbers, and an independent variable "y" are examined. Several algebraic formulae in closed form are established, including, as special cases, three conjectured values for numerical series by Z.-W. Sun. This is fulfilled by integrating Lambert's series and manipulating the cubic transformations for the 3F2-series through the "coefficient extraction" method.



    In this article, we study the following anisotropic singular p()-Laplace equation

    {Ni=1xi(|xiu|pi(x)2xiu)=f(x)uβ(x)+g(x)uq(x) in Ω,u>0 in Ω,u=0 on Ω, (1.1)

    where Ω is a bounded domain in RN (N3) with smooth boundary Ω; fL1(Ω) is a positive function; gL(Ω) is a nonnegative function; βC(¯Ω) such that 1<β(x)< for any x¯Ω; qC(¯Ω) such that 0<q(x)<1 for any x¯Ω; piC(¯Ω) such that 2pi(x)<N for any x¯Ω, i{1,...,N}.

    The differential operator

    Ni=1xi(|xiu|pi(x)2xiu),

    that appears in problem (1.1) is an anisotropic variable exponent p()-Laplace operator, which represents an extension of the p()-Laplace operator

    Ni=1xi(|xiu|p(x)2xiu),

    obtained in the case for each i{1,...,N}, pi()=p().

    In the variable exponent case, p(), the integrability condition changes with each point in the domain. This makes variable exponent Sobolev spaces very useful in modeling materials with spatially varying properties and in studying partial differential equations with non-standard growth conditions [1,2,3,4,5,6,7,8].

    Anisotropy, on the other hand, adds another layer of complexity, providing a robust mathematical framework for modeling and solving problems that involve complex materials and phenomena exhibiting non-uniform and direction-dependent properties. This is represented mathematically by having different exponents for different partial derivatives. We refer to the papers [9,10,11,12,13,14,15,16,17,18,19,20,21] and references for further reading.

    The progress in researching anisotropic singular problems with p()-growth, however, has been relatively slow. There are only a limited number of studies available on this topic in academic literature. We could only refer to the papers [22,23,24] that were published recently. In [22], the author studied an anisotropic singular problems with constant case p()=p but with a variable singularity, where existence and regularity of positive solutions was obtained via the approximation methods. In [23], the author obtained the existence and regularity results of positive solutions by using the regularity theory and approximation methods. In [24], the authors showed the existence of positive solutions using the regularity theory and maximum principle. However, none of these papers studied combined effects of variable singular and sublinear nonlinearities.

    We would also like to mention that the singular problems of the type

    {Δu=f(x)uβ in Ω,u>0 in Ω,u=0 on Ω, (1.2)

    have been intensively studied because of their wide applications to physical models in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogenous catalysts, glacial advance, etc. (see, e.g., [25,26,27,28,29,30]).

    These studies, however, have mainly focused on the case 0<β<1, i.e., the weak singularity (see, e.g. [31,32,33,34,35,36]), and in this case, the corresponding energy functional is continuous.

    When β>1 (the strong singularity), on the other hand, the situation changes dramatically, and numerous challenges emerge in the analysis of differential equations of the type (1.2), where the primary challenge encountered is due to the lack of integrability of uβ for uH10(Ω) [37,38,39,40,41].

    To overcome these challenges, as an alternative approach, the so-called "compatibility relation" between f(x) and β has been introduced in the recent studies [37,40,42]. This method, used along with a constrained minimization and the Ekeland's variational principle [43], suggests a practical approach to obtain solutions to the problems of the type (1.2). In the present paper, we generalize these results to nonstandard p()-growth.

    The paper is organized as follows. In Section 2, we provide some fundamental information for the theory of variable Sobolev spaces since it is our work space. In Section 3, first we obtain the auxiliary results. Then, we present our main result and obtain a positive solution to problem (1.1). In Section 4, we provide an example to illustrate our results in a concrete way.

    We start with some basic concepts of variable Lebesgue-Sobolev spaces. For more details, and the proof of the following propositions, we refer the reader to [1,2,44,45].

    C+(¯Ω)={p;pC(¯Ω),infp(x)>1, for all x¯Ω}.

    For pC+(¯Ω) denote

    p:=infx¯Ωp(x)p(x)p+:=supx¯Ωp(x)<.

    For any pC+(¯Ω), we define the variable exponent Lebesgue space by

    Lp()(Ω)={uu:ΩR is measurable,Ω|u(x)|p(x)dx<},

    then, Lp()(Ω) endowed with the norm

    |u|p()=inf{λ>0:Ω|u(x)λ|p(x)dx1},

    becomes a Banach space.

    Proposition 2.1. For any uLp()(Ω) and vLp()(Ω), we have

    Ω|uv|dxC(p,(p))|u|p()|v|p()

    where Lp(x)(Ω) is the conjugate space of Lp()(Ω) such that 1p(x)+1p(x)=1.

    The convex functional Λ:Lp()(Ω)R defined by

    Λ(u)=Ω|u(x)|p(x)dx,

    is called modular on Lp()(Ω).

    Proposition 2.2. If u,unLp()(Ω) (n=1,2,...), we have

    (i) |u|p()<1(=1;>1)Λ(u)<1(=1;>1);

    (ii) |u|p()>1|u|pp()Λ(u)|u|p+p();

    (iii) |u|p()1|u|p+p()Λ(u)|u|pp();

    (iv) limn|un|p()=0limnΛ(un)=0;limn|un|p()=limnΛ(un)=.

    Proposition 2.3. If u,unLp()(Ω) (n=1,2,...), then the following statements are equivalent:

    (i) limn|unu|p()=0;

    (ii) limnΛ(unu)=0;

    (iii) unu in measure in Ω and  limnΛ(un)=Λ(u).

    The variable exponent Sobolev space W1,p()(Ω) is defined by

    W1,p()(Ω)={uLp()(Ω):|u|Lp()(Ω)},

    with the norm

    or equivalently

    \begin{equation*} \|u\|_{1,p(\cdot)} = \inf \left\{ \lambda > 0:\int_{\Omega }\left( \left|\frac{\nabla u(x) }{\lambda}\right|^{p(x)}+\left|\frac{u(x)}{\lambda}\right|^{p(x)}\right)dx, \leq 1\right\} \end{equation*}

    for all u\in W^{1, p(\cdot)}(\Omega) .

    As shown in [46], the smooth functions are in general not dense in W^{1, p(\cdot)}(\Omega) , but if the variable exponent p\in C_{+}(\overline{\Omega}) is logarithmic Hölder continuous, that is

    \begin{equation} |p(x)-p(y)|\leq -\frac{M}{\mathrm{log}(|x-y|)},\,\, \text{for all}\,\, x,y \in \Omega \text{ such that} \quad |x-y|\leq \frac{1}{2}, \end{equation} (2.1)

    then the smooth functions are dense in W^{1, p(\cdot)}(\Omega) and so the Sobolev space with zero boundary values, denoted by W_{0}^{1, p(\cdot)}(\Omega) , as the closure of C_{0}^{\infty}(\Omega) does make sense. Therefore, the space W_{0}^{1, p(\cdot)}(\Omega) can be defined as \overline{C_{0}^{\infty }(\Omega)}^{\|\cdot\|_{1, p(\cdot)}} = W_{0}^{1, p(\cdot)}(\Omega) , and hence, u\in W_{0}^{1, p(\cdot)}(\Omega) iff there exists a sequence (u_{n}) of C_{0}^{\infty }(\Omega) such that \|u_{n}-u\|_{1, p(\cdot)}\rightarrow0 .

    As a consequence of Poincaré inequality, \|u\|_{1, p(\cdot)} and |\nabla u|_{p(\cdot)} are equivalent norms on W_{0}^{1, p(\cdot)}(\Omega) when p\in C_{+}(\overline{\Omega}) is logarithmic Hölder continuous. Therefore, for any u\in W_{0}^{1, p(\cdot)}(\Omega) , we can define an equivalent norm \|u\| such that

    \begin{equation*} \|u\| = |\nabla u|_{p(\cdot)}. \end{equation*}

    Proposition 2.4. If 1 < p^{-}\leq p^{+} < \infty , then the spaces L^{p(\cdot)}(\Omega) and W^{1, p(\cdot)}(\Omega) are separable and reflexive Banach spaces.

    Proposition 2.5. Let q\in C(\overline{\Omega }) . If 1\leq q(x) < p^{\ast }(x) for all x\in \overline{\Omega } , then the embedding W^{1, p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega) is compact and continuous, where

    p^{\ast }( x) = \begin{cases} \frac{Np(x)}{N-p(x)}, & if\; p(x) < N, \\ +\infty , & if\; p(x)\geq N. \end{cases}

    Finally, we introduce the anisotropic variable exponent Sobolev spaces.

    Let us denote by \overset{\rightarrow }{p}:\overline{\Omega }\rightarrow \mathbb{R}^{N} the vectorial function \overset{\rightarrow }{p}(\cdot) = (p_{1}(\cdot), ..., p_{N}(\cdot)) with p_{i}\in C_{+}(\overline{\Omega}) , i\in \left\{1, ..., N\right\} . We will use the following notations.

    Define \overrightarrow{P}_{+}, \overrightarrow{P}_{-}\in \mathbb{R}^{N} as

    \begin{equation*} \overrightarrow{P}_{+} = \left( p_{1}^{+},...,p_{N}^{+}\right) , \ \ \overrightarrow{P}_{-} = \left( p_{1}^{-},...,p_{N}^{-}\right) , \end{equation*}

    and P_{+}^{+}, P_{-}^{+}, P_{-}^{-}\in \mathbb{R}^{+} as

    \begin{equation*} P_{+}^{+} = \max \left\{ p_{1}^{+},...,p_{N}^{+}\right\} ,\; P_{-}^{+} = \max \left\{ p_{1}^{-},...,p_{N}^{-}\right\} ,\ P_{-}^{-} = \min \left\{ p_{1}^{-},...,p_{N}^{-}\right\} ,\ \end{equation*}

    Below, we use the definitions of the anisotropic variable exponent Sobolev spaces as given in [12] and assume that the domain \Omega \subset \mathbb{R}^N satisfies all the necessary assumptions given in there.

