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1. Introduction and outline

Let N be the set of natural numbers with Ny = N U {0}. For n € N, the following harmonic-like
numbers are given by partial sums:

e The classical harmonic number and its quadratic counterpart
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e Alternating harmonic number and its quadratic counterpart
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Among them, there are the following simple but useful relations
H, H?
Ilzn :3()n'+ —5—, Ilgz :3()§>+--:I—;
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H,, =0, - =, H =09 - —.
? 2 2Ty

Harmonic numbers and their variants have been studied since the distant past and are involved in
diverse fields (cf. [1,5-7, 11, 17, 18]) such as analysis of algorithms in computer science, various
topics of number theory, and combinatorial analysis. In this paper, we aim at presenting several
algebraic identities about infinite series involving harmonic-like numbers, the binomial coefficient (3:)
in numerators, and a free variable “‘y”

For n € Ny and an 1ndeterm1nate X, the shifted factorials (cf. [3, §1.1]) are usually defined by

(x)o =1

Denote by [x"]¢(x) the coefficient of x™ in the formal power series ¢(x). Then we can express
harmonic-like numbers (see [11, 18]) by extracting the initial coefficients of x from the quotients of
shifted factorials as below:

and (x),=x(x+1)---(x+n—-1) for neN.
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There exist many infinite series identities involving central binomial coefficients (see [12, 14, 19,
25]). However, the closed form evaluations for the known series with (3:) are rare. In a recent paper,
Sun [23] reported several remarkable infinite series identities, detected by numerical experimentation.
Among them, the following three (see [23, Eqs (2.12), (2.13), and (2.15)]) seem rather challenging:
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When making efforts to confirm these three formulae, two substantial novelties emerged. First, not
only the harmonic numbers Hj, and H,, are separable in the third series, but also independent series
involving H,, and O, can be evaluated explicitly in closed form (cf. Corollaries 6 and 10). Another
surprising novelty (see Theorems 1 and 5) lies in the fact that these series are particular cases of more
general algebraic identities containing a free variable “y”, corresponding to the convergent rates of
these numerical series. To our knowledge, most of the infinite series identities presented in this paper
have not appeared previously in the literature.

The rest of the paper is organized as follows. As preliminaries, we shall evaluate, in closed form,
three series containing binomial coefficient (3"") harmonic number H,, and a free variable “y” by
integrating Lambert’s series. Then in Sections 3-5, three classes of infinite series with harmonic-
like numbers will be examined by applying the “coefficient extraction” method (see [8, 13, 24]) to
cubic transformations for the ;F,-series, that result in several algebraic identities about these series
and confirm or refine, as special numerical examples, three conjectured identities made recently by
Sun [23]. Finally, the paper will end with Section 6, where concluding remarks and further problems
are provided.

2. Lambert series weighted by harmonic numbers
In classical analysis and enumerative combinatorics, Lambert’s binomial series are well-known

(see Riordan [22, §4.5] and [9, 10, 16]), which can be reproduced as follows: Let T and 7 be the two
variables related by the equation 7 = T/(1 + T)?. Then

A B (5 WL DU o LR W
(1+7) _kz_;mkﬁ( B )r and 1+T_Tﬂ_kz_;( B )T. 2.1

As preliminaries, we are going to evaluate, in closed form, three series containing ternary coefficient
(%:) and a free variable “y” by integrating across the above two equations, that will be crucial for
demonstrating infinite series identities involving harmonic numbers in the subsequent sections.

2.1. Series with H,

For “a = 0 and § = 3", performing the replacement T — xy/(1 +y)? in Lambert’s second series,
we can state the resulting equality as

&(T) := (2.2)

1+T (31 (xy)” _ x_T(1+y)3
1-2T  &i\n ) +y»" (1 +T)

Since the rightmost function is monotone around 7 = 0, it determines an implicit inverse function
T = T(x) in the neighborhood of x = 0 with particular values “T'(0) =0 and 7(1) = y”.
By expressing the harmonic number H,, in terms of the integral

1
1-—x"
H,,:f dx,

we can insert H,, in the series (2.2) as follows:
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) Y (T () - $(T(x) "
n|(l+y)* 0 1-—x
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_(1+y)3fy 1-2T 1_2y_12T

1+T) 1 _ T46)?
y o ( ) IRV

1 (1-2T7)(1+y)

y — e —————
— (14 (I+T)(1-2y)
1+ fo T +yy —y(1+T)

T+ y)3

y(I+
For the sake of brevity, the notation “p

where the change of variable x = 7 has been made so that the integral becomes explicit.

[P

Wlll be fixed, throughout the paper, for the algebraic number
3 3
p = 5(\/§+ '3 - 5(\/5— '3 -1~ =0.105892543. (2.3)

The convergence region of the preceding series is determined by

2 1
—1<L<1, p<y<-—.
4(1 + y)3 2

This can be illustrated graphically as below:

1.0-

1.0+

Figure 1. Range of convergence.

