In this paper, we demonstrate the local well-posedness and blow up of solutions for a class of time- and space-fractional diffusion wave equation in a fractional power space associated with the Laplace operator. First, we give the definition of the solution operator which is a noteworthy extension of the solution operator of the corresponding time-fractional diffusion wave equation. We have analyzed the properties of the solution operator in the fractional power space and Lebesgue space. Next, based on some estimates of the solution operator and source term, we prove the well-posedness of mild solutions by using the contraction mapping principle. We have also investigated the blow up of solutions by using the test function method. The last result describes the properties of mild solutions when $ \alpha\rightarrow1^- $. The main feature of the proof is the reasonable use of continuous embedding between fractional space and Lebesgue space.
Citation: Yaning Li, Mengjun Wang. Well-posedness and blow-up results for a time-space fractional diffusion-wave equation[J]. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162
In this paper, we demonstrate the local well-posedness and blow up of solutions for a class of time- and space-fractional diffusion wave equation in a fractional power space associated with the Laplace operator. First, we give the definition of the solution operator which is a noteworthy extension of the solution operator of the corresponding time-fractional diffusion wave equation. We have analyzed the properties of the solution operator in the fractional power space and Lebesgue space. Next, based on some estimates of the solution operator and source term, we prove the well-posedness of mild solutions by using the contraction mapping principle. We have also investigated the blow up of solutions by using the test function method. The last result describes the properties of mild solutions when $ \alpha\rightarrow1^- $. The main feature of the proof is the reasonable use of continuous embedding between fractional space and Lebesgue space.
[1] | B. Shiri, H. Kong, G. Wu, C. Luo, Adaptive learning neural network method for solving time fractional diffusion equations, Neural Comput., 34 (2022), 971–990. https://doi.org/10.1162/neco_a_01482 doi: 10.1162/neco_a_01482 |
[2] | M. Fec, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017 |
[3] | L. Gaul, P. Klein, S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Pr., 5 (1991), 81–88. https://doi.org/10.1016/0888-3270(91)90016-x doi: 10.1016/0888-3270(91)90016-x |
[4] | E. Nane, Fractional Cauchy problems on bounded domains: survey of recent results, in Fractional Dynamics and Control, New York, NY: Springer New York, (2011), 185–198. https://doi.org/10.1007/978-1-4614-0457-6_15 |
[5] | R. Sakthivel, P. Revathi, Y. Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlinear Anal.: Theory, Methods Appl., 81 (2013), 70–86. https://doi.org/10.1016/j.na.2012.10.009 doi: 10.1016/j.na.2012.10.009 |
[6] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993. https://api.semanticscholar.org/CorpusID: 118631078 |
[7] | R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37 (2004), R161. https://doi.org/10.1088/0305-4470/37/31/R01 doi: 10.1088/0305-4470/37/31/R01 |
[8] | A. G. Atta, Y. H. Youssri, Shifted second-kind Chebyshev spectral collocation-based technique for time-fractional KdV-Burgers' equation, Iran. J. Math. Chem., 14 (2023), 207–224. https://doi.org/10.22052/IJMC.2023.252824.1710 doi: 10.22052/IJMC.2023.252824.1710 |
[9] | R. M. Hafez, Y. H. Youssri, A. G. Atta, Jacobi rational operational approach for time-fractional sub-diffusion equation on a semi-infinite domain, Contemp. Math., (2023), 853–876. https://doi.org/10.37256/cm.4420233594 doi: 10.37256/cm.4420233594 |
[10] | R. M. Hafez, Y. H. Youssri, Fully Jacobi-Galerkin algorithm for two-dimensional time-dependent PDEs arising in physics, Int. J. Mod. Phys. C, 35 (2024), 1–24. https://doi.org/10.1142/S0129183124500347 doi: 10.1142/S0129183124500347 |
[11] | M. Moustafa, Y. H. Youssri, A. G. Atta, Explicit Chebyshev-Galerkin scheme for the time-fractional diffusion equation, Int. J. Mod. Phys. C, 35 (2024), 1–15. https://doi.org/10.1142/S0129183124500025 doi: 10.1142/S0129183124500025 |