    The anisotropic variable exponent Sobolev space is defined by

    \begin{equation*} W^{1,\overset{\rightarrow }{p}(\cdot) }(\Omega) = \{u\in L^{P_{+}^{+}}(\Omega) : \partial_{x_{i}}u \in L^{p_i(\cdot)}(\Omega),\,\,\ i\in \left\{1,...,N\right\}\}, \end{equation*}

    which is associated with the norm

    \begin{equation*} \| u\| _{W^{1,\overset{\rightarrow }{p}(\cdot) }(\Omega)} = |u|_{P_{+}^{+}(\cdot)}+\sum\limits_{i = 1}^{N}|\partial_{x_{i}}u|_{p_{i}(\cdot)}. \end{equation*}

    W^{1, \overset{\rightarrow }{p}(\cdot) }(\Omega) is a reflexive Banach space under this norm.

    The subspace W_{0}^{1, \overset{\rightarrow }{p}(\cdot) }(\Omega)\subset W^{1, \overset{\rightarrow }{p}(\cdot) }(\Omega) consists of the functions that are vanishing on the boundary, that is,

    \begin{equation*} W_{0}^{1,\overset{\rightarrow }{p}(\cdot) }(\Omega) = \{u\in W^{1,\overset{\rightarrow }{p}(\cdot) }(\Omega) : u = 0\,\, \text{on}\,\, \partial \Omega \}, \end{equation*}

    We can define the following equivalent norm on W_{0}^{1, \overset{\rightarrow }{p}(\cdot) }(\Omega)

    \begin{equation*} \| u\| _{\overset{\rightarrow }{p}(\cdot)} = \sum\limits_{i = 1}^{N}|\partial_{x_{i}}u|_{p_{i}(\cdot)}. \end{equation*}

    since the smooth functions are dense in W_{0}^{1, \overset{\rightarrow }{p}(\cdot) }(\Omega) , as the variable exponent p_{i}\in C_{+}(\overline{\Omega}) , i\in \left\{1, ..., N\right\} is logarithmic Hölder continuous.

    The space W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) is also a reflexive Banach space (for the theory of the anisotropic Sobolev spaces see, e.g., the monographs [2,47,48] and the papers [12,15]).

    Throughout this article, we assume that

    \begin{equation} \sum\limits_{i = 1}^{N}\frac{1}{p_{i}^{-}} > 1, \end{equation} (2.2)

    and define P_{-}^{\ast }\in\mathbb{R}^{+} and P_{-, \infty }\in\mathbb{R}^{+} by

    \begin{equation*} P_{-}^{\ast } = \frac{N}{\sum\nolimits_{i = 1}^{N}\frac{1}{p_{i}^{-}}-1}, \ P_{-,\infty } = \max \left\{ P_{-}^{+},P_{-}^{\ast }\right\} . \end{equation*}

    Proposition 2.6. [[15], Theorem 1] Suppose that \Omega \subset\mathbb{R}^{N} ( N\geq 3 ) is a bounded domain with smooth boundary and relation (2.2) is fulfilled. For any q\in C\left(\overline{\Omega } \right) verifying

    \begin{equation*} 1 < q\left( x\right) < P_{-,\infty }\;for\; all\;x\in \overline{\Omega }, \end{equation*}

    the embedding

    \begin{equation*} W_{0}^{1,\overset{\rightarrow }{p}\left( \cdot \right) }\left( \Omega \right) \hookrightarrow L^{q\left( \cdot \right) }\left( \Omega \right), \end{equation*}

    is continuous and compact.

    We define the singular energy functional \mathcal{J}:W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega)\rightarrow \mathbb{R} corresponding to equation (1.1) by

    \mathcal{J}(u) = \int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} u|^{p_i(x)}}{p_i(x)} dx-\int_{\Omega}\frac{g(x)|u|^{q(x)+1}}{q(x)+1}dx+\int_{\Omega}\frac{f(x)|u|^{1-\beta(x)}}{\beta(x)-1}dx.

    Definition 3.1. A function u is called a weak solution to problem (1.1) if u\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) such that u > 0 in \Omega and

    \begin{align} &\int_{\Omega}\left[\sum\limits_{i = 1}^{N}|\partial_{x_i} u|^{p_i(x)-2}\partial_{x_i} u\cdot\partial_{x_i} \varphi-[g(x)u^{q(x)}+f(x)u^{-\beta(x)}]\varphi\right] dx = 0, \end{align} (3.1)

    for all \varphi\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Definition 3.2. Due to the singularity of \mathcal{J} on W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) , we apply a constrained minimization for problem (1.1). As such, we introduce the following constrains:

    \begin{equation*} \mathcal{N}_{1} = \left\{u \in W_{0}^{1,\overset{\rightarrow }{p}(\cdot)}(\Omega): \int_{\Omega}\left[\sum\limits_{i = 1}^{N}|\partial_{x_i} u|^{p_i(x)}-g(x)|u|^{q(x)+1}-f(x)|u|^{1-\beta(x)}\right] dx\geq 0 \right\}, \end{equation*}

    and

    \begin{equation*} \mathcal{N}_{2} = \left\{u \in W_{0}^{1,\overset{\rightarrow }{p}(\cdot)}(\Omega): \int_{\Omega}\left[\sum\limits_{i = 1}^{N}|\partial_{x_i} u|^{p_i(x)}-g(x)|u|^{q(x)+1}-f(x)|u|^{1-\beta(x)}\right] dx = 0\right\}. \end{equation*}

    Remark 1. \mathcal{N}_{2} can be considered as a Nehari manifold, even though in general it may not be a manifold. Therefore, if we set

    c_{0}: = \inf\limits_{u\in \mathcal{N}_{2}}\mathcal{J}(u),

    then one might expect that c_{0} is attained at some u \in \mathcal{N}_{2} (i.e., \mathcal{N}_{2} \neq \varnothing ) and that u is a critical point of \mathcal{J} .

    Throughout the paper, we assume that the following conditions hold:

    (A_{1}) \beta:\overline{\Omega}\rightarrow (1, \infty) is a continuous function such that 1 < \beta^{-} \leq \beta(x) \leq \beta^{+} < \infty .

    (A_{2}) q:\overline{\Omega}\rightarrow (0, 1) is a continuous function such that 0 < q^{-} \leq q(x) \leq q^{+} < 1 and q^{+}+1 \leq\beta^{-} .

    (A_{3}) 2\leq P_{-}^{-}\leq P_{+}^{+} < P_{-}^{*} for almost all x\in \overline{\Omega}.

    (A_{4}) f \in L^{1}(\Omega) is a positive function, that is, f(x) > 0 a.e. in \Omega .

    (A_{5}) g \in L^{\infty}(\Omega) is a nonnegative function.

    Lemma 3.3. For any u \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) satisfying \int_{\Omega}f(x)|u|^{1-\beta(x)}dx < \infty , the functional \mathcal{J} is well-defined and coercive on W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Proof. Denote by \mathcal{I}_{1}, \mathcal{I}_{2} the indices sets \mathcal{I}_{1} = \{i \in \{1, 2, ..., N\}: |\partial_{x_i}u|_{p_i(\cdot)}\leq1 \} and \mathcal{I}_{2} = \{i \in \{1, 2, ..., N\}: |\partial_{x_i}u|_{p_i(\cdot)} > 1 \} . Using Proposition 2.2, it follows

    \begin{align} |\mathcal{J}(u)| & \leq \frac{1}{P^-_-}\sum\limits_{i = 1}^{N}\int_{\Omega}|\partial_{x_i} u|^{p_i(x)} dx-\frac{|g|_{\infty}}{q^{+}+1}\int_{\Omega}|u|^{q(x)+1}dx+\frac{1}{\beta^{-}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \\ & \leq \frac{1}{P^-_-}\left(\sum\limits_{i \in \mathcal{I}_{1}}|\partial_{x_i} u|^{P^-_-}_{p_i(\cdot)}+\sum\limits_{i \in \mathcal{I}_{2}}|\partial_{x_i} u|^{P^+_+}_{p_i(\cdot)} \right)-\frac{|g|_{\infty}}{q^{+}+1} \min\{|u|_{q(x)+1}^{q^{+}+1},|u|_{q(x)+1}^{q^{-}+1}\} \\ &+\frac{1}{\beta^{-}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \\ & \leq \frac{1}{P^-_-}\left(\sum\limits_{i = 1}^{N}|\partial_{x_i} u|^{P^+_+}_{p_i(\cdot)}+\sum\limits_{i \in \mathcal{I}_{1}}|\partial_{x_i} u|^{P^-_-}_{p_i(\cdot)} \right)-\frac{|g|_{\infty}}{q^{+}+1} \min\{|u|_{q(x)+1}^{q^{+}+1},|u|_{q(x)+1}^{q^{-}+1}\} \\ &+\frac{1}{\beta^{-}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \\ & \leq \frac{1}{P^-_-}\left(\sum\limits_{i = 1}^{N}|\partial_{x_i} u|^{P^+_+}_{p_i(\cdot)}+N \right)-\frac{|g|_{\infty}}{q^{+}+1} \min\{|u|_{q(x)+1}^{q^{+}+1},|u|_{q(x)+1}^{q^{-}+1}\} \\ &+\frac{1}{\beta^{-}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \end{align} (3.2)