By decomposing the integrand into partial fractions

(1-27)(1+y)
1~ (1+7)(1-2y) B 3 3

T(L+yP —y(A+TP — (A+T)(1+y2(1-2y) 201 +y)2(1 - 2y) Ji+y

{ VA+Y+ Ay N4 +y— }

X +
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we can explicitly compute the integral

) (A=-2T)(1+y)
f 1- Ghaoy p o 30 +y)
o TAA+yP —y(1+T» " (1+y)2(1-2y)

N 3(\Y— A+ 1n((l+y)(2—2y—y2+y\/y2+4y))
2(1+y)2(1 =2y) 4 +y 2

(WA Y 1n((l+y)(2—2y—y2—y\/y2+4y))
2(1 + y)2(1 = 2y) & +y 2 '

By cancelling the three terms containing In(1 + y) and then making substitution, we find the closed
formula for the series as in the theorem below:

Theorem 1 (p <y < 1/2).

© 3 y _a- 2T)(1;y)
n _ (1+7)(1-2y)
Z:;( )(1+ o = f T(1+y)3—y(1+T)3dT
_ 30 +y)in( =2y 3L+ Y)Yy 1(2 y2+y- x/y2+4))
22y-1 21 =20 d+y 2-yQ2+y+ 2 +4y)

2.2. Series with H,/(1 + 2n)

For “a = 1 and 8 = 37, performing the replacement T — xy/(1 +y)?, we can rewrite Lambert’s
first series as

(xy)" T +y)
T):=1+T= : = —— 24
W) =1+ Z( )(1+2n)(1+y)3" Tya+Ty 4
Analogously, by putting the harmonic number H,, inside the series (2.4), we have
5]% Hy _ (y@A)-yT), | _TA+y)
n (1 +2n)(1+y)>” 0 1-x y(1+T)3

C(1+y? [P (y=T)(1 -2T)dT

I R ST
Y (1+y)*(T - y)(1 -2T) dT
o I+DITA+y)* =y +T))}

[ (1+y)>(1 =2T)dT
_fo (1+T)(1—-T2y—-Ty>-3Ty)

By decomposing the integrand into partial fractions

(L+y’(-20dT  _ 1+y  (1+)GVr+ VE+y)
- %y - 2 - - - + +(1+ +
(1+T)1-T>»-Ty*-3Ty) 1+T 2 (T + y)x/4_y)

(1 +)GVY - AA+y)
2 (T + (3+))«f(l+y)\/4_+>)
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we can explicitly compute the integral

Y (1 +y)*(1 =2T) dT
o A+T)1-T%—-Ty>-3Ty)

=3(1+y)In(1 +y)

_<1+y><3@+¢m>m( (1+ )G+ VA+y) )
2y B+ +A+y)\d+y
_(Hy)(sw—\/m)ln( (L+)GVY = V4+y) )

24y G+ Vy—L+y)a+y

which is simplified into the closed formula as in the theorem below:

Theorem 2 (p <y < 1/2).

i 3n) H, )" (P (+y’d-2T)dT
n (1 +2n)(1+y)¥  Jy A+T)(1-T2y—Ty?—-3Ty)
:<1+y>¢mm(z—y<z+y+m>
24y 2-y2+y— O +4y)

n=1

) - %(1 +y)In(1 = 2y).

2.3. Series withH, [n

Alternatively, rewriting Lambert’s first series

(1+T)“—l_i 1 (a+nﬁ
@ ) -1

a+nB\ n

)T": t=T/1+T)y,

and letting “@ — 0 and 5 = 3”, we deduce the identity

O (3n) ()" T +y)
T)=3In(1+7)= —_— = — 2.5
o= 3+ ;(n)n<1+y)3" ATy ()
By inserting H,, in the above series, we obtain an integral expression
S (3] Ha(xy)" Lo(T) - o(T() T +yy
Z — == dx X = ——
i\ n/n(l+y) 0 1 -x y(1+T7)
Y 1+T 1-2T7)1 +y)?
:3fln( ) ( )(2)’) _ dT
o Ll+y/ (A+T)T-y(1-T%—Ty—=3Ty)
Yoo+ Ty 1 3 2+ 3y+2T
:3fln( ){ - TR e et }dT.
0 1+y/\T—-y 1+T T*y+Ty>+3Ty—-1
In view of the partial fraction decomposition
y? + 3y + 2Ty 3 1 N 1
T2y +Ty*+3Ty -1 WG+ + (1 +y)\d+y B+ - A+ Ja+y
T + ) T+ )
2y 2y
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it suffices to evaluate, for a parameter A subject to T + A # 0 for T’ € (0, y), the parametric integral

Yo 1+T\ dT e . 1 A
s = [ n(F) 5 = L) - Lia( ) + In (2 In1 +

with particular cases

1, _n y (1
J(,y) = =301 +y) and J(—y,y)—€+ln(1+y)1n(1+y)—L12(1+y)~

Hereafter, the dilogarithm function (see Lewin [20, §1.1]) is defined for all complex values of z by

. “In(1 — 1) . 7z
12(2) j(; an 15(2) Z - or |7] <

n=1

By making substitution and then simplifying the terms concerning logarithms and dilogarithms in
the resulting expression, we find the explicit formula as in the following theorem:

Theorem 3 (p <y < 1/2).

N (3n) H, " Y -3dT T +y)?
X (M = [ ni- )
nln(l+y) o 1+T y1+T)

n=1

7T2 y
5 +300) +3In(l +y)In (——).

