In this paper, we study the Banach $ * $-probability space $ (A\otimes_{\Bbb{C}}\Bbb{LS}, $ $ \tau_{A}^{0}) $ generated by a fixed unital $ C^{*} $-probability space $ (A, $ $ \varphi_{A}), $ and the semicircular elements $ \Theta_{p,j} $ induced by $ p $-adic number fields $ \Bbb{Q}_{p}, $ for all $ p $ $ \in $ $ \mathcal{P}, $ $ j $ $ \in $ $ \Bbb{Z}, $ where $ \mathcal{P} $ is the set of all primes, and $ \Bbb{Z} $ is the set of all integers. In particular, from the order-preserving shifts $ g\times h_{\pm } $ on $ \mathcal{P} $ $ \times $ $ \Bbb{Z}, $ and $ * $-homomorphisms $ \theta $ on $ A, $ we define the corresponding $ * $-homomorphisms $ \sigma_{(\pm ,1)}^{1:\theta } $ on $ A\otimes_{\Bbb{C}}\Bbb{LS}, $ and consider free-distributional data affected by them.
Citation: Ilwoo Cho. Certain $*$-homomorphisms acting on unital $C^{*}$-probability spaces and semicircular elements induced by $p$-adic number fields over primes $p$[J]. Electronic Research Archive, 2020, 28(2): 739-776. doi: 10.3934/era.2020038
In this paper, we study the Banach $ * $-probability space $ (A\otimes_{\Bbb{C}}\Bbb{LS}, $ $ \tau_{A}^{0}) $ generated by a fixed unital $ C^{*} $-probability space $ (A, $ $ \varphi_{A}), $ and the semicircular elements $ \Theta_{p,j} $ induced by $ p $-adic number fields $ \Bbb{Q}_{p}, $ for all $ p $ $ \in $ $ \mathcal{P}, $ $ j $ $ \in $ $ \Bbb{Z}, $ where $ \mathcal{P} $ is the set of all primes, and $ \Bbb{Z} $ is the set of all integers. In particular, from the order-preserving shifts $ g\times h_{\pm } $ on $ \mathcal{P} $ $ \times $ $ \Bbb{Z}, $ and $ * $-homomorphisms $ \theta $ on $ A, $ we define the corresponding $ * $-homomorphisms $ \sigma_{(\pm ,1)}^{1:\theta } $ on $ A\otimes_{\Bbb{C}}\Bbb{LS}, $ and consider free-distributional data affected by them.
[1] | Albeverio S., Jorgensen P. E. T., Paolucci A. M. (2012) On fractional Brownian motion and wavelets. Compl. Anal. Oper. Theo. 6: 33-63. |
[2] |
S. Albeverio, P. E. T. Jorgensen and A. M. Paolucci, Multiresolution wavelet analysis of integer scale Bessel functions, J. Math. Phy., 48 (2007), 073516, 24 pp.
10.1063/1.2750291 MR2337697 |
[3] | Alpay D., Jorgensen P. E. T., Levanony D. (2017) On the equivalence of probability spaces. J. Theo. Prob. 30: 813-841. |
[4] |
D. Alpay, P. E. T. Jorgensen and D. P. Kimsey, Moment problems in an infinite number of variables, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18 (2015), 1550024, 14 pp.