    which shows that \mathcal{J} is well-defined on W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Applying similar steps and using the generalized mean inequality for \sum_{i = 1}^{N}|\partial_{x_i} u|^{P^-_-}_{p_i(\cdot)} gives

    \begin{align} \mathcal{J}(u) & \geq \frac{1}{P^+_+}\sum\limits_{i = 1}^{N}\int_{\Omega}|\partial_{x_i} u|^{p_i(x)} dx-\frac{|g|_{\infty}}{q^{-}+1}\int_{\Omega}|u|^{q(x)+1}dx+\frac{1}{\beta^{+}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \\ & \geq \frac{1}{P^+_+}\left(\sum\limits_{i \in \mathcal{I}_{1}}|\partial_{x_i} u|^{P^+_+}_{p_i(\cdot)}+\sum\limits_{i \in \mathcal{I}_{2}}|\partial_{x_i} u|^{P^-_-}_{p_i(\cdot)} \right) -\frac{|g|_{\infty}}{q^{-}+1}\int_{\Omega}|u|^{q(x)+1}dx \\ &+\frac{1}{\beta^{+}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \\ & \geq \frac{N}{P^+_+}\left(\frac{\|u\|_{\overset{\to }{p}(\cdot)}^{P_{-}^{-}}}{N^{P_{-}^{-}}}-1 \right)-\frac{|g|_{\infty}}{q^{-}+1} \|u\|_{\overset{\to }{p}(\cdot)}^{q^{+}+1} + \frac{1}{\beta^{+}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \end{align} (3.3)

    That is, \mathcal{J} is coercive (i.e., \mathcal{J}(u) \to \infty \text{ as } \|u\|_{\overset{\to }{p}(\cdot)}\to \infty ), and bounded below on W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Next, we provide a-priori estimate.

    Lemma 3.4. Assume that (u_{n}) \subset \mathcal{N}_{1} is a nonnegative minimizing sequence for the minimization problem \lim_{n \to \infty}\mathcal{J}(u_{n}) = \inf_{\mathcal{N}_{1}}\mathcal{J} . Then, there are positive real numbers \delta_{1}, \delta_{2} such that

    \delta_{1}\leq \|u_{n}\|_{\overset{\to }{p}(\cdot)}\leq \delta_{2}

    Proof. We assume by contradiction that there exists a subsequence (u_{n}) (not relabelled) such that u_{n}\rightarrow 0 in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) . Thus, we can assume that \|u_{n}\|_{\overset{\to }{p}(\cdot)} < 1 for n large enough, and therefore, |\partial_{x_i} u_n|_{{L^{p_i(\cdot)}}} < 1 . Then, using Proposition 2.2, we have

    \begin{align} & \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_n|^{p_i(x)} dx \leq \sum\limits_{i = 1}^{N}|\partial_{x_i} u_n|_{p_i(\cdot)}^{p^-_i} \leq \sum\limits_{i = 1}^{N}|\partial_{x_i} u_n|_{p_i(\cdot)}^{P^-_-} \end{align} (3.4)

    We recall the following elementary inequality: for all r, s > 0 and m > 0 it holds

    \begin{equation} r^{m}+s^{m}\leq K(r+s)^{m} \end{equation} (3.5)

    where K: = \max \{1, 2^{1-m}\} . If we let r = |\partial_{x_1} u_n|^{P^-_-}_{{L^{p_1(\cdot)}}} , s = |\partial_{x_2} u_n|^{P^-_-}_{{L^{p_2(\cdot)}}} and m = P^-_- in (3.5), it reads

    \begin{equation} |\partial_{x_1} u_n|^{P^-_-}_{{L^{p_1(\cdot)}}}+|\partial_{x_2} u_n|^{P^-_-}_{{L^{p_2(\cdot)}}}\leq K(|\partial_{x_1} u_n|_{{L^{p_1(\cdot)}}}+|\partial_{x_2} u_n|_{{L^{p_2(\cdot)}}})^{P^-_-} \end{equation} (3.6)

    where K = \max \{1, 2^{1-P^-_-}\} = 1 . Applying this argument to the following terms in the sum \sum_{i = 1}^{N}|\partial_{x_i} u_n|_{p_i(\cdot)}^{P^-_-} consecutively leads to

    \begin{align} & \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_n|^{p_i(x)} dx \leq \sum\limits_{i = 1}^{N}|\partial_{x_i} u_n|_{p_i(\cdot)}^{p^-_i} \leq \sum\limits_{i = 1}^{N}|\partial_{x_i} u_n|_{p_i(\cdot)}^{P^-_-} \\ & \leq \left( \sum\limits_{i = 1}^{N}|\partial_{x_i} u_n|_{p_i(\cdot)} \right)^{P^-_-} \leq \|u_{n}\|_{\overset{\to }{p}(\cdot)}^{P^-_-} \end{align} (3.7)

    Now, using (3.7) and the reversed Hölder's inequality, we have

    \begin{equation} \left(\int_{\Omega}f(x)^{1/\beta^{-}}dx\right)^{\beta^{-}}\left(\int_{\Omega}|u_{n}|dx\right)^{1-\beta^{-}} \leq \int_{\Omega}f(x)|u_{n}|^{1-\beta^{-}}dx \leq \int_{\Omega}f(x)|u_{n}|^{1-\beta(x)}dx \end{equation} (3.8)

    By the assumption, (u_{n}) \subset \mathcal{N}_{1} . Thus, using (3.8) and Proposition 2.2 leads to

    \begin{align} \left(\int_{\Omega}f(x)^{1/\beta^{-}}dx\right)^{\beta^{-}}\left(\int_{\Omega}|u_{n}|dx\right)^{1-\beta^{-}} & \leq \int_{\Omega}f(x)|u_{n}|^{1-\beta^{-}}dx \\ &\leq \|u_n\|_{\overset{\to }{p}(\cdot)}^{P_{-}^{-}}-\frac{|g|_{\infty}}{q^{-}+1} \|u_{n}\|^{q^{+}+1} \rightarrow 0 \end{align} (3.9)

    Considering the assumption (A_{2}) , this can only happen if \int_{\Omega}|u_{n}|dx\rightarrow \infty , which is not possible. Therefore, there exists a positive real number \delta_1 such that \|u_{n}\|_{\overset{\to }{p}(\cdot)}\geq \delta_1 .

    Now, let's assume, on the contrary, that \|u_{n}\|_{\overset{\to }{p}(\cdot)} > 1 for any n . We know, by the coerciveness of \mathcal{J} , that the infimum of \mathcal{J} is attained, that is, \infty < m: = \inf_{u\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega)}\mathcal{J}(u) . Moreover, due to the assumption \lim_{n\rightarrow \infty}\mathcal{J}(u_{n}) = \inf_{\mathcal{N}_{1}}\mathcal{J} , (\mathcal{J}(u_{n})) is bounded. Then, applying the same steps as in (3.3), it follows

    \begin{align*} &C\|u_{n}\|_{\overset{\to }{p}(\cdot)}+\mathcal{J}(u_{n}) \nonumber \\ &\geq \frac{N}{P^+_+}\left(\frac{\|u_n\|_{\overset{\to }{p}(\cdot)}^{P_{-}^{-}}}{N^{P_{-}^{-}}}-1 \right)-\frac{|g|_{\infty}}{q^{-}+1} \|u_{n}\|_{\overset{\to }{p}(\cdot)}^{q^{+}+1} + \frac{1}{\beta^{+}-1}\int_{\Omega}f(x)|u_{n}|^{1-\beta(x)}dx \end{align*}

    for some constant C > 0 . If we drop the nonnegative terms, we obtain

    \begin{equation*} C\|u_{n}\|_{\overset{\to }{p}(\cdot)}+\mathcal{J}(u_{n}) \geq \frac{1}{P^+_+}\left(\frac{\|u_n\|_{\overset{\to }{p}(\cdot)}^{P_{-}^{-}}}{N^{P_{-}^{-}-1}}-N \right)-\frac{|g|_{\infty}}{q^{-}+1} \|u\|_{\overset{\to }{p}(\cdot)}^{q^{+}+1} \end{equation*}

    Dividing the both sides of the above inequality by \|u_{n}\|_{\overset{\to }{p}(\cdot)}^{q^{+}+1} and passing to the limit as n \to \infty leads to a contradiction since we have q^{-}+1 < P_{-}^{-} . Therefore, there exists a positive real number \delta_2 such that \|u_{n}\|_{\overset{\to }{p}(\cdot)}\leq \delta_2 .

    Lemma 3.5. \mathcal{N}_{1} is closed in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Proof. Assume that (u_{n}) \subset \mathcal{N}_{1} such that u_{n} \to \hat{u}\, (strongly) in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) . Thus, u_{n}(x) \to \hat{u}(x) a.e. in \Omega , and \partial_{x_i} u_{n} \to \partial_{x_i} \hat {u} in L^{p_i(\cdot)}(\Omega) for i = 1, 2, ..., N . Then, using Fatou's lemma, it reads

    \begin{align*} &\int_{\Omega}\left[\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)}-g(x)|u_{n}|^{q(x)+1}-f(x)|u_{n}|^{1-\beta(x)}\right] dx \geq 0 \nonumber \\ &\liminf\limits_{n \to \infty}\left[\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)}dx\right]-\int_{\Omega}g(x)|\hat{u}|^{q(x)+1}dx \geq \liminf\limits_{n \to \infty}\left[\int_{\Omega}f(x)|u_{n}|^{1-\beta(x)}dx\right] \end{align*}

    and hence,

    \begin{eqnarray*} \int_{\Omega}\left[\sum\limits_{i = 1}^{N}|\partial_{x_i} \hat{u}|^{p_i(x)}-g(x)|\hat{u}|^{q(x)+1}-f(x)|\hat{u}|^{1-\beta(x)}\right] dx &\geq& 0 \end{eqnarray*}

    which means \hat{u} \in \mathcal{N}_{1} . \mathcal{N}_{1} is closed in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Lemma 3.6. For any u \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) satisfying \int_{\Omega}f(x)|u|^{1-\beta(x)}dx < \infty , there exists a unique continuous scaling function u \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega)\rightarrow (0, \infty):u\longmapsto t(u) such that t(u)u\in \mathcal{N}_{2} , and t(u) u is the minimizer of the functional \mathcal{J} along the ray \{tu:t > 0\} , that is, \inf_{t > 0}\mathcal{J}(tu) = \mathcal{J}(t(u)u) .

