In this paper, we consider the nonlinear Schrödinger equation on $ \mathbb{R}^N, N\ge1 $,
$ \partial_tu = i\Delta u+\lambda|u|^\alpha u , $
with $ H^2 $-subcritical nonlinearities: $ \alpha>0, (N-4)\alpha<4 $ and Re$ \lambda>0 $. For any given compact set $ K\subset\mathbb{R}^N $, we construct $ H^2 $ solutions that are defined on $ (-T, 0) $ for some $ T>0 $, and blow up exactly on $ K $ at $ t = 0 $. We generalize the range of the power $ \alpha $ in the result of Cazenave, Han and Martel [
Citation: Xuan Liu, Ting Zhang. $ H^2 $ blowup result for a Schrödinger equation with nonlinear source term[J]. Electronic Research Archive, 2020, 28(2): 777-794. doi: 10.3934/era.2020039
In this paper, we consider the nonlinear Schrödinger equation on $ \mathbb{R}^N, N\ge1 $,
$ \partial_tu = i\Delta u+\lambda|u|^\alpha u , $
with $ H^2 $-subcritical nonlinearities: $ \alpha>0, (N-4)\alpha<4 $ and Re$ \lambda>0 $. For any given compact set $ K\subset\mathbb{R}^N $, we construct $ H^2 $ solutions that are defined on $ (-T, 0) $ for some $ T>0 $, and blow up exactly on $ K $ at $ t = 0 $. We generalize the range of the power $ \alpha $ in the result of Cazenave, Han and Martel [
[1] | S. Alinhac, Blowup for Nonlinear Hyperbolic Equations. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., 17. Boston, MA, 1995. doi: 10.1007/978-1-4612-2578-2 |
[2] | A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation. São Paulo J. Math. Sci. (2015) 9: 146-161. |
[3] | Continuous dependence for NLS in fractional order spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire (2011) 28: 135-147. |
[4] | Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation. Trans. Amer. Math. Soc. (2016) 368: 7911-7934. |
[5] | T. Cazenave, Z. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, (2019), arXiv: 1906.02983. |
[6] | Finite-time blowup for a Schröding equation with nonlinear source term. Discrete Contin. Dynam. Systems. (2019) 39: 1171-1183. |
[7] | Solutions blowing up on any given compact set for the energy subcritical wave equation. J. Differential Equations (2020) 268: 680-706. |
[8] | Solutions with prescribed local blow-up surface for the nonlinear wave equation. Adv. Nonlinear Stud. (2019) 19: 639-675. |
[9] | Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete Contin. Dyn. Syst. (2019) 39: 1171-1183. |
[10] | C. Collot, T. E. Ghouland N. Masmoudi, Singularity formation for Burgers equation with transverse viscosity, (2018), arXiv: 1803.07826. |
[11] | A multivariate Faa di Bruno formula with applications. Trans. Amer. Math. Soc. (1996) 348: 503-520. |
[12] | On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. (1987) 46: 113-129. |
[13] | S. Kawakami and S. Machihara, Blowup solutions for the nonlinear Schrödinger equation with complex coefficient, (2019), arXiv: 1905.13037. |
[14] | The radial mass-subcritical NLS in negative order Sobolev spaces. Discrete Contin. Dyn. Syst. (2019) 39: 553-583. |
[15] | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Amer. J. Math. (2005) 127: 1103-1140. |
[16] | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Comm. Math. Phys. (1990) 129: 223-240. |
[17] | O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete Contin. Dyn. (2002) 8: 435-450. |
[18] | On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Comm. Math. Phys. (2015) 333: 1529-1562. |
[19] | I. Moerdijk and G. Reyes, Models for Smooth Infinitesimal Analysis, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4757-4143-8 |
[20] | Construction of a blow-up solution for the complex ginzburg-landau equation in a critical case. Arch. Ration. Mech. Anal. (2018) 228: 995-1058. |
[21] | Solutions of semilinear Schrödinger equations in $H^s$. Ann. Inst. H. Poincareé Phys. Théor. (1997) 67: 259-296. |
[22] | Compact sets in the space $L^p(0, T; B)$. Ann. Mat. Pura Appl. (1987) 146: 65-96. |
[23] | J. Speck, Stable ODE-type blowup for some quasilinear wave equations with derivative-quadratic nonlinearity, Analysis and PDE, 13 (2020), 93–146, arXiv: 1709.04778. doi: 10.2140/apde.2020.13.93 |
[24] | Global well-posedness of semilinear hyperbolic equations, parabolic equations and Schrödinger equations. Electron. J. Differential Equations (2018) 2018: 1-52. |
[25] | Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential. Adv. Nonlinear Anal. (2020) 9: 882-894. |