10.1142/S0219025715500241 MR3447225 |
[5] | Alpay D., Jorgensen P. E. T. (2015) Spectral theory for Gaussian processes: Reproducing kernels. Random Functions and Operator Theory 83: 211-229. |
[6] | Alpay D., Jorgensen P. (2015) Spectral theory for Gaussian processes: Reproducing kernels, boundaries, & $L_{2}$ -wavelet generators with fractional scales. Numb. Funct. Anal, Optim. 36: 1239-1285. |
[7] | Alpay D., Jorgensen P., Salomon G. (2014) On free stochastic processes and their derivatives. Stochastic Process. Appl. 124: 3392-3411. |
[8] | Cho I. (2017) Free semicircular families in free product Banach $\ast$-algebras induced by $p$-adic number fields over primes $p$. Compl. Anal. Oper. Theo. 11: 507-565. |
[9] | Cho I. (2017) Adelic analysis and functional analysis on the finite adele ring. Opuscula Math. 38: 139-185. |
[10] | Cho I. (2019) Semicircular-like and semicircular laws on Banach $*$-probability spaces induced by dynamical systems of the finite adele ring. Adv. Oper. Theo. 4: 24-70. |
[11] | Cho I. (2016) $p$-adic free stochastic integrals for $p$-adic weighted-semicircular motions determined by primes $p$. Libertas Math. (New S.) 36: 65-110. |
[12] | Cho I., Jorgensen P. E. T. (2017) Semicircular elements induced by $p$-adic number fields. Opuscula Math. 37: 665-703. |
[13] | Connes A. (1994) Noncommutative Geometry. Inc., San Diego, CA: Academic Press. |
[14] | Bost J.-B., Connes A. (1995) Hecke algebras, type $III$-factors, and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.) 1: 411-457. |
[15] | A. Connes, Trace formula in noncommutative Geometry and the zeroes of the Riemann zeta functions, Available at: http://www.alainconnes.org/en/download.php. |
[16] | Dragovich B., Radyno Ya., Khennikov A. (2007) Distributions on adéles. J. Math. Sci. 142: 2105-2112. |
[17] | Dragovich B., Khennikov A., Mihajiović D. (2007) Linear fractional $p$-adic and adelic dynamical systems. Rep. Math. Phy. 60: 55-68. |
[18] |
T. L. Gillespie, Superposition of Zeroes of Automorphic $L$-Functions and Functoriality, Thesis (Ph.D.)–The University of Iowa, 2011, 75 pp.
MR2942141 |
[19] | Gillespie T., Ji G. H. (2011) Prime number theorems for Rankin-Selberg $L$-functions over number fields. Sci. China Math. 54: 35-46. |
[20] | Haagerup U., Larsen F. (2000) Brown's spectrial distribution measure for $R$-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176: 331-367. |
[21] | Jorgensen P. E. T., Paolucci A. M. (2012) Markov measures and extended zeta functions. J. Appl. Math. Comput. 38: 305-323. |
[22] | Jorgensen P. E. T., Paolucci A. M. (2011) States on the Cuntz algebras and $p$-adic random walks. J. Aust. Math. Soc. 90: 197-211. |
[23] | Kaygorodov I., Shestakov I., Umirbaev U. (2018) Free generic Poisson fields and algebras. Comm. Alg. 46: 1799-1812. |
[24] | Kemp T., Speicher R. (2007) Strong Haagerup inequalities for free $R$-diagonal elements. J. Funct. Anal. 251: 141-173. |
[25] | Makar-Limanov L., Shestakov I. (2012) Polynomials and Poisson dependence in free Poisson algebras and free Poisson fields. J. Alg. 349: 372-379. |
[26] |
A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, 335. Cambridge University Press, Cambridge, 2006.
10.1017/CBO9780511735127 MR2266879 |
[27] | Rǎdulescu F. (1994) Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group of nonsingular index. Invent. Math. 115: 347-389. |
[28] | Radulescu F. (2014) Free group factors and Hecke operators. The Varied Landscape of Operator Theory, Theta Ser. Adv. Math., Theta, Bucharest 17: 241-257. |
[29] |
R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc., 132 (1998).
10.1090/memo/0627 MR1407898 |
[30] | Speicher R. (2000) A conceptual proof of a basic result in the combinatorial approach to freeness. Infinit. Dimention. Anal. Quant. Prob. Relat. Topics 3: 213-222. |
[31] | Vladimirov V. S., Volovich I. V. (1989) $p$-adic quantum mechanics. Comm. Math. Phy. 123: 659-676. |
[32] |
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
10.1142/1581 MR1288093 |
[33] | Voiculescu D.-V. (2008) Aspects of free analysis. Jpn. J. Math. 3: 163-183. |
[34] | Voiculescu D. (2005) Free probability and the von Neumann algebras of free groups. Rep. Math. Phy. 55: 127-133. |
[35] |
D. V. Voiculescu, K. J. Dykemma and A. Nica, Free Random Variables: A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups, CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992.
MR1217253 |