    Proof. Fix u \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) such that \int_{\Omega}f(x)|u|^{1-\beta(x)}dx < \infty . For any t > 0 , the scaled functional, \mathcal{J}(tu) , determines a curve that can be characterized by

    \begin{equation} \Phi(t) : = \mathcal{J}(tu), \,\,\, t \in [0,\infty). \end{equation} (3.10)

    Then, for a t \in [0, \infty) , tu\in \mathcal{N}_{2} if and only if

    \begin{equation} \Phi^{\prime}(t) = \frac{d}{dt}\Phi(t)\bigg|_{t = t(u)} = 0. \end{equation} (3.11)

    First, we show that \Phi(t) attains its minimum on [0, \infty) at some point t = t(u) .

    Considering the fact 0 < \int_{\Omega}f(x)|u|^{1-\beta(x)}dx < \infty , we will examine two cases for t .

    For 0 < t < 1 :

    \begin{align*} \Phi(t)& = \mathcal{J}(tu)\geq \frac{t^{P^+_+}}{P^+_+}\sum\limits_{i = 1}^{N}\int_{\Omega}|\partial_{x_i} u|^{p_i(x)} dx- \frac{t^{q^{-}+1}}{q^{-}+1}\int_{\Omega}g(x)|u|^{q(x)+1}dx \nonumber \\ &+\frac{t^{1-\beta^-}}{\beta^{+}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx: = \Psi_{0}(t) \end{align*}

    Then, \Psi_{0}:(0, 1)\to\mathbb{R} is continuous. Taking the derivative of \Psi_{0} gives

    \begin{align} \Psi_{0}^{\prime}(t) & = t^{P^{+}_{+}-1}\sum\limits_{i = 1}^{N}\int_{\Omega}|\partial_{x_i} u|^{p_i(x)} dx-t^{q^{-}} \int_{\Omega}g(x)|u|^{q(x)+1}dx \\ &+\left(\frac{1-\beta^-}{\beta^{+}-1}\right)t^{-\beta^-}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \end{align} (3.12)

    It is easy to see from (3.12) that \Psi_{0}^{\prime}(t) < 0 when t > 0 is small enough. Therefore, \Psi_{0}(t) is decreasing when t > 0 is small enough. In the same way,

    \begin{align*} \Phi(t)& = \mathcal{J}(tu)\leq \frac{t^{P^-_-}}{P^-_-}\sum\limits_{i = 1}^{N}\int_{\Omega}|\partial_{x_i} u|^{p_i(x)} dx- \frac{t^{q^{+}+1}}{q^{+}+1}\int_{\Omega}g(x)|u|^{q(x)+1}dx \nonumber \\ &+\frac{t^{1-\beta^+}}{\beta^{-}-1}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx: = \Psi_{1}(t) \end{align*}

    Then, \Psi_{1}:(0, 1)\to\mathbb{R} is continuous. Taking the derivative of \Psi_{1} gives

    \begin{align} \Psi_{1}^{\prime}(t)& = t^{P^{-}_{-}-1}\sum\limits_{i = 1}^{N}\int_{\Omega}|\partial_{x_i} u|^{p_i(x)} dx-t^{q^{+}} \int_{\Omega}g(x)|u|^{q(x)+1}dx \\ &+\left(\frac{1-\beta^+}{\beta^{+}-1}\right)t^{-\beta^+}\int_{\Omega}f(x)|u|^{1-\beta(x)}dx \end{align} (3.13)

    But (3.13) also suggests that \Psi_{1}^{\prime}(t) < 0 when t > 0 is small enough. Thus, \Psi_{1}(t) is decreasing when t > 0 is small enough. Therefore, since \Psi_{0}(t)\leq \Phi(t)\leq \Psi_{1}(t) for 0 < t < 1 , \Phi(t) is decreasing when t > 0 is small enough.

    For t > 1 : Following the same arguments shows that \Psi_{0}^{\prime}(t) > 0 and \Psi_{1}^{\prime}(t) > 0 when t > 1 is large enough, and therefore, both \Psi_{0}(t) and \Psi_{1}(t) are increasing. Thus, \Phi(t) is increasing when t > 1 is large enough. In conclusion, since \Phi(0) = 0 , \Phi(t) attains its minimum on [0, \infty) at some point, say t = t(u) . That is, \frac{d}{dt}\Phi(t)|_{t = t(u)} = 0 . Then, t(u)u\in \mathcal{N}_{2} and \inf_{t > 0}\mathcal{J}(tu) = \mathcal{J}(t(u)u) .

    Next, we show that scaling function t(u) is continuous on W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Let u_{n}\rightarrow u in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega)\backslash \{0\} , and t_{n} = t(u_{n}) . Then, by the definition, t_{n}u_{n}\in \mathcal{N}_{2} . Defined in this way, the sequence t_{n} is bounded. Assume on the contrary that t_{n}\rightarrow \infty (up to a subsequence). Then, using the fact t_{n}u_{n}\in \mathcal{N}_{2} it follows

    \begin{eqnarray*} \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}t_{n}u_{n}|^{p_i(x)}dx-\int_{\Omega}g(x)|t_{n}u_{n}|^{q(x)+1}dx& = & \int_{\Omega}f(x)|t_{n}u_{n}|^{1-\beta(x)} dx \\ t^{P^{-}_{-}}_{n}\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}u_{n}|^{p_i(x)}dx-t^{q^{-}+1}_{n}\int_{\Omega}g(x)|u_{n}|^{q(x)+1}dx &\leq& t^{1-\beta^{-}}_{n}\int_{\Omega}f(x)|u_{n}|^{1-\beta(x)} dx \end{eqnarray*}

    which suggests a contradiction when t_{n}\rightarrow \infty . Hence, sequence t_{n} is bounded. Therefore, there exists a subsequence t_{n} (not relabelled) such that t_{n}\rightarrow t_{0} , t_{0}\geq 0 . On the other hand, from Lemma 3.4, \|t_{n}u_{n}\|_{\overset{\to }{p}(\cdot)}\geq \delta_1 > 0 . Thus, t_{0} > 0 and t_{0}u\in\mathcal{N}_{2} . By the uniqueness of the map t(u) , t_{0} = t(u) , which concludes the continuity of t(u) . In conclusion, for any \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) satisfying \int_{\Omega}f(x)|u|^{1-\beta(x)}dx < \infty , the function t(u) scales u \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) continuously to a point such that t(u)u\in \mathcal{N}_{2} .

    Lemma 3.7. Assume that (u_{n}) \subset \mathcal{N}_{1} is the nonnegative minimizing sequence for the minimization problem \lim_{n \to \infty}\mathcal{J}(u_{n}) = \inf_{\mathcal{N}_{1}}\mathcal{J} . Then, there exists a subsequence (u_{n}) (not relabelled) such that u_{n}\rightarrow u^{*} (strongly) in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    Proof. Since (u_{n}) is bounded in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) and W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) is reflexive, there exists a subsequence (u_{n}) , not relabelled, and u^{*}\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) such that

    u_{n}\rightharpoonup u^{*} (weakly) in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) ,

    u_{n}\rightarrow u^{*} in L^{s(\cdot)}(\Omega) , 1 < s(x) < P_{-, \infty} , for all x \in \overline{\Omega} ,

    u_{n}(x) \rightarrow u^{*}(x) a.e. in \Omega .

    Since the norm \|\cdot\|_{\overset{\to }{p}(\cdot)} is a continuous convex functional, it is weakly lower semicontinuous. Using this fact along with the Fatou's lemma, and Lemma 3.4, it reads

    \begin{align} \inf\limits_{\mathcal{N}_{1}}\mathcal{J} & = \lim\limits_{n \to \infty}\mathcal{J}(u_{n}) \\ & \geq \liminf\limits_{n \to \infty}\left[\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} u_{n}|^{p_i(x)}}{p_i(x)} dx\right]-\int_{\Omega}\frac{g(x)|u^{*}|^{q(x)+1}}{q(x)+1}dx \\ &+ \liminf\limits_{n \to \infty} \left[\int_{\Omega}\frac{f(x)|u_{n}|^{1-\beta(x)}}{\beta(x)-1}dx\right] \\ & \geq\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} u^{*}|^{p_i(x)}}{p_i(x)} dx-\int_{\Omega}\frac{g(x)|u^{*}|^{q(x)+1}}{q(x)+1}dx +\int_{\Omega}\frac{f(x)|u^{*}|^{1-\beta(x)}}{\beta(x)-1}dx \\ & = \mathcal{J}(u^{*})\geq\mathcal{J}(t(u^{*})u^{*})\geq\inf\limits_{\mathcal{N}_{2}}\mathcal{J}\geq\inf\limits_{\mathcal{N}_{1}}\mathcal{J} \end{align} (3.14)

    The above result implies, up to subsequences, that

    \begin{equation} \lim\limits_{n \to \infty}\|u_{n}\|_{\overset{\to }{p}(\cdot)} = \|u^{*}\|_{\overset{\to }{p}(\cdot)}. \end{equation} (3.15)

    Thus, (3.15) along with u_{n}\rightharpoonup u^{*} in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) show that u_{n}\to u^{*} in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) .