VA +y)?

where, for simplicity, O(y) denotes the sum of five dilogarithmic values

() = Liz(y_— V;z“ly) + Liz(y+— V;z“ly)
Y= Ay +4 iy A +4 ,
~Li( ) L) Lkl

3. Series with (3,:’) and harmonic-like numbers

According to Bailey [3], the classical hypergeometric series reads as

ok
ag,ar, az, -+ ,a,| | _ o 2 @odlai(@)i - - (ap
1+pr|: blabZ""9bp‘Z:|_;k! ’

(bi(b2)ic -+ - (bp)k

We shall confine ourselves only to examining the series with |z| < 1 and none of the parameters in the
numerator and denominator being a non-positive integer, which imply that the corresponding series is
well-defined and convergent.

There are many transformation and summation formulae for hypergeometric series (see Bailey [3]
and Brychkov [4, Chapter 8]) in the literature. In 1928, Bailey [2] discovered an important cubic
transformation (see the next section). Half a century later, Gessel and Stanton [15, Eq (5.4)] found the
following counterpart

(1+ ) 149 a ¢ 1—c|-y
- 1_2y X4F3 ?1 I+atc 2+a—c| 4 | (31)

> 27 2 4

l+a 2+a 3+a
555554 27y
302 41 +y)?

l+a+c 2+a—c
2 0 2

W
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Under the parameter replacements “a — 6ax, ¢ — 2c¢x”, this transformation can be reformulated
as

i (1 + 6ax)s,

oy 4(1 + y)3 n!(1 + 3ax — cx),(3 + 3ax + cx),

- o 3.2)
_a+ y)1+6ax{1 4 6CXZ (__y)k (k + 2ax)(1 + 6ax);_1(1 + 2cx)_ (1 - ZCX)k}’

I -2y 4 k'(1 +3ax — cx)k(% + 3ax + cx)i

k=1

27y
4(1 +y)
The above transformation is an analytic equality with respect to x in the neighborhood of x = 0.

Equating the constant terms on both sides yields the algebraic identity below:
i 3ny y'  1+y
Li\n (A +y 1-2y
As illustrated in the introduction, harmonic-like numbers can be expressed in terms of x-coeflicients

from quotients of shifted factorials. By examining the coefficients of x across the above equation, we
find that the corresponding equation involving harmonic numbers can be written as

where “y € (p, %)”, or equivalently, ———— € (-1, 1) so that the series are convergent.

n

Y (3”) 6aHs, — (3a — ©)H, — 2(3a + ¢)O
; (1+y)*\n { 3 }

1+
=6
9

The rightmost series admits the closed form expression, as in the lemma below:

Lemmad4 (-4 <y <4).

W) = (k_l)' —y ,/ ArcTanh / 1/ Ay \/_
— (2)k 4 44y 44y

Proof. Recall the beta function (see [21, §16])

['(@)'(b)
I'(a+b)’

1
B(a,b) = f X1 = 0 dx = where R(a)>0 and R(®)> 0.
0

We can express W(y) as a definite integral

k—l' _ e
W) = ( ) y ZB
k=1

k=1

:i _y f kldx j()\ X\/mz xy

]

-y dx _f -2y JT
VIi—x(@d+xy) Jo 4+y-T%»

where the last line is justified by the change of variable V1 — x — T. Then the formula in the lemma
follows by evaluating the last integral explicitly. O
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Therefore, we find the general formula below:

n

Y (3”) 6aHs, — (3a — A)H,, - 2(3a + ¢)O
; (1+y)*\n { 3 }

1+
In(1 +y) + 6c 4

-2y -2y

I+y
=6
“q

W)

By specifying two parameters, a and ¢, we deduce four independent series

- V! 3n\ - 1+y
=0: Hy, =3———W(y),
¢ ;(1+y)3” p [ =37, W)
= V! 3n 1+y
:0: Hn—Hn = 1 1 s
c ;(1+y)3” , { 3 2} =2y n(l +y)
c=3a: i Y. (3 (H:, -20,} = LY 1 4y -3 woy
Y LTy U T T T Ty Yooy Y
= Yy 3n I+y 1+y
=-3a: H;,-H,{ = In(1+y)+3 W(QO).
c=-3a Z(HW )i, -1 Ty 1+ + 375 W0)

Combining the above formulae with Theorem 1 and then keeping in mind the equalities
H2n = I:IZH + Hn’
_ H,
On =H,, + 7’
H3n = (HSn - Hn) + Hn’
we establish further closed formulae for four series with a free variable “y”.

Theorem 5 (p <y < 1/2).

= H,, " 4+y+

@ Z 3n\ H,, y :3+3y 4y n V4 +y W’
Hi\n|(1+yyPr 1-2y \4+y 2

) Z’O: 3n\ Hy,y" 343y [y ln( 2(1 +y+ \y* +4y) ) (3+3y)In(1 —2y)
S\n)(+yP 2-4yN4+y 232+ y+ 2 +4y) 2(1-2y) ’

© Z"’:3n 0,y" 3+3y y ln(1+y+ \/y2+4y) (3 + 3y)In(1 - 2y)
\n)(1+yPr 2-4y\V4+y 1-2y 41 -2y)

@) i 3n\ Hj, y" _ I+y 1n((1+y)2)+3+3y y ln( 2(1 +y+ \y* +4y) )
=\ n ) +yPn 2-4y M1-293 2-4yN4+y 2 y2+y+ H2+4y)

n

Numerous infinite series identities with different convergence rates can be derived by assigning
particular values for y in Theorems 1 and 5. Five groups of representative examples are recorded as
corollaries. In particular, the second formula (b) and the last formula (e) displayed in Corollary 6
confirm (1.1) and (1.2) conjectured by Sun [23, Egs (2.12) and (2.13)].
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Corollary 6 (y — N% in Theorems 1 and 5).