[12] | Y. H. Youssri, M. I. Ismail, A. G. Atta, Chebyshev Petrov-Galerkin procedure for the time-fractional heat equation with nonlocal conditions, Phys. Scr., 99 (2023), 015251. https://doi.org/10.1088/1402-4896/ad1700 doi: 10.1088/1402-4896/ad1700 |
[13] | W. R. Schneider, W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), 134–144. https://doi.org/10.1063/1.528578 doi: 10.1063/1.528578 |
[14] | P. Clement, S. O. Londen, G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces, J. Differ. Equations, 196 (2004), 418–447. https://doi.org/10.1016/j.jde.2003.07.014 doi: 10.1016/j.jde.2003.07.014 |
[15] | R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equations, 5 (2005), 79–103. https://doi.org/10.1007/s00028-004-0161-z doi: 10.1007/s00028-004-0161-z |
[16] | Z. Wang, L. Sun, The allen-cahn equation with a time caputo-hadamard derivative: Mathematical and numerical analysis, Commun. Anal. Mech., 15 (2023), 611–637. https://doi.org/10.3934/cam.2023031 doi: 10.3934/cam.2023031 |
[17] | M. Kirane, Y. Laskri, N. E. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl., 312 (2005), 488–501. https://doi.org/10.1016/j.jmaa.2005.03.054 doi: 10.1016/j.jmaa.2005.03.054 |
[18] | Q. Zhang, Y. Li, Global well-posedness and blow-up solutions of the Cauchy problem for a time-fractional superdiffusion equation, J. Evol. Equations, 19 (2019), 271–303. https://doi.org/10.1007/s00028-018-0475-x doi: 10.1007/s00028-018-0475-x |
[19] | Q. Zhang, Y. Li, The critical exponents for a time fractional diffusion equation with nonlinear memory in a bounded domain, Appl. Math. Lett., 92 (2019), 1–7. https://doi.org/10.1016/j.aml.2018.12.021 doi: 10.1016/j.aml.2018.12.021 |
[20] | A. Z. Fino, M. Kirane, Qualitative properties of solutions to a time-space fractional evolution equation, Q. Appl. Math., 70 (2012), 133–157. https://doi.org/10.1090/s0033-569x-2011-01246-9 doi: 10.1090/s0033-569x-2011-01246-9 |
[21] | B. de Andrade, G. Siracusa, A. Viana, A nonlinear fractional diffusion equation: Well-posedness, comparison results, and blow-up, J. Math. Anal. Appl., 505 (2022), 125524. https://doi.org/10.1016/j.jmaa.2021.125524 doi: 10.1016/j.jmaa.2021.125524 |
[22] | B. de Andrade, A. Viana, On a fractional reaction-diffusion equation, Z. Angew. Math. Phys., 68 (2017), 1–11. https://doi.org/10.1007/s00033-017-0801-0 doi: 10.1007/s00033-017-0801-0 |
[23] | B. de Andrade, T. S. Cruz, Regularity theory for a nonlinear fractional reaction-diffusion equation, Nonlinear Anal., 195 (2020), 111705. https://doi.org/10.1016/j.na.2019.111705 doi: 10.1016/j.na.2019.111705 |
[24] | B. de Andrade, C. Cuevas, H. Soto, On fractional heat equations with non-local initial conditions, Proc. Edinburgh Math. Soc., 59 (2016), 65–76. https://doi.org/10.1017/s0013091515000590 doi: 10.1017/s0013091515000590 |
[25] | Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations, Fract. Calc. Appl. Anal., 20 (2017), 117–138. https://doi.org/10.1515/fca-2017-0006 doi: 10.1515/fca-2017-0006 |
[26] | E. Alvarez, C. G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24–61. https://doi.org/10.1016/j.na.2018.10.016 doi: 10.1016/j.na.2018.10.016 |
[27] | E. Otarola, A. J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach, Fract. Calc. Appl. Anal., 21 (2018), 1262–1293. https://doi.org/10.1515/fca-2018-0067 doi: 10.1515/fca-2018-0067 |
[28] | R. Wang, N. H. Can, A. T. Nguyen, N. H. Tuan, Local and global existence of solutions to a time fractional wave equation with an exponential growth, Commun. Nonlinear Sci., 118 (2023), 107050. https://doi.org/10.1016/j.cnsns.2022.107050 doi: 10.1016/j.cnsns.2022.107050 |
[29] | M. F. de Almeida, L. C. Ferreira, Self-similarity, symmetries and asymptotic behavior in Morrey spaces for a fractional wave equation, Differ. Integral. Equations, 25 (2012), 957–976. https://doi.org/10.57262/die/1356012377 doi: 10.57262/die/1356012377 |
[30] | Y. Li, H. Sun, Z. Feng, Fractional abstract Cauchy problem with order $\alpha\in (1, 2) $, Dyn. Part. Differ. Equations, 13 (2016), 155–177. https://doi.org/10.4310/DPDE.2016.v13.n2.a4 doi: 10.4310/DPDE.2016.v13.n2.a4 |
[31] | H. Amann, On abstract parabolic fundamental solutions, J. Math. Soc. Jpn., 39 (1987), 93–116. https://doi.org/10.2969/jmsj/03910093 doi: 10.2969/jmsj/03910093 |
[32] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 840 (2006). https://doi.org/10.1007/BFb0089647 |