    The following is the main result of the present paper.

    Theorem 3.8. Assume that the conditions (A_{1})-(A_{5}) hold. Then, problem (1.1) has at least one positive W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) -solution if and only if there exists \overline{u} \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) satisfying \int_{\Omega}f(x)|\overline{u}|^{1-\beta(x)}dx < \infty .

    Proof. (\Rightarrow): Assume that the function u \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) is a weak solution to problem (1.1). Then, letting u = \varphi in Definition (3.1) gives

    \begin{align*} \int_{\Omega}f(x)|u|^{1-\beta(x)}dx & = \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u|^{p_i(x)} dx-\int_{\Omega}g(x)|u|^{q(x)+1}dx \nonumber \\ & \leq \|u\|_{\overset{\to }{p}(\cdot)}^{P_{M}}-|g|_{\infty}|u|_{q(x)+1}^{q_{M}}\nonumber \\ &\leq \|u\|_{\overset{\to }{p}(\cdot)}^{P_{M}} < \infty, \end{align*}

    where P_{M}: = \max\{P^{-}_{-}, P^{+}_{+}\} and q_{M}: = \max\{q^-, q^+\} , changing according to the base.

    (\Leftarrow): Assume that there exists \overline{u} \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) such that \int_{\Omega}f(x)|\overline{u}|^{1-\beta(x)}dx < \infty . Then, by Lemma 3.6, there exists a unique number t(\overline{u}) > 0 such that t(\overline{u})\overline{u}\in \mathcal{N}_{2} .

    The information we have had about \mathcal{J} so far and the closeness of \mathcal{N}_{1} allow us to apply Ekeland's variational principle to the problem \inf_{\mathcal{N}_{1}}\mathcal{J} . That is, it suggests the existence of a corresponding minimizing sequence (u_{n}) \subset \mathcal{N}_{1} satisfying the following:

    (E_{1}) \mathcal{J}(u_{n})-\inf_{\mathcal{N}_{1}}\mathcal{J}\leq \frac{1}{n} ,

    (E_{2}) \mathcal{J}(u_{n})-\mathcal{J}(\nu)\leq \frac{1}{n}\|u_{n}-\nu\|_{\overset{\to }{p}(\cdot)}, \, \, \, \forall \nu \in \mathcal{N}_{1} .

    Due to the fact \mathcal{J}(|u_{n}|) = \mathcal{J}(u_{n}) , it is not wrong to assume that u_{n}\geq0 a.e. in \Omega . Additionally, considering that (u_{n}) \subset \mathcal{N}_{1} and following the same approach as it is done in the (\Rightarrow) part, we can obtain that \int_{\Omega}f(x)|u_{n}|^{1-\beta(x)}dx < \infty . If all this information and the assumptions (A_{1}) , (A_{2}) are taken into consideration, it follows that u_{n}(x) > 0 a.e. in \Omega .

    The rest of the proof is split into two cases.

    Case Ⅰ: (u_{n}) \subset \mathcal{N}_{1}\setminus \mathcal{N}_{2} for n large.

    For a function \varphi\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) with \varphi\geq 0 , and t > 0 , we have

    0 < (u_{n}(x)+t \varphi(x))^{1-\beta(x)} \leq u_{n}(x)^{1-\beta(x)}\,\, \text{a.e. in}\,\, \Omega.

    Therefore, using (A_{1}) , (A_{2}) gives

    \begin{align} \int_{\Omega}f(x)(u_{n}+t \varphi)^{1-\beta(x)}dx &\leq \int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx \\ &\leq \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)} dx-\int_{\Omega}g(x)u_{n}^{q(x)+1} dx < \infty \end{align} (3.16)

    Then, when t > 0 is small enough in (3.16), we obtain

    \begin{equation} \int_{\Omega}f(x)(u_{n}+t \varphi)^{1-\beta(x)}dx\leq\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}( u_{n}+t \varphi)|^{p_i(x)} dx-\int_{\Omega}g(x)(u_{n}+t \varphi)^{q(x)+1} dx \end{equation} (3.17)

    which means that \nu: = u_{n}+t \varphi \in \mathcal{N}_{1} . Now, using (E_{2}) , it reads

    \begin{align*} \frac{1}{n}\|t\varphi\|_{\overset{\to }{p}(\cdot)} & \geq \mathcal{J}(u_{n})-\mathcal{J}(\nu)\\ & = \int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i}u_{n}|^{p_i(x)}}{p_i(x)} dx-\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i}( u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx\\ &-\int_{\Omega}\frac{g(x)u_{n}^{q(x)+1}}{q(x)+1}dx+\int_{\Omega}\frac{g(x)(u_{n}+t \varphi)^{q(x)+1}}{q(x)+1}dx\\ &+\int_{\Omega}\frac{f(x)u_{n}^{1-\beta(x)}}{\beta(x)-1}dx-\int_{\Omega}\frac{f(x)(u_{n}+t \varphi)^{1-\beta(x)}}{\beta(x)-1}dx \end{align*}

    Dividing the above inequality by t and passing to the infimum limit as t \to 0 gives

    \begin{align*} \liminf\limits_{t \to 0} \frac{\|\varphi\|_{\overset{\to }{p}(\cdot)}}{n}&+\underbrace{\liminf\limits_{ t \to 0}\left[\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{\left[|\partial_{x_i}( u_{n}+t \varphi)|^{p_i(x)}-|\partial_{x_i}u_{n}|^{p_i(x)}\right]}{tp_i(x)} dx\right]}_{: = I_{1}}\\ &-\underbrace{\liminf\limits_{t \to 0}\left[\int_{\Omega}g(x)\frac{\left[(u_{n}+t\varphi)^{q(x)+1}-u_{n}^{q(x)+1}\right]}{t (q(x)+1)}dx\right]}_{: = I_{2}} \\ & \geq \underbrace{\liminf\limits_{t \to 0}\left[\int_{\Omega}f(x)\frac{\left[(u_{n}+t\varphi)^{1-\beta(x)}-u_{n}^{1-\beta(x)}\right]}{t(1-\beta(x))}dx \right]}_{: = I_{3}} \end{align*}

    Calculation of I_{1}, I_{2} gives

    \begin{align} I_{1} = \frac{d}{d t}\left(\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i}(u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx\right)\bigg|_{ t = 0} & = \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)-2} \partial_{x_i} u_{n}\cdot \partial_{x_i} \varphi dx \end{align} (3.18)

    and

    \begin{align} I_{2} = \frac{d}{d t}\left(\int_{\Omega}g(x)\frac{(u_{n}+ t\varphi)^{q(x)+1}}{q(x)+1}dx\right)\bigg|_{ t = 0} & = \int_{\Omega}g(x)u_{n}^{q(x)}\varphi dx. \end{align} (3.19)

    For I_{3} : Since for t > 0 it holds

    u_{n}^{1-\beta(x)}(x)-(u_{n}(x)+t\varphi(x))^{1-\beta(x)}\geq 0,\,\, \text{a.e. in}\,\, \Omega

    we can apply Fatou's lemma, that is,

    \begin{align} I_{2}& = \liminf\limits_{ t \to 0}\int_{\Omega}f(x)\frac{\left[(u_{n}+ t\varphi)^{1-\beta(x)}-u_{n}^{1-\beta(x)}\right]}{ t(1-\beta(x))}dx \\ & \geq \int_{\Omega}\liminf\limits_{ t \to 0}f(x)\frac{\left[(u_{n}+ t\varphi)^{1-\beta(x)}-u_{n}^{1-\beta(x)}\right]}{ t(1-\beta(x))}dx \\ & \geq \int_{\Omega}f(x)u_{n}^{-\beta(x)}\varphi dx \end{align} (3.20)

    Now, substituting I_{1}, I_{2}, I_{3} gives

    \begin{align*} \frac{\|\varphi\|_{\overset{\to }{p}(\cdot)}}{n}&+\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)-2} \partial_{x_i} u_{n}\cdot \partial_{x_i} \varphi dx-\int_{\Omega}g(x)u_{n}^{q(x)}\varphi dx \geq \int_{\Omega}f(x)u_{n}^{-\beta(x)}\varphi dx \end{align*}

    From Lemma 3.7, we know that u_{n}\to u^{*} in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) . Thus, also considering Fatou's lemma, we obtain

    \begin{align} \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i} \varphi dx- \int_{\Omega}g(x)(u^{*})^{q(x)}\varphi dx - \int_{\Omega}f(x)(u^{*})^{-\beta(x)}\varphi dx\geq 0, \end{align} (3.21)

    for any \varphi\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) with \varphi\geq 0 . Letting \varphi = u^{*} in (3.21) shows clearly that u^{*} \in \mathcal{N}_{1} .

    Lastly, from Lemma 3.7, we can conclude that

    \begin{equation*} \lim\limits_{n \to \infty}\mathcal{J}(u_{n}) = \mathcal{J}(u^{*}) = \inf\limits_{\mathcal{N}_{2}}\mathcal{J}, \end{equation*}

    which means

    \begin{equation} u^{*} \in \mathcal{N}_{2},\,\,\,\, (\text{with}\,\, t(u^{*}) = 1) \end{equation} (3.22)

    Case Ⅱ: There exists a subsequence of (u_{n}) (not relabelled) contained in \mathcal{N}_{2} .