@ (=) - B3y (i,

n=1 E n 2
(b) i (%)n 3nn H, - 1 +2\/§{ In2 - 313 — \/§)}’

= 2 \n3n 3—\6 4 2 \/§
© DG =2 m(E) + VEm (=),

> 2 3 3+ V3. 1+ V3, V3
) Z(ﬁ) n" 0, = +2 {m( t/i )—Tln?)},
©) Z(%) 3n” H;, = 1+4\/§1n(4(7 +34‘/§))— V31In2.

Corollary 7 (y — V5 — 2 in Theorems 1 and 5).

e
(b) 2(%) 3: H,, = 32 J\r/g\/E) ln(3 +2\/§)_ 35155’

O SR <3050 Zn()
“@ Z(%)n o = %lnm V5) - 3213;'

(e) i(é) 3: Ha, = In(11 +5V5) + %111(4*52‘5)'

Corollary 8 (y — % in Theorems 1 and 5).

&5 30\ - 6(V5 -1 5-4/5
@ ()|, - : 1 )hl( 2 )

> 5 wf3n 6V5 . (25+9+5\ 3 23-3v5
2 H,, = 1 2 (222
®) ;(64) T n( 2 ) 11 n( 10 )
> 5 w(3n 3V5 . (267-119v5\ 6 (7+ 5
2 H, =->"] 2
© 2(64) P 11 n( 2 ) 11 n( 10 )

@ i(S) 3n _ 30+ «/3)111(4+ \/§)+3«/§1n5

n 0, 11 11 11 ’

25 (3 6V5 . (44 + V5 1 . (2002667 — 734/5)
CEON G nnH3”: 11 ln( ;1 )+ﬁln( 116 )
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Corollary 9 (y — — in Theorems 1 and 5).

100\7(3n)\.~ 3 /3 161
(— m) nn H,, = -3 \/gArcCos(ﬁ),

M

(a) s

CIDE [ OB N )
© S =~ 5 ool
(d) 2(_ %))n 3nn 0, - _19;61 (g) - 13 \/%Arccos(;—o),
© i (- %)" 3nn Hn = _g ln(ﬁ) - % \/gArcCOS(g%).

a 2 (31 ~ _ 1+ +/15+6+5
(a)z(3+\/§) 3:Hzn: 65 6ln( + + )

e e v
[ = 22 25 %(“m)
0 SB[, D 2 ), R e
()
()

" 4 3
5+ V5 11V3 - 4/185-8245

0, :3(1;\/5)1n(2+\/§)+ V3/8 In(3V5 -4+ 2415 -65),

3

NS

= (30 3V5 -1+ /30-65
(e)z(3+ x/§) 3n H3n=1+ \/§ln(11+65«/§)+ V372 m( + )

4 4

5+ V5

We remark that the second formula (b) and the last series (e) in this corollary refine identity (1.3)
conjectured by Sun [23, Eq (2.15)]:

I RN
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4. Series with (3,7) / (2n + 1) and harmonic-like numbers

Now, we turn to examine Bailey’s cubic transformation (Bailey [2, Eq (4.05)])

a l+a 2+a
3073
l+a+c  2+a-c
T2 0 T2

27y
4(1 + y)3

a, c, 1 —

3F> ]_(1"')7) X3F2|:1+a+c 2+ac _Zy}
2 2

Under the parameter replacements “a — 1 + 6ax, ¢ — 2¢x”, it can be reformulated as

i (1 + 6ax)s,
4(1 + y)3 n!(1 + 3ax + cx),(3 + 3ax - cx),

n=

~ (1 + )0 x {1 s zch (—_y)k (1 + 6ax);(1 + 2¢x)_1 (1 = 2cx); }

—it 47 k(1 + 3ax + cx)k(% + 3ax — cx)i
. « 1\ . 27
where, as before, both series converge for “y € (p, 5) , or equivalently, m e(-1,1).

When x = 0, the above series becomes the following simpler one:

> (3n V! B
Z(n)(l+2n)(1+y)3" =1+

n=0

Instead, the coefficients of x across (4.2) result in the general formula as below:

i y" ( ){6aH3n - Ba+oH, -203a-0)0, N 4(3a — c)n}
— (1+yyr\n 1+2n (1 + 2n)?

o (k= D!~y
275 )

For brevity, we introduce the notations U(y) and V(y) for the two series:

_ 0 k=D =y
U(y)_,; (i )

= 6a(l +y)In(1 +y) + 2c(1 +y)

and

B = Y 3n n
Vo) = Z:(; (1 +y)3"(n)(l +2n)?’

They are evaluated in closed form by the following lemma:

Lemma 11.

