This study focused on a coupled nonlinear wave equation system featuring fractional damping and polynomial source terms within a bounded domain. We demonstrated that, under specific conditions, the solutions exhibited blow-up in a finite time-frame.
Citation: Abdelhadi Safsaf, Suleman Alfalqi, Ahmed Bchatnia, Abderrahmane Beniani. Blow-up dynamics in nonlinear coupled wave equations with fractional damping and external source[J]. Electronic Research Archive, 2024, 32(10): 5738-5751. doi: 10.3934/era.2024265
This study focused on a coupled nonlinear wave equation system featuring fractional damping and polynomial source terms within a bounded domain. We demonstrated that, under specific conditions, the solutions exhibited blow-up in a finite time-frame.
[1] | M. Caputo, Linear Models of Dissipation whose $Q$ is almost Frequency Independent—Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[2] | K. Agre, M.A. Rammaha, System of nonlinear wave equations with damping and source terms, Differ. Integr. Equations, 19 (2006), 1235–1270. https://doi.org/10.57262/die/1356050301 doi: 10.57262/die/1356050301 |
[3] | C. O. Alves, M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differ. Equations, 34 (2009), 377–411. https://doi.org/10.1007/s00526-008-0188-z doi: 10.1007/s00526-008-0188-z |
[4] | X. Han, M. Wang, Global existence and blow-up of solution for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Anal., 71 (2009), 5427–5450. https://doi.org/10.1016/j.na.2009.04.031 doi: 10.1016/j.na.2009.04.031 |
[5] | M. Kirane, N. Tatar, Exponential growth for fractionally damped wave equations, Z. Anal. Anwend., 22 (2003), 167–178. https://doi.org/10.4171/zaa/1137 doi: 10.4171/zaa/1137 |
[6] | D. Matignon, J. Audounet, G. Montseny, Energy decay for wave equations with damping of fractional order, 1998. Available from: https://www.researchgate.net/publication/2757992_Energy_Decay_for_Wave_Equations_with_Damping_of_Fractional_order. |
[7] | N. Tatar, A blow-up result for a fractionally damped wave equation, Nonlinear Differ. Equations Appl. NoDEA, 12 (2005), 215–226. https://doi.org/10.1007/s00030-005-0015-6 doi: 10.1007/s00030-005-0015-6 |
[8] | M. R. Alaimia, N. Tatar, Blow up for the wave equation with a fractional damping, J. Appl. Anal., 11 (2005), 133–144. https://doi.org/10.1515/JAA.2005.133 doi: 10.1515/JAA.2005.133 |
[9] | J. M. Ball, Remarks on blow up and non-existence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473–486. |
[10] | H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the form $P u_tt = Au + F(u)$, Trans. Am. Math. Soc., 192 (1974), 1–21. https://doi.org/10.2307/1996814 doi: 10.2307/1996814 |
[11] | H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations of the form $P u_tt = Au + F(u)$, SIAM J. Math. Anal., 5 (1974), 138–146. https://doi.org/10.1137/0505015 doi: 10.1137/0505015 |
[12] | V. Georgiev, G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differ. Equations, 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051 |
[13] | J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations, J. Differ. Equations, 27 (1978), 224–265. https://doi.org/10.1016/0022-0396(78)90032-3 doi: 10.1016/0022-0396(78)90032-3 |
[14] | J. A. Nohel, D. F. Shea, Frequency domain methods for Volterra equations, Adv. Math., 22 (1976), 278–304. https://doi.org/10.1016/0001-8708(76)90096-7 doi: 10.1016/0001-8708(76)90096-7 |
[15] | G. Gripenberg, S. O. Londen, O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511662805 |