    For a function \varphi\in W_{0}^{1, p(x)}(\Omega) with \varphi\geq 0 , t > 0 , and u_{n} \in \mathcal{N}_{2} , we have

    \begin{align} \int_{\Omega}f(x)(u_{n}+t \varphi)^{1-\beta(x)}dx & \leq \int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx \\ & = \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u|^{p_i(x)} dx-\int_{\Omega}g(x)u_{n}^{q(x)+1} dx < \infty, \end{align} (3.23)

    and hence, there exists a unique continuous scaling function, denoted by \theta_{n}(t): = t(u_{n}+t \varphi) > 0 , corresponding to (u_{n}+t \varphi) so that \theta_{n}(t)(u_{n}+t \varphi)\in \mathcal{N}_{2} for n = 1, 2, ... . Obviously, \theta_{n}(0) = 1 . Since \theta_{n}(t)(u_{n}+t \varphi)\in \mathcal{N}_{2} , we have

    \begin{align} &0 = \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)} dx-\int_{\Omega}g(x)(\theta_{n}(t)(u_{n}+t \varphi))^{q(x)+1} dx \\ &-\int_{\Omega}f(x)(\theta_{n}(t)(u_{n}+t \varphi))^{1-\beta(x)}dx \\ & \geq \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)} dx-\theta_{n}^{q_{M}+1}(t)\int_{\Omega}g(x)(u_{n}+t \varphi)^{q(x)+1} dx \\ &-\theta_{n}^{1-\beta_{m}}(t)\int_{\Omega}f(x)(u_{n}+t \varphi)^{1-\beta(x)}dx, \end{align} (3.24)

    and

    \begin{align} 0 = \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)} dx-\int_{\Omega}g(x)u_{n}^{q(x)+1} dx-\int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx. \end{align} (3.25)

    where \beta_{m}: = \min\{\beta^-, \beta^+\} . Then, using (3.24) and (3.25) together gives

    \begin{align} & 0\geq \left[ -(q^{+}+1)[\theta_{n}(0)+\tau_1(\theta_{n}(t)-\theta_{n}(0))]^{q_{m}}\int_{\Omega}g(x)(u_{n}+t \varphi)^{q(x)+1}dx \right. \\ &\left.-(1-\beta_{m})[\theta_{n}(0)+\tau_2(\theta_{n}(t)-\theta_{n}(0))]^{-\beta_{m}}\int_{\Omega}f(x)(u_{n}+t \varphi)^{1-\beta(x)}dx\right](\theta_{n}(t)-\theta_{n}(0)) \\ & +\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)} dx-\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}(u_{n}+t \varphi)|^{p_i(x)} dx \\ &+ \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}(u_{n}+t \varphi)|^{p_i(x)} dx-\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}u_{n}|^{p_i(x)} dx \\ &-\left[\int_{\Omega}g(x)(u_{n}+t \varphi)^{q(x)+1}dx-\int_{\Omega}g(x)u_{n}^{q(x)+1}dx\right] \\ &-\left[\int_{\Omega}f(x)(u_{n}+t \varphi)^{1-\beta(x)}dx-\int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx\right] \end{align} (3.26)

    for some constants \tau_1, \tau_2 \in (0, 1) . To proceed, we assume that \theta^{\prime}_{n}(0) = \frac{d}{dt}\theta_{n}(t)|_{t = 0} \in [-\infty, \infty] . In case this limit does not exist, we can consider a subsequence t_{k} > 0 of t such that t_{k}\to 0 as k \to \infty .

    Next, we show that \theta^{\prime}_{n}(0)\neq \infty .

    Dividing the both sides of (3.26) by t and passing to the limit as t \to 0 leads to

    \begin{align} &0\geq \left[P^{-}_{-}\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}u_{n}|^{p_i(x)} dx+(\beta_{m}-1)\int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx \right. \\ &\left.-(q^++1)\int_{\Omega}g(x)u_{n}^{q(x)+1}dx \right]\theta^{\prime}_{n}(0) \\ &+P^{-}_{-}\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)-2} \partial_{x_i} u_{n}\cdot \partial_{x_i} \varphi dx -(q^++1)\int_{\Omega}g(x)u_{n}^{q(x)} \varphi dx \\ &+ (\beta_m-1)\int_{\Omega}f(x)u_{n}^{-\beta(x)} \varphi dx \end{align} (3.27)

    or

    \begin{align} & 0\geq \left[(P^{-}_{-}-q^+-1)\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}u_{n}|^{p_i(x)} dx+(\beta_{m}+q^+)\int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx\right] \theta^{\prime}_{n}(0) \\ &+P^{-}_{-}\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)-2} \partial_{x_i} u_{n}\cdot \partial_{x_i} \varphi dx -(q^++1)\int_{\Omega}g(x)u_{n}^{q(x)} \varphi dx \\ &+ (\beta_m-1)\int_{\Omega}f(x)u_{n}^{-\beta(x)} \varphi dx \end{align} (3.28)

    which, along with Lemma 3.4, concludes that -\infty \leq \theta^{\prime}_{n}(0) < \infty , and hence, \theta^{\prime}_{n}(0) \leq \overline{c} , uniformly in all large n .

    Next, we show that \theta^{\prime}_{n}(0)\neq -\infty .

    First, we apply Ekeland's variational principle to the minimizing sequence (u_{n}) \subset \mathcal{N}_{2}(\subset \mathcal{N}_{1}) . Thus, letting \nu: = \theta_{n}(t)(u_{n}+t \varphi) in (E_{2}) gives

    \begin{align} & \frac{1}{n}\left[|\theta_{n}(t)-1|\|u_{n}\|_{\overset{\to }{p}(\cdot)}+ t\theta_{n}(t)\|\varphi\|_{\overset{\to }{p}(\cdot)}\right]\geq \mathcal{J}(u_{n})-\mathcal{J}(\theta_{n}(t)(u_{n}+t \varphi)) \\ & = \int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} u_{n}|^{p_i(x)}}{p_i(x)} dx-\int_{\Omega}\frac{g(x)u_{n}^{q(x)+1}}{q(x)+1}dx+\int_{\Omega}\frac{f(x)u_{n}^{1-\beta(x)}}{\beta(x)-1}dx \\ &-\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx+\int_{\Omega}\frac{g(x)[\theta_{n}(t)(u_{n}+t \varphi)]^{q(x)+1}}{q(x)+1}dx \\ & -\int_{\Omega}\frac{f(x)[\theta_{n}(t)(u_{n}+t \varphi)]^{1-\beta(x)}}{\beta(x)-1}dx \\ & \geq \int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} u_{n}|^{p_i(x)}}{p_i(x)} dx-\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx \\ &-\int_{\Omega}\frac{g(x)u_{n}^{q(x)+1}}{q(x)+1}dx+\int_{\Omega}\frac{g(x)[\theta_{n}(t)(u_{n}+t \varphi)]^{q(x)+1}}{q(x)+1}dx \\ &-\frac{1}{\beta^{-}-1} \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)}dx \end{align} (3.29)

    If we use Lemma 3.4 to manipulate the norm \|u+t\varphi\|_{\overset{\to }{p}(\cdot)} , the integral in the last line of (3.29) can be written as follows

    \begin{align} \frac{1}{\beta^{-}-1} \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)}dx &\leq \frac{\theta^{P_{M}}_{n}(t)}{\beta^{-}-1} \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i}(u_{n}+t\varphi)|^{p_i(x)}dx \\ & \leq \frac{\theta^{P_{M}}_{n}(t)}{\beta^{-}-1}\|u_{n}+t\varphi\|_{\overset{\to }{p}(\cdot)}^{P_{M}} \\ &\leq \frac{2^{P^{+}_{+}-1}\theta^{P_{M}}_{n}(t)C^{P_{M}}(\delta_2)\|\varphi\|_{\overset{\to }{p}(\cdot)}^{P_{M}}}{\beta^{-}-1}t \end{align} (3.30)

    Then,

    \begin{align} & \frac{1}{n}\left[|\theta_{n}(t)-1|\|u_{n}\|_{\overset{\to }{p}(\cdot)}+ t\theta_{n}(t)\|\varphi\|_{\overset{\to }{p}(\cdot)}\right] \\ & +\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{\left[|\partial_{x_i} (u_{n}+t \varphi)|^{p_i(x)}-|\partial_{x_i}u_{n}|^{p_i(x)}\right]}{p_i(x)} dx +\frac{2^{P^{+}_{+}-1}\theta^{P_{M}}_{n}(t)C^{P_{M}}(\delta_2)\|\varphi\|_{\overset{\to }{p}(\cdot)}^{P_{M}}}{\beta^{-}-1}t \\ & \geq \left[\left(\frac{1}{q^{-}+1}\right)[\theta_{n}(0)+\tau_1(\theta_{n}(t)-\theta_{n}(0))]^{q_{m}}\int_{\Omega}g(x)(u_{n}+t \varphi)^{q(x)+1}dx \right](\theta_{n}(t)-\theta_{n}(0)) \\ &\geq-\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{\left[|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)}-|\partial_{x_i}(u_{n}+t \varphi)|^{p_i(x)}\right]}{p_i(x)} dx \\ &+\frac{1}{q^{-}+1}\int_{\Omega}g(x)\left[(u_{n}+t \varphi)^{q(x)+1}-u_{n}^{q(x)+1}\right]dx \end{align} (3.31)

    Dividing by t and passing to the limit as t \to 0 gives

    \begin{align} & \frac{1}{n}\|\varphi\|_{\overset{\to }{p}(\cdot)} +\frac{2^{P^{+}_{+}-1}\theta^{P_{M}}_{n}(t)C^{P_{M}}(\delta_2)\|\varphi\|_{\overset{\to }{p}(\cdot)}^{P_{M}}}{\beta^{-}-1} \\ &\geq \left[\left( -1+\frac{1}{q^{-}+1}\right)\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)} dx-\frac{1}{q^{-}+1}\int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx \right. \\ &\left. -\frac{\|u_{n}\|_{\overset{\to }{p}(\cdot)}}{n}\text{sgn}[\theta_{n}(t)-1]\right]\theta^{\prime}_{n}(0) \\ &- \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)-2} \partial_{x_i} u_{n}\cdot \partial_{x_i} \varphi dx +\int_{\Omega}g(x)u_{n}^{q(x)}dx \end{align} (3.32)

    which concludes that \theta^{\prime}_{n}(0)\neq-\infty . Thus, \theta^{\prime}_{n}(0) \geq \underline{c} uniformly in large n .