() U(y):2+2‘/j/;y1n ‘/4+;_ W

1 3
_V(\/;y) In(\y+ VI+y) =(1+y), p<y<l1/2.

-4 <y<4,

b V=

4.1)

4.2)
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Proof. The first series can be evaluated by computing the integral as follows:

O k=Dl 3y -k
UG) = B (3) =28k 5)(5)

k=1 k=1
3 - -y — V1 = xdx ~ —xy
—;(4)](; V1 xdx—f ;(4)
I _ 1 _ 2
:fy_ﬂxdxzfiﬂ Vi—xoT
0 4 + xy 0o 4+y—-T?
24/4 4+y—
o By NSV
vy 2

For the second series V(y), by shifting forward the summation index n — n + 1, we can rewrite it as

~ 0 yn 3n n 3 ” 3n+3 1
V(y)_;aw)%( )<1+2n)2‘(1+y)3z<1+y)3"( n )3+2n

Then, for “a = B8 = 37, perform the replacement 7 — xy/(1 + y)* in Lambert’s second series

Xyt (3n + 3) _a+7y

L (1+yym\ n C1-2T"

Now multiplying this equation by x? and then integrating across over x € [0, 1], we can proceed with

Syt [3n+3) 2 Lo+ T(1 +y)?
Z 3 x2 dx xX=—7=
- 1+y)” n J3+2n J,  1-2T y(1 +7)

_ \/(1 +y)9 f

V(1 + T)3

By means of integration by parts, we can further compute

_ 2V, 1
dT
V({1 +T)3 \/1 +y \/T(l + T
= 21In(~y + m>—

V1+ y.
After substitution, the second formula in Lemma 11 follows accordingly. O

Therefore, we obtain the following reduced transformation:

Z y" ( ){661H3n Ba +c)H, —2(3a - c)O,,}
(1 +y) 1+2n (4.3)

= 6a(1 +y)In(1 +y) +2c¢(1 + y)U() —43Ba — c)V(y).
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By specifying two parameters, a and c in the above equality, we deduce four independent series:

y” 3”{ I:IZn }
o = 2V
=0 ;(1+y)3" o NT3 2, = AU +2V0),
© yn 3n {H3H_H2n}
=0: s~ Hon) _ 1 oy
‘ ,,Z:I‘(l+y)3” n)\ 1+2n (1+y)In(l +y) s

. - y" 3n H3n_Hn _
c=3a: Z(1+y)3n . {m}—(l+y)ln(1+y)+(1+y)U(y),

- V! 3n {H3,,—20n
- 3a: o
ez Z(1+y)3” a1+ 2n

For the above four equations, first replacing U(y) and V(y) by their algebraic values in Lemma 11,
and then putting the resulting equations in conjunction with that in Theorem 2, we establish, after some
routine simplifications, four closed formulae as in the following theorem:

Theorem 12 (p < y < 1/2).

- " (3n) Hy, 241 3
(a) Z(l _?_)y)’jn(nn) : = ( +y) 1Il(\/§+ V1+y)
n=1

} = (1+y)In(l +y) — (1 + NUG) - 4V().

1+2n vy
+2(1+y)\/mln(\/m—\/y)
VY 2 ’
y' {30\ Ha, 1+y)
®) Z(1+y)3"( n)1+22n (\/jy) UNENEDES yln(1—2y)
n=1

+(1+y)\/4+y1 ( 242y —24/y* +4y )
n ,
24y 2—y(2+y—\/y2+4)

- Y 3n\y O, (1+y)? y
(©) ;(1+y)3n(n)1+2n 7 1(\/'+\/1+)— In(1 - 2y)

N (1+y)\/4+yln(1+y— \/y2+4y)
24y Ji—2y

Sy (3n\ Hy, Lty ((1+y)

“@ nz:;(l+y)3”(n)l+2n_2(1+y)+ 2 ln((l—Zy)3)
+(1+y)\/4+y1( 242y —24/y* +4y )
n .
2y 2-y2+y— \H2 +4y)

By assigning particular values for y in Theorems 2 and 12, we can deduce numerous infinite series
identities with different convergence rates. In order to show the variety of implications, we record five
representative classes of infinite series values.

Corollary 13 (y —» /5 — 2 in Theorems 2 and 12).
>y 1\nf3n\ Hy, 3+ V10 1+ V5
@) z:;(—)(n) —2«/‘1( \5) G+ \/_)1( - )

8 1+2n 1+
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(b) Z(%) 3”£:2\/§1n(3+\/\;) 6 - 4\/_)ln(1+2\/_) V51n5,

nll+2n

© Z(l)”” H, :(5\/5—3)ln(1+2\/_) V51n5,

— 8/ \n/1+2
@ ()R- () e

© i(é) 3n lff = (V5-1)2+In2) - (5-3V5)In (”2‘/_) V51n5.

n

Corollary 14 (y — N% in Theorems 2 and 12).

o SR 520

o SIS P )
O ST - e - S S

) 2(227)"3:1?”2” 3(3—\/_)111(2\/_ 3)—913_3 %1(?3\/\;)

(©) 2(227);1 3nn 133;n:3\/§_3+%1n(2\/§2 : 3 ( )

n=1

Corollary 15 (y — 3 V2 - 4 in Theorems 2 and 12).

