Utilizing some properties of multivariate Baskakov–Kantorovich operators and using $ K $-functional and a decomposition technique, the authors find two equivalent theorems between the $ K $-functional and modulus of smoothness, and obtain a direct theorem in the Orlicz spaces.
Citation: Ling-Xiong Han, Wen-Hui Li, Feng Qi. Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces[J]. Electronic Research Archive, 2020, 28(2): 721-738. doi: 10.3934/era.2020037
Utilizing some properties of multivariate Baskakov–Kantorovich operators and using $ K $-functional and a decomposition technique, the authors find two equivalent theorems between the $ K $-functional and modulus of smoothness, and obtain a direct theorem in the Orlicz spaces.
[1] | Direct results for certain summation-integral type Baskakov–Szász operators. Results Math. (2017) 72: 1161-1180. |
[2] | Generalized Baskakov–Durrmeyer type operators. Rend. Circ. Mat. Palermo (2014) 63: 193-209. |
[3] | V. A. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR (N.S.), 113 (1957), 249–251. (Russian) |
[4] | F. L. Cao and Y. F. An, $L^p$ approximation by multivariate Baskakov–Durrmeyer operator, J. Inequal. Appl., 2011 (2011), Art. ID 158219, 7 pp. doi: 10.1155/2011/158219 |
[5] | $L^p$ approximation by multivariate Baskakov–Kantorovich operators. J. Math. Anal. Appl. (2008) 348: 856-861. |
[6] | On multivariate Baskakov operators. J. Math. Anal. Appl. (2005) 307: 274-291. |
[7] | Mixed and directional derivatives. Proc. Amer. Math. Soc. (1990) 108: 177-185. |
[8] | Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, 9. Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4778-4 |
[9] | Durrmeyer type modification of generalized Baskakov operators. Appl. Math. Comput. (2011) 218: 4384-4390. |
[10] | Approximation of functions by Baskakov–Kantorovich operator. Results Math. (2016) 70: 385-400. |
[11] | Strong converse result for Baskakov operator. Serdica Math. J. (2014) 40: 273-318. |
[12] | Local and global results for modified Szász-Mirakjan operators. Math. Methods Appl. Sci. (2017) 40: 2491-2504. |
[13] | Bézier variant of the generalized Baskakov Kantorovich operators. Boll. Unione Mat. Ital. (2016) 8: 229-238. |
[14] | The central approximation theorems for Baskakov–Bézier operators. J. Approx. Theory (2007) 147: 112-124. |
[15] | On Baskakov–Szász–Mirakyan-type operators preserving exponential type functions. Positivity (2018) 22: 919-929. |
[16] | Generalized weighted Morrey estimates for Marcinkiewicz integrals with rough kernel associated with Schrödinger operator and their commutators. Chin. Ann. Math. Ser. B (2020) 41: 77-98. |
[17] | Local campanato estimates for multilinear commutator operators with rough kernel on generalized local morrey spaces. J. Coupled Syst. Multiscale Dyn. (2018) 6: 71-79. |
[18] | Some estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces. Canad. Math. Bull. (2017) 60: 131-145. |
[19] | Sublinear operators with rough kernel generated by Calderón-Zygmund operators and their commutators on generalized Morrey spaces. Math. Notes (2017) 101: 429-442. |
[20] | Weighted Morrey and weighted fractional Sobolev-Morrey spaces estimates for a large class of pseudo-differential operators with smooth symbols. J. Pseudo-Differ. Oper. Appl. (2016) 7: 595-607. |
[21] | L.-X. Han, B.-N. Guo and F. Qi, Equivalent theorem of approximation by linear combination of weighted Baskakov–Kantorovich operators in Orlicz spaces, J. Inequal Appl., 2019 (2019), 18 pp. doi: 10.1186/s13660-019-2174-8 |
[22] | L.-X. Han and F. Qi, On approximation by linear combinations of modified summation operators of integral type in Orlicz spaces, Mathematics, 7 (2019), Art. 6, 10 pp. doi: 10.3390/math7010006 |
[23] | Approximation by modified summation integral type operators in Orlicz spaces. Math. Appl. (Wuhan) (2017) 30: 613-622. |
[24] | L.-X. Han and G. Wu, Strong converse inequality of weighted simultaneous approximation for Gamma operators in Orlicz spaces $L^*_\Phi(0, \infty)$, Appl. Math. J. Chinese Univ. Ser. A, 31 (2016), 366–378. (Chinese) |
[25] | L.-X. Han, G. Wu and G. Liu, The equivalence of the smooth modulus with weights and a $K$-functional in Orlicz spaces and it's application, Acta Math. Sci. Ser. A, 34 (2014), 95–108. (Chinese) |
[26] | Approximation by generalized Baskakov–Durrmeyer–Stancu type operators. Rend. Circ. Mat. Palermo (2016) 65: 411-424. |
[27] | Hypergeometric representation for Baskakov–Durrmeyer–Stancu type operators. Bull. Math. Anal. Appl. (2013) 5: 18-26. |
[28] | On simultaneous approximation for Baskakov–Durrmeyer–Stancu type operators. J. Ultra Scientist Phys. Sci. A (2012) 24: 567-577. |
[29] | V. N. Mishra, K. Khatri and L. N. Mishra, Some approximation properties of $q$-Baskakov–Beta–Stancu type operators, Journal of Calculus of Variations, 2013 (2013), Art. ID 814824, 8 pp. doi: 10.1155/2013/814824 |
[30] | V. N. Mishra, K. Khatri, L. N. Mishra and Deepmala, Inverse result in simultaneous approximation by Baskakov–Durrmeyer–Stancu operators, J. Inequal. Appl., 2013 (2013), 11 pp. doi: 10.1186/1029-242X-2013-586 |
[31] | M. M. Rao and Z. D. Ren, Theory of Orlicz Space, Monographs and Textbooks in Pure and Applied Mathematics, 146. Marcel Dekker, Inc., New York, 1991. |
[32] | An interpolation theorem and its applications to positive operators. Pacific J. Math. (1984) 111: 447-481. |
[33] | Approximation by Bernstein polynomials. Amer. J. Math. (1994) 116: 995-1018. |
[34] | Some approximation properties of Baskakov–Durrmeyer–Stancu operators. Appl. Math. Comput. (2012) 218: 6549-6556. |
[35] | Preservation properties of the Baskakov–Kantorovich operators. Comput. Math. Appl. (2009) 57: 1450-1455. |