    In conclusion, there exists a constant, C_{0} > 0 such that |\theta^{\prime}_{n}(0)|\leq C_{0} when n \geq N_0, \, \, N_0 \in \mathbb{N} .

    Next, we show that u^{*} \in \mathcal{N}_{2} .

    Using (E_{2}) again, we have

    \begin{align} & \frac{1}{n}\left[|\theta_{n}(t)-1|\|u_{n}\|_{\overset{\to }{p}(\cdot)}+t\theta_{n}(t)\|\varphi\|_{\overset{\to }{p}(\cdot)}\right]\geq \mathcal{J}(u_{n})-\mathcal{J}(\theta_{n}(t)(u_{n}+t \varphi)) \\ & = \int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} u_{n}|^{p_i(x)}}{p_i(x)} dx-\int_{\Omega}\frac{g(x)u_{n}^{q(x)+1}}{q(x)+1}dx+\int_{\Omega}\frac{f(x)u_{n}^{1-\beta(x)}}{\beta(x)-1}dx \\ &-\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx+\int_{\Omega}\frac{g(x)[\theta_{n}(t)(u_{n}+t \varphi)]^{q(x)+1}}{q(x)+1}dx \\ &-\int_{\Omega}\frac{f(x)[\theta_{n}(t)(u_{n}+t \varphi)]^{1-\beta(x)}}{\beta(x)-1}dx \\ & = -\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} (u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx+\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} u_{n}|^{p_i(x)}}{p_i(x)} dx \\ &-\int_{\Omega}\frac{f(x)(u_{n}+t \varphi)^{1-\beta(x)}}{\beta(x)-1}dx +\int_{\Omega}\frac{f(x)u_{n}^{1-\beta(x)}}{\beta(x)-1}dx \\ &-\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} \theta_{n}(t)(u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx+\int_{\Omega}\sum\limits_{i = 1}^{N}\frac{|\partial_{x_i} (u_{n}+t \varphi)|^{p_i(x)}}{p_i(x)} dx \\ &-\int_{\Omega}\frac{f(x)[\theta_{n}(t)(u_{n}+t \varphi)]^{1-\beta(x)}}{\beta(x)-1}dx + \int_{\Omega}\frac{f(x)(u_{n}+t \varphi)^{1-\beta(x)}}{\beta(x)-1}dx \\ &\int_{\Omega}\frac{g(x)[\theta_{n}(t)(u_{n}+t \varphi)]^{q(x)+1}}{q(x)+1}dx-\int_{\Omega}\frac{g(x)(u_{n}+t \varphi)^{q(x)+1}}{q(x)+1}dx \\ &-\int_{\Omega}\frac{g(x)u_{n}^{q(x)+1}}{q(x)+1}dx+\int_{\Omega}\frac{g(x)(u_{n}+t \varphi)^{q(x)+1}}{q(x)+1}dx \end{align} (3.33)

    Dividing by t and passing to the limit as t \to 0 gives

    \begin{align} & \frac{1}{n}\left[|\theta^{\prime}_{n}(0)|\|u_{n}\|_{\overset{\to }{p}(\cdot)} + \|\varphi\|_{\overset{\to }{p}(\cdot)}\right] \\ & \geq -\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)-2} \partial_{x_i} u_{n}\cdot \partial_{x_i} \varphi dx+\int_{\Omega}f(x)u_{n}^{-\beta(x)}\varphi dx+\int_{\Omega}g(x)u_{n}^{q(x)}\varphi dx \\ &\left[-\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)}dx+\int_{\Omega}g(x)u_{n}^{q(x)+1} dx +\int_{\Omega}f(x)u_{n}^{1-\beta(x)}dx \right]\theta^{\prime}_{n}(0) \\ & = -\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u_{n}|^{p_i(x)-2} \partial_{x_i} u_{n}\cdot \partial_{x_i} \varphi dx+\int_{\Omega}g(x)u_{n}^{q(x)}\varphi dx+\int_{\Omega}f(x)u_{n}^{-\beta(x)}\varphi dx \end{align} (3.34)

    If we consider that |\theta^{\prime}_{n}(0)|\leq C_{0} uniformly in n , we obtain that \int_{\Omega}f(x)u_{n}^{-\beta(x)}dx < \infty . Therefore, for n \to \infty it reads

    \begin{align} \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i} \varphi dx-\int_{\Omega}g(x)(u^{*})^{q(x)}\varphi dx - \int_{\Omega}f(x)(u^{*})^{-\beta(x)}\varphi dx\geq 0 \end{align} (3.35)

    for all \varphi\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) , \varphi \geq 0 . Letting \varphi = u^{*} in (3.35) shows clearly that u^{*} \in \mathcal{N}_{1} .

    This means, as with the Case Ⅰ, that we have

    \begin{equation} u^{*} \in \mathcal{N}_{2} \end{equation} (3.36)

    By taking into consideration the results (3.21), (3.22), (3.35), and (3.36), we infer that u^{*} \in \mathcal{N}_{2} and (3.35) holds, in the weak sense, for both cases. Additionally, since u^{*}\geq 0 and u^{*}\neq0 , by the strong maximum principle for weak solutions, we must have u^{*}(x) > 0\, \, \, \text {almost everywhere in}\, \, \Omega.

    Next, we show that u^{*} \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) is a weak solution to problem (1.1).

    For a random function \phi\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) , and \varepsilon > 0 , let \varphi = (u^{*}+\varepsilon \phi)^{+} = \max\{0, u^{*}+\varepsilon \phi\} . We split \Omega into two sets as follows:

    \begin{equation} \Omega_{\geq} = \{x \in \Omega: u^{*}(x)+\varepsilon \phi(x)\geq 0 \}, \end{equation} (3.37)

    and

    \begin{equation} \Omega_{ < } = \{x \in \Omega: u^{*}(x)+\varepsilon \phi(x) < 0 \}. \end{equation} (3.38)

    If we replace \varphi with (u^{*}+\varepsilon \phi) in (3.35), it follows

    \begin{align} & 0\leq \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i} \varphi dx-\int_{\Omega}[g(x)(u^{*})^{q(x)}+f(x)(u^{*})^{-\beta(x)}]\varphi dx \\ & = \int_{\Omega_{\geq}}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*} \cdot \partial_{x_i}(u^{*}+\varepsilon \phi) dx \\ & -\int_{\Omega_{\geq}}[g(x)(u^{*})^{q(x)}(u)^{*}+f(x)(u^{*})^{-\beta(x)}](u^{*}+\varepsilon \phi) dx \\ & = \int_{\Omega} -\int_{\Omega_{ < }}\left[\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*} \cdot \partial_{x_i}(u^{*}+\varepsilon \phi) \right. \\ &-\left.[g(x)(u^{*})^{q(x)}+f(x)(u^{*})^{-\beta(x)}](u^{*}+\varepsilon \phi)\right] dx \\ & = \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)}dx+\varepsilon \int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i} \phi dx \\ & -\int_{\Omega}f(x)(u^{*})^{1-\beta(x)}dx-\varepsilon\int_{\Omega}f(x)(u^{*})^{-\beta(x)}\phi dx \\ & - \int_{\Omega}g(x)(u^{*})^{q(x)+1}dx-\varepsilon\int_{\Omega}g(x)(u^{*})^{q(x)} \phi dx \\ &-\int_{\Omega_{ < }}\left[\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i} (u^{*}+\varepsilon \phi) \right. \\ &\left. -[g(x)(u^{*})^{q(x)}+f(x)(u^{*})^{-\beta(x)}](u^{*}+\varepsilon \phi)\right] dx \end{align} (3.39)

    Since u^{*} \in \mathcal{N}_{2} , we have

    \begin{align} & 0\leq \varepsilon \left[\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i}\phi-[g(x)(u^{*})^{q(x)}+f(x)(u^{*})^{-\beta(x)}]\phi\right]dx \\ & -\varepsilon\int_{\Omega_{ < }}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i}\phi dx+\varepsilon\int_{\Omega_{ < }}g(x)(u^{*})^{q(x)}\phi dx \\ &+\varepsilon\int_{\Omega_{ < }}f(x)(u^{*})^{-\beta(x)}\phi dx \end{align} (3.40)

    Dividing by \varepsilon and passing to the limit as \varepsilon \to 0 , and considering that |\Omega_{ < }| \to 0 as \varepsilon \to 0 gives

    \begin{align} &\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i}\phi dx -\int_{\Omega}g(x)(u^{*})^{q(x)}\phi dx \\ &\geq \int_{\Omega}f(x)(u^{*})^{-\beta(x)}\phi dx,\,\, \forall \phi\in W_{0}^{1,\overset{\rightarrow }{p}(\cdot)}(\Omega) \end{align} (3.41)

    However, since the function \phi\in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) is chosen randomly, it follows that

    \begin{align} &\int_{\Omega}\sum\limits_{i = 1}^{N}|\partial_{x_i} u^{*}|^{p_i(x)-2} \partial_{x_i} u^{*}\cdot \partial_{x_i} \phi dx -\int_{\Omega}g(x)(u^{*})^{q(x)}\phi dx \\ & = \int_{\Omega}f(x)(u^{*})^{-\beta(x)}\phi dx \end{align} (3.42)

    which concludes that u^{*} \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(\Omega) is a weak solution to problem (1.1).