Q i 2+ W2y (3")1*;‘2;”:3@ (W 2). N2 Wm(m_n\/m_@),
(b) 2 2+\F (3”)1}3”:3\/51 ( ) © - 9\/_)111(“2/;5)
9“2\/6\F In(6V2 -7+ 62— V2)}),
@) Z(z 457\/§)n(3:)1 Ij"zn =3 \/gln( \/§++\/\f§) - (9-9V2) ln(1 +\/§\/§),
@ 2(2;@)"(3””)1?3”:@ 2 (6 -2 (¥4 )

n

SN2 ﬁln(6\/§—7+ V62 - V27),

V6
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i 2+\/_ (3”) Hs, :6\/5—6+3\/§ln(\/§_

1+ 2n 1)—(3—3\/§)m(3+2‘/§).

V3

n=1

Corollary 16 (y — % in Theorems 2 and 12).

25 \nf3n\ Hy, 12«/6 1+ V6y 12v21. 1+ V21
@ (56 - P () ()
432167 \ n J1+2n 5 N 5 245
b) 2(25) 3n\ Ha, :21 (5) 12V6 (1+\/€)+6\/_ ( \/_1)
£i\2167 \n)1+2n 5 \3 5 \5 5 215
© Z(zs) 3n\ H, :gln(§) 321 (257—13@)7
42167 \n)1+2n 5 \3 5 250
@ Z(zs) 3n\ O, :iln(ﬁ) 12x/€m(1+ \/6) 3x/iln(6—«/ﬂ),
£i\2167 \n)1+2n 10 '3 5 V5 5 V15
> 25 \nf3n\ Hs, 12 3. ,20, 6V21. (9-+21
=~ 4+ZIn(= 1
© ;(216) o JTz2n =3 s+ n( NG 15)
Corollary 17 (y — —; in Theorems 2 and 12).
ad 100\2(3n\ Hy,, 27 V39
(a) ;(_ﬁ) n)1+2n:?arccot3— arccot@,
(b) i(—@)n 3m) _Ha, —zar c0t3—9@ar cos(6—7)—2—71n(§)
it 729/ \n)1+2n 20 80/ 20 \57
> 100\»(3n\ H, 9+/39 7987\ 27. /6
- = —ZIn(=
© Z:;( 739) n)1+2n 20 2e(g550) ~ 75 1 (3)
- 100\»(3n\ O, 27\ 27. /6
d - == 3 — ) -
@ Z‘( 720) n)1+2n 5arecotd = —arceos( y/ 35) = 510 (5),
- 100\2(3n\ Hy, 9 939 67, 9 . /32
- =22 —) - =In(=).
@ 2.(~7) n)1+2n 5~ 20 eos(zg) ~ 35 (53)

1l
—_

n

5. Series with (3:) / n and harmonic-like numbers

Under the parameter replacements “a — 6ax, ¢ — 2cx”, Bailey’s cubic transformation (4.1) can
be reformulated alternatively as

i (6ax)s,
4(1 + y)3 n‘(l + 3ax — cx),,(% + 3ax + cx),

n=

(2 (1 + 2ex)(1 -2
= (1 + y)6dx % {1 + 1206‘)(2 Z (_y)k( + 6aX)k 1( + CfC)k 1( CX)]{}.
=47 kUL 4+ 3ax — cx)i(z + 3ax + cx)
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Both series in the above equation converge subject to the same condition “‘y € (p, %)”, or equivalently,

27
m € (—1,1) (as before).

Equating the constant terms from both sides yields the algebraic identity below

 (3n V" B
Z(n)m =31n(1 +y).

n=1

Instead, the coeflicients of x result in the following infinite series identity involving a free variable

(X3l

y” and two linear parameters a and c:

Y 6aHs, — Ba — c)H, —2Ba + )0, 2a
e W %)

1 +y)3n n B n?

(k= 1), —
().

= 9aln*(1 + y) + 6¢
k=1 k( )k

Let U(y) and V(y) stand for the two series

o0

UGy) = N (k—l)!(—Ty)k ind (V(y):ZL(M).

k(L) —n*(1+y)y"\n

They admit closed formulae as in the lemma below:

Lemma 18.

2
Uy) = 2 [ —————),
@ U H(W+ZTQ
2

b) V@)= 3{% +lnyin(l +y) - 21n%(1 +y) — Liz(l Jlr

-4 <y<4

y)}’ p<y<1/2.

Proof. The first series U(y) can be reformulated as

— (k- 1)! - 1\,—
UQ) = k() ( ) :ZB(k’ E)(Ty)k

k=1

_ Z( YAy Z( xy/4)
V1 —x v

0 xV1-x%
f‘ In(1+ %)dx Ldr ln(l +(2+y)T+T2) AT
= — _— = - JR— N —
0 xV1l—-x o T (1+7T) (1+T7)?

bdr 4T 4T
:fo 7{21n(1+T)—1n(1+(\/y+ \/m)z)—ln(1+(\/__ m)z)}

B n? Li -4
"o &I+%ﬁ7) h&w—%ﬁ@)
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Then the closed formula for U(y) in the lemma follows by applying the dilogarithmic equation

2 1 2
Liy(—x) + Liy(—x7") = —% - %C, where x> 0.

For the second series, we can rewrite it by reindexing n — n + 1 as

B - Y 3ny 3y - V! 3n+2 1
(V(Y)_nzz;nz(1+y)3”(n)_(1+y)3nZ:(;(l+y)3"( )(1+n)2'

n

Now specializing Lambert’s second series by “a =2 and 8 = 3” and 7 — xy/(1 +y)*

n | 1-2T" (1 +T)¥

i Xy (3n+2)_ (1+7) e T(1 +y)
0

where
£ (1 + yy»
then integrating twice across this equation, we can proceed with

V" 3n+2 1
Z (1 +y)3" n )(1 + n)?

n=0
flt "(1+T)° "4+ 7)Y Inx
R —
0

dx = —
t )y 1o2ar T ), T 1oar

(A+y? (P dT . ,T(1+y) T(1 +y)?
-7y f1+Tln( (1+T)3) YT TTy
0 y y

_(L+yP( (Y dT | T +y) Y In(1 + T)
=S [ ) - [ ]

_d+yPym

{g +Inyln(l +y) - 2In’(1 +y) — Liz(l Jlry)}

By substitution, the closed formula for V(y) in the lemma follows consequently. O

Thus, we have the following reduced transformation:

Z ¥ ( ){661H2n (Ba-c)H,, —2QBa + C)On} = 9aln’(1 + y) + 6¢UG) + 2a V().  (5.1)
1+ y)3" n

By specifying two parameters, a and ¢, we deduce four independent series

— . 3n I:IZH—_

a=0: me | = 3U),

_ . 3n H3n_H2n ﬁ

c=0: Z(1+y)3” n{ n } 2l n(1+9)+ =3

L 3n\(Hs, — 20, V)
¢=3a: Z(1+y)3" n{ n } Z W (L+y) +3UG) + == 3’
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n H3n_Hn (y)
Z(l+y)3"(n){ n } 5 W+ = 3UG) + =

For these four equations, replacing U(y) and V(y) first by their algebraic expressions and then
relating the resulting equations to that in Theorem 3, we find, after some simplifications, four infinite
series identities as below:

Theorem 19 (o <y < 1/2). Letting O(y) be defined as in Theorem 3, the following algebraic identities
hold:

yn 3n H2n 2 2
(@) 61n (—)
’Z‘(l+y)3” njn y+ Aty

i +30() +3Inyln(l +y) - 21n2(1 +y) +6In°

vt [(3n\Hy, 2 2
(b);(1+y)3" n : 2 2 (\/y+ \/4Ty)

n
yt  (3n\0, #* 3 3 9 2
(c) Z — =T+ E@)(y) + E1ny1n(1 +y) - Zlnz(l +y) + 61n2(\/_+—),

n=1 (1+y)3n n 4 \/4+y

(d)Z(1+y)3" =5 +300) +4lnyln(l +y) = 510’1 + ) +61n (\m 4+y) L2(1+y)

By assigning five particular values for y in Theorems 3 and 19, five classes of infinite series identities
are displayed in the following corollaries:

Corollary 20 (y — /5 — 2 in Theorems 3 and 19).

2 1yef3n\Hy, 1+ V5
@ D0 = (5

(b) 2(%) 3\Hay _ 73 o 30(V5 - 2) + 61n(] + \/5)1n(1 +4‘/§),

22
13 2 9 1+ V5

(C)Z;(g) : 3 4 )

(d)i(%)" 3n” :%2+%ln22+%®(\/§—2)+$1n(1+ \/5)1n(

=% +30(V5 = 2) + S In(1 + V5) In
y i 17
@) Z(l)n 3n\Hj3, :21+Eln22+3®(\/§_2)+1n(1+ \/§)ln((1+ V5) )_Li2(1+ \/§)

\/_
1+4 5)’

nl| n 3 2 2 238 4

Corollary 21 (y — in Theorems 3 and 19).

«
o ST
o S -5 o552 Sl Sl 2] ()
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O BGITE =5o05) n mfe )
@ ST - 5305 (Rl 2 S ()
O ST 2 a0 52 1af ) e ()

¥ m(5 +8\/§)1n(8(5 ;‘/5)7).

Corollary 22 (y — 1 in Theorems 3 and 19).

(@) i(i)n 3n\H,, _ 1n2(7 + \/B)’

H,, n* 3 /4, /64
nz == -5 (3)ln(3
H, 2 3 4, 64
R LI OLICS

+=0(=

)+ 3@(3) 21 (7+‘/_)

)+ 3@(%),

6

; (;)+ §1n2(7+ \/B)

© 2 ()5 = 5 () 03 L) 5w (L),

Corollary 23 (y — 2¥3=5 in Theorems 3 and 19).
(a) 2(%) 3: }fj - %lnz(\@— 1)
®) Z(%)n 3: }ff = ﬂ—z gln(54)ln( )+61n (1 + x/§)1n(1 +2‘/§)+3®(3‘/§3‘5),
o S 5 I ) o
0 SR -5 T ) sl )
O ST =5 () a5 5

+ 1n(1 +3\/§)ln(35(1 ;‘/3)7)_
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Corollary 24 (y — 3 V2 — 4 in Theorems 3 and 19).

(a)z 2+\/_ (3n)H2,, :_12(1+\/_)

n 2+ V6
(b)Z 2+\/_ (3”)}22":%”@(3\/5—4) —12(;:$)
S (D),
(C)Z 2+‘f (n)n :%2+3®(3\/§—4) +2n (“3‘/_) (27(1;\@),

”Zz+§®(3\/§—4) 2 In 2(1+ \/_)

(d)z 2+\/_ (,,,)n

2 2446
(R ()
©) Z 2+ \/_ (3”)}23 - 27”2+3®(3\/§—4) 2In 2(; y)
L L) (L2 (20020

6. Conclusions and further comments

By integrating Lambert’s series and manipulating the cubic transformations for 3 F;-series through
the “coeflicient extraction method”, we have shown several algebraic formulae for infinite series
containing binomial coefficient ( ) harmonic-like numbers, and in particular, a free variable “y”. As
showcases, three classes of infinite series were examined in detail from Sections 3—5. More variants of
these series exist and can be treated analogously. For instance, the transformation formula (3.1) under
the replacements “a — 1 + 6ax, ¢ — 2cx” becomes

1+2ax,%+2ax,%+2ax ‘

1+ 3ax+cx, %+3ax—cx 41 +y)?

(1 4 y)Har F +2ax, 1+6ax, 2cx, 1 —2cx _y]
=" 4 3 - 1.

1 -2y %+2ax,1+3ax+cx,%+3ax—cx 4

3F,

Then by carrying out the same procedure as in the preceding sections, we can establish the algebraic
identities for five infinite series, as in the theorem below:

Theorem 25 (p <y < 1/2). Letting A(y) be the function defined by

2—-y (2 Y2 +y+ y? +4))
\/m 2-y2+y— Y +4y)
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we have the closed algebraic formulae for five infinite series:

3n+ 1\~ 2(y = 2)(1 +y)? V4+y-
Hy,. = In

y

(1 +y)¥\ n (1 =2y)\y? +4y 2

- 3n+ 1\ (1+y)2{ -4 Vd+y -y A(y)}
2n+l = - s

(1L+y)*\ n T 1-2y

5 AD),

(1+yP\ n " 4y -
3n+1 1+ 2y=4  V4+y- ¥ AQ)
A+yr\ n o7 1—2y{mln 2 4 }

3n+ 1\ <1+y>2{ -4 NAEY- AT AW

- + In(1 + y)}.

From the algebraic identities exhibited for the series with harmonic-like numbers of the first order,
it is natural to ask: what would happen for the corresponding series involving harmonic-like numbers
of the second order? Our computations manifested that the resulting expressions are very complex
and convoluted, which can be exemplified by the following attempt made by the authors. Extracting
the coefficient of x* across (3.2), we can derive, after a number of reductions and simplifications, the

following formulae:

3n+l —

1+y)>*\ n 1 -2y

@ )]

()Z
i 3+ 1\ _ (1 + y)*
@ Y
o b

(a) 2(1 f’;)gn 3: (/3, + H)) = gm{w) + W),
(b) 2 g +yny)3n 3n" ((Hy, - Hp,)* + H - HD) = 1_—+2yyln2(l ),
(c) 2(1 —l)-}y = 3nn {(zon —Hs,)" +40? —H;Z;}

= 11_+2y (I2(1 + ) + 61n(1 + W) - 10UG) - 12W(),

n

“@ Zl( +y)*n(n)(H - M)+ HY - HG )
1+

{1021 +y) - 61n(1 + )W) - 2U)}:

“1-2y

where W(y) and U(y) are as in Lemmas 4 and 18, respectively, and ‘W(y) is given by

SR AR CEEE Y
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There are altogether nine harmonic-like numbers appearing in the above four series
{pr Oi, Hén; Hi,”’ Oi,b» H<32r>z’ HnOn’ HnH3n, H3n0n}-

To evaluate the nine corresponding independent “nuclear series”, it is necessary to find five similar
independent equations. It seems quite a tough problem that the authors failed to arrive at solutions,
even though we did succeed in determining the following long and ugly expression involving six terms
in dilogarithms (that prevents us from making further simplifications). Perhaps the only value of this
formula lies in its existence.

i (3n) H? y" fy 3(1+y)’°In (;ﬂl—?ﬁ;) dT

0

n|(1+y3n (1 =201 +T)T?y+Ty>+3Ty—-1)
B (1 +y) N 3(1 +y)1n2(1 +y) N 3(1+y)InyIn(1 +y)

n=1

C2(1-2y) 1 -2y 1 -2y
3(1 1 9(1 24+ y+ by +y?
X +y)Li2( )+ d+y [y 1n(1+y)ln( y Y )’)
1-2y 1+y 1-2y V4+y 2

31 +y) y Y g . Lo
TSR e, D) - ) )

3(1+y) y . —2\F . “2y5 . _oy2
T 2y)(1 CV4+ y){3le(m) -3 )+ Ll w<3+.v>+2<1+.v>\/47y)}'

Therefore, to evaluate the series containing binomial coefficient (3:) and harmonic-like numbers of
the second and/or higher orders, one needs to find out different approaches. The interested readers are
enthusiastically encouraged to make further explorations.
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