    Suppose that

    \begin{equation*} \label{e4.10} \begin{cases} \begin{array}{rlll} g(x)& = &e^{k\cos(|x|)}, \\ \text{and} \\ f(x)& = &\frac{(1-|x|)^{k}}{\beta(x)},\,\, x\in B_1(0)\subset \mathbb{R}^{N},\,\, k > 0.\\ \end{array} \end{cases} \end{equation*}

    Then equation (1.1) becomes

    \begin{equation} \begin{cases} \begin{array}{rlll} -\sum\limits_{i = 1}^{N}\partial_{x_i}\left(|\partial_{x_i} u|^{p_{i}(x)-2}\partial_{x_i} u\right)& = &\frac{(1-|x|)^{k}}{\beta(x)} u^{-\beta(x)}+e^{k\cos(|x|)}u^{q(x)} \text{ in } B_1(0) , \\ u & > & 0 \text{ in } B_1(0),\\ u& = &0 \text{ on }\, \partial B_1(0). \end{array} \end{cases} \end{equation} (4.1)

    Theorem 4.1. Assume that the conditions (A_{1})-(A_{3}) hold. If 1 < \beta^{+} < 1+\frac{k+1}{\alpha} and \alpha > 1/2 , then, problem (4.1) has at least one positive W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(B_1(0)) -solution.

    Proof. Function f(x) = \frac{(1-|x|)^{k}}{\beta(x)}\leq \frac{(1-|x|)^{k}}{\beta^{-}} is clearly non-negative and bounded above within the unit ball B_1(0) since |x| < 1 . Hence, f(x) \in L^{1}(B_1(0)) .

    Now, let's choose \overline{u} = (1-|x|)^{\alpha} . Since \overline{u} is also non-negative and bounded within B(0, 1) , it is in \overline{u} \in L^{P_{+}^{+}}(B(0, 1)) . Indeed,

    \begin{align*} &\sum\limits_{i = 1}^{N}\int_{B_1(0)}((1-|x|)^{\alpha})^{p_{i}(x)}dx \nonumber \\ &\leq N\left[\int_{B_1(0)}((1-|x|)^{\alpha})^{P^{-}_{-}}dx+ \int_{B_1(0)}((1-|x|)^{\alpha})^{P^{+}_{+}}dx\right] < \infty. \end{align*}

    Next, we show that \partial_{x_{i}}\overline{u} \in L^{p_i(\cdot)}(B_1(0)) for i\in \left\{1, ..., N\right\} . Fix i\in \left\{1, ..., N\right\} . Then

    \begin{align*} &\partial_{x_i}(1-|x|)^{\alpha} = \alpha (1-|x|)^{\alpha-1} \frac{-x_i}{|x|} \end{align*}

    Considering that x \in B_1(0) , we obtain

    \begin{align*} &\int_{B_1(0)}|\partial_{x_i}(1-|x|)^{\alpha}|^{p_i(x)}dx\leq \alpha^{P_{M}}\int_{B_1(0)} (1-|x|)^{(\alpha-1)P^{-}_{-}}dx \end{align*}

    Therefore,

    \begin{align*} &\sum\limits_{i = 1}^{N}\int_{B_1(0)}|\partial_{x_i}(1-|x|)^{\alpha}|^{p_i(x)}dx\leq N\alpha^{P_{M}}\sum\limits_{i = 1}^{N}\int_{B(0,1)} (1-|x|)^{(\alpha-1)P^{-}_{-}}dx < \infty \end{align*}

    if \alpha > \frac{P^{-}_{-}-1}{P^{-}_{-}} . Thus, \partial_{x_{i}}\overline{u} \in L^{p_i(\cdot)}(B_1(0)) for i\in \left\{1, ..., N\right\} , and as a result, \overline{u} \in W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(B_1(0)) .

    Finally, we show that \int_{B(0, 1)}\frac{(1-|x|)^{k}(1-|x|)^{\alpha(1-\beta(x))}}{\beta(x)}dx < \infty . Then,

    \begin{align*} \int_{B_1(0)}\frac{(1-|x|)^{k}(1-|x|)^{\alpha(1-\beta(x))}}{\beta(x)}dx & \leq \frac{1}{\beta^{-}}\int_{B_1(0)}(1-|x|)^{k+\alpha(1-\beta^{+})}dx < \infty. \end{align*}

    Thus, by Theorem 3.8, problem (4.1) has at least one positive W_{0}^{1, \overset{\rightarrow }{p}(\cdot)}(B_1(0)) -solution.

    The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Athabasca University Research Incentive Account [140111 RIA].

    The author declares there is no conflict of interest.



    [1] K. Adegoke, R. Frontczak, T. Goy, Combinatorial sums, series and integrals involving odd harmonic numbers, arXiv, 2024. https://doi.org/10.48550/arXiv.2401.02470
    [2] W. N. Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc., 28 (1928), 242–254. https://doi.org/10.1112/plms/s2-28.1.242 doi: 10.1112/plms/s2-28.1.242
    [3] W. N. Bailey, Generalized hypergeometric series, Cambridge: Cambridge University Press, 1935.
    [4] Y. A. Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, New York: Chapman and Hall/CRC, 2008. https://doi.org/10.1201/9781584889571
    [5] H. Chen, Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers, J. Integer Seq., 19 (2016), 16.1.5.
    [6] K. W. Chen, Y. H. Chen, Infinite series containing generalized harmonic functions, Notes Number Theory Discrete Math., 26 (2020), 85–104. https://doi.org/10.7546/nntdm.2020.26.2.85-104 doi: 10.7546/nntdm.2020.26.2.85-104
    [7] J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput., 218 (2011), 734–740. https://doi.org/10.1016/j.amc.2011.01.062 doi: 10.1016/j.amc.2011.01.062
    [8] W. Chu, Hypergeometric series and the Riemann zeta function, Acta Arith., 82 (1997), 103–118. https://doi.org/10.4064/aa-82-2-103-118 doi: 10.4064/aa-82-2-103-118
    [9] W. Chu, Generating functions and combinatorial identities, Glas. Mat., 33 (1998), 1–12.
    [10] W. Chu, Some binomial convolution formulas, Fibonacci Quart., 40 (2002), 19–32.
    [11] W. Chu, Infinite series on quadratic skew harmonic numbers, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 75. https://doi.org/10.1007/s13398-023-01407-9 doi: 10.1007/s13398-023-01407-9
    [12] W. Chu, Infinite series around multinomial coefficients and harmonic numbers, Kodai Math. J., 46 (2023), 115–144. https://doi.org/10.2996/kmj46201 doi: 10.2996/kmj46201
    [13] W. Chu, J. M. Campbell, Harmonic sums from the Kummer theorem, J. Math. Anal. Appl., 501 (2021), 125179. https://doi.org/10.1016/j.jmaa.2021.125179 doi: 10.1016/j.jmaa.2021.125179
    [14] C. Elsner, On recurrence formulae for sums involving binomial coefficients, Fibonacci Quart., 43 (2005), 31–45.
    [15] I. Gessel, D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal., 13 (1982), 295–308. https://doi.org/10.1137/0513021 doi: 10.1137/0513021
    [16] H. W. Gould, Some generalizations of Vandermonde's convolution, Amer. Math. Mon., 63 (1956), 84–91. https://doi.org/10.1080/00029890.1956.11988763 doi: 10.1080/00029890.1956.11988763
    [17] M. Jung, Y. J. Cho, J. Choi, Euler sums evaluatable from integrals, Commun. Korean Math. Soc., 19 (2004), 545–555. https://doi.org/10.4134/CKMS.2004.19.3.545 doi: 10.4134/CKMS.2004.19.3.545
    [18] C. L. Li, W. Chu, Infinite series about harmonic numbers inspired by Ramanujan-like formulae, Electron. Res. Arch., 31 (2023), 4611–4636. https://doi.org/10.3934/era.2023236 doi: 10.3934/era.2023236
    [19] D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Mon., 92 (1985), 449–457. https://doi.org/10.1080/00029890.1985.11971651 doi: 10.1080/00029890.1985.11971651
    [20] L. Lewin, Polylogarithms and associated functions, New York: North-Holland, 1981.
    [21] E. D. Rainville, Special functions, New York: The Macmillan Company, 1960.
    [22] J. Riordan, Combinatorial identities, New York: John Wiley & Sons, 1968.
    [23] Z. W. Sun, Series with summands involving higher harmonic numbers, arXiv, 2023. https://doi.org/10.48550/arXiv.2210.07238
    [24] X. Y. Wang, W. Chu, Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients, Ramanujan J., 52 (2020), 641–668. https://doi.org/10.1007/s11139-019-00140-5 doi: 10.1007/s11139-019-00140-5
    [25] I. J. Zucker, On the series \sum_{k = 1}^{\infty} \binom2k{k}^{-1}k^{-n}, J. Number Theory, 20 (1985), 92–102. https://doi.org/10.1016/0022-314X(85)90019-8 doi: 10.1016/0022-314X(85)90019-8
  • This article has been cited by:

    1. Mustafa Avci, On a p(x)-Kirchhoff Problem with Variable Singular and Sublinear Exponents, 2024, -1, 1027-5487, 10.11650/tjm/240904
    2. Mustafa Avci, On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities, 2024, 0971-3514, 10.1007/s12591-024-00702-0
    3. Mustafa Avci, Singular p(x) -Laplacian equation with application to boundary layer theory , 2025, 0003-6811, 1, 10.1080/00036811.2025.2473492
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1124) PDF downloads(110) Cited by(2)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog