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1. Introduction

In this study, we examine the following problem:

« - 3 prl
Qi+ 000 = Ap+ o+ Yl @+ )+l T el T, xeQ, >0,
+1 -3
Y+ N = Mg+l + P (0 + ) + W T vl T, xeQ, >0,

o(x, 1) = ¥(x, 1) =0, x€dQ, t>0, (1.1)
@(x,0) = @o(x),  @i(x,0) = p1(x), x €Q,
w(x, 0) = $0(x)9 (v[/t(xa O) = l/ll(X), X € Q,

where Q is a bounded domain with a smooth boundary dQ in R”. The constants p and « satisty

2<p<E n>3,

{2<p<oo, n=1,2,
n-2°
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and 0 < a, B < 1. The functions ¢y(x), ¢1(x), Yo(x), and ¥ (x) are given.
The symbol 97" denotes the Caputo fractional derivative of order a with respect to the time variable 7,
where 0 < @ < 1. It is defined as:

o 1 ' v AW
(91"7]‘/‘/(1):mfoV (I—S) e n )%(S)ds,rlzo,

which was introduced by Michele Caputo in [1].

Problems of this type arise in material science and physics, particularly in the study of wave
propagation in viscoelastic materials, fluid dynamics, and structural mechanics. These models are
used to describe the behavior of materials with memory effects, where the damping terms are often
nonlocal or fractional in nature. Such systems have been widely studied in the context of their
stability, energy decay, and response to external forces (see, for example, [2—4]). The fractional
damping terms in the model are used to capture more complex dissipative effects that arise in these
physical systems, leading to more accurate descriptions of the material behavior under stress and
deformation. Agre and Rammaha [2] established both existence and blow-up results for systems of
the form (1.1), specifically when the initial energy is sufficiently small and positive. More recently,
Han and Wang [4] extended these results to address systems involving a viscoelastic term, further
generalizing the analysis conducted in [2].

In the case of a single wave equation given by

(2 8?’7790 =Ap + a|¢|p_190,

Kirane and Tatar [S] demonstrated that solutions exhibit exponential growth when the initial data is
sufficiently large. Matignon et al. [6] explored the case where a = 0, achieving results on
well-posedness and asymptotic stability by reformulating the problem into a standard form. Tatar [7]
employed Fourier transform techniques and the Hardy-Littlewood-Sobolev inequality to establish the
finite-time blow-up of solutions. Additionally, [8] showed that finite-time blow-up can occur
independently of the time variable T associated with the initial data.

Without internal fractional damping, a polynomial source can lead to finite-time blow-up for solutions
with negative initial energy [9-11]. In [12], Georgiev and Todorova demonstrated that the solution
remains global if p < m, whereas solutions blow up in finite time if this condition is not met. Ball [9]
established finite-time blow-up in certain scenarios using continuation theorems for ordinary
differential equations within Banach spaces. Additional theorems in different contexts are discussed
in [13].

Motivated by the aforementioned research, we consider a coupled system with fractional
derivatives. This choice is driven by the growing interest in recent years within the scientific
community to explore the complex dynamics and practical applications of wave equations. The
extension to fractional derivatives is significant because they offer more accurate models for systems
exhibiting memory effects and complex dissipation properties, which are commonly encountered in
practical scenarios, such as material microstructure analysis. Introducing fractional derivatives into
the coupled system is novel in the context of wave equations with external sources, allowing for a
more realistic modeling of dissipative effects in various materials and structures. Our results provide
new insights into the blow-up behavior of systems with fractional derivatives.
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The rest of the paper is organized as follows: In Section 2, we present some preliminary results that
will be useful throughout the paper. In Section 3, we provide the main result concerning the blow-up
behavior of the solutions of the system and offer a detailed proof.

2. Preliminaries

For a solution (¢, ¢) to the problem (1.1), the energy functional is given by

_ 1 2 2 1 2 2 1 1
E(t) = EL(¢I+¢/,)dx+§L(|V90I +|Vgl/|)dx—m Q|¥,Jr¢,|p+ dx

N 2.1)
ol = |y] = dx.

p+1Jo

In this definition, the classical energy functional E(¢) is described in terms of kinetic and potential
energy, along with additional interaction terms.
To analyze the behavior of this energy functional, we state and prove the following lemma.

Lemma 2.1. Assume (¢, ) is a regular solution to problem (1.1). The energy functional, as defined

by (2.1), satisfies
dE(t 1 ' ,
% T Ta-o fg% fo =97 V) drds

1

F=5) fg v fo (t = )Py (s) ds dx,

and we deduce E(t) < E(0), Yt > 0.

(2.2)

Proof. By multiplying the first equation in (1.1) by ¢, and the second equation by i, then integrating
over Q and applying integration by parts, we derive Eq (2.2). Determining the sign of this functional is
not immediately apparent; however, Nohel and Shea demonstrated in [14] that a real function a(z, x) €
LI (R*; L>(Q)) is of positive type if it satisfies the following condition:

loc
T t
f fh(t)f a(t — s)h(s)dsdo dt > 0, (2.3)
0 Jo 0

for all h € C(R*; H'(Q)) and for every T > 0.
Next, by substituting ¢ with z and integrating Eq (2.2) from O to ¢, we obtain:

1 ! <
E(t) - EQ0) = Ta-o f f(,ot(Z)f (z— 8%, (s)ds dx dz
TR T (24)
“Ta ) f flﬂz(z)f (z— 8)Pe™ Ny (s)ds dx dz.
- 0 Jo 0
Using condition (2.3), we directly deduce the classical energy inequality:
Yt >0, EQO)=>E(®).

m]
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The following lemma will be beneficial for what follows.

Lemma 2.2. There exist positive constants ¢, and c, such that

2
p+1

1 1 1 biad) 1 1
or (I + 1yl £ ——lx+ 3P+ —— Il T <o (e + i),

p+1
forall x,y € R.

Proof. To start, using the inequality 2ab < a* + b?, we obtain:

p+1

p+1 1
S 1ul5 - p+1 p+1
T T < o (bt + ).

Next, we use the fact that 4(x) := |x|*! is convex over R,, and so
e+ 17 <27 (1t + i),
By combining the results above, we obtain:

1 2P+ 1
lxy| z <

+ylP +
e+ p+1 p+1

7 (Ix7*! + i), (2.5)

On the other hand, we can suppose that |y| < |x|, and so:
bt = ey =yt < 27l it + i)
< 27 (a1l

Therefore,
P ! < 200 (bl il ). 2.6)

Finally, by combining (2.5) and (2.6), we have demonstrated that there exist positive constants ¢; and
¢, such that:

Ix + y[P +

1 1 s 1 1
o (It + i) < oyl > < o (Ja*t + ).

+1 p+1

3. Blow-up of solutions in finite time

Denote by 7* the maximal interval of time for which a solution is defined. When T* # +oo, the

solution is said to blow up in finite time. Blow-up means that a singularity forms that prevents the
solution from being extended beyond T*. If we examine the ordinary differential equation related to
the one-dimensional (1D) semi-linear wave equation: u, = |u|’"'u, it is known that its solutions
exhibit blow-up in finite time. This observation supports our assertion that the solution of our system
also experiences blow-up in finite time.
This phenomenon can have two interpretations. If it arises in the modeling of a physical phenomenon
for which it has no meaning, it signifies that the model is oversimplified; this is linked with the
instability of numerical schemes that one could employ. It can also be of physical relevance (finite
time collapse of a star, shocks, etc.).

In this section, we are ready to state and prove our result. To begin, we present a local existence
theorem, which can be established using [12] and easily adapted to the case of a system of equations:
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Theorem 3.1. Let (g, ¢1) and (Yo, Y1) € H(I)(Q) x L*(Q) be given. Suppose p satisfies

2<p<oo, forn=1,2,
2<p§nzT”2, forn > 3.

Then, the problem (1.1) has a unique local solution

(@, %) € CU0, T,0); Hy(), (g1, 1) € C(10, T,n); L) N L),
for some T,, > 0.
We now present and prove the main result of our study.

Theorem 3.2. Let (¢, ) be the solution of the system (1.1), and assume that the initial data ¢, and ¥

satisfies
f((p(z) + ;[/%) dx # 0.
Q

Then, for any T > O, there exist T* < T and sufficiently large initial data such that (¢, ) blows up
atT".

Proof. To ensure clarity, we will break the proof into several steps.
Step 1. We introduce the functional H(¢) defined by:

H(t) = — f E(s)ds + (dt + ) f (5 + w5 dx,
0 Q

where d and [ are positive constants whose values will be specified later.
Since the proof relies on a contradiction argument, we will associate the function H with the function
Y defined in Step 2. We assume that the solution exists up to time 7" and derive an inequality of the
form ¥’ (¢) > CW°(r) with § > 1. Integrating this inequality demonstrates that, under certain conditions,
the solution cannot exist for all time up to 7'.

Differentiating H(¢) in relation to ¢, one gets:

(95 +y3) dx>d f (3 +w) dx - E(0). 3.1)

Q

H'(t) = —=E(t) + df

Q

Selecting d ensures that H’(0) > 0. It is sufficient to select d such that:

H'(0)= —E©0) +d f (5 +u3) dx > 0.
Q
By virtue of (2.4) and (3.1), it follows that:
H'(0)- H'(t) = E(t) — E(0)

1 t 54 o (e
= _F(l _ CZ) L L%(Z)](; (Z - S) e t )‘,01(5) ds dXdZ (32)
1

t : _ ¢\ B, nz—s)
I'(l _ﬁ)ﬁ L%(Z)]{; (z—95)Pe™ v (s)dsdxdz < 0.
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Step 2. We define the functional

Y() = H (1) + g( fg (¢* +y?) dx - fg (8 +w3) dx), (3.3)

where e >0and 0 < y < 2(’;1]).
Initially, we have

I-y
\P<0>=H‘-7<0):(l f (5 +v5) dX) -
Q

Differentiating (3.3) in relation to ¢ gives

V(@) =0-pH?OH'®) +¢ fQ (@i + yy) dx. (3.4)

Further differentiating (3.4) and then integrating yields:

V() =A-yH7OH @) + 8f9(900901 + o) dx

+8ftf(got2 +lp,2) dxds (3.5)
0 Ja

+3f f(‘ﬁ‘ﬁzt"‘wl//zt) dxds.
0 Q

To assess the last term on the righthand side of (3.5), we multiply the first and second equations of
problem (1.1) by ¢ and ¥, respectively, and integrate over X (0, 7). This yields:

! A
ff(‘ﬁ%t"“//%t) dXdS:—ff(|VQO|2+|Vl/I|2) dxds
0 Jo 0 Jo
7)) fevor
lo+ Yl dxds
p+1Jp Q‘p v
1 ! p+l p+1
+—ff|§0|2|lﬁ|2dde (3.6)
r+t1Jy Ja
1 ! A
r(l a>f f Spf (s =2) e P (2) dzdxds
- 0o Ja Jo

1 4 s
- _ N\ B,n(s—2)
ra-pg \f(; j;l’//j; (s —2) e V(2)dzdxds.

Inserting the relation (3.6) into (3.5), one gets

V() =10 -nH7OH (1) + 8f (pop1 + Yoy1) dx
Q

A !
p f f (@7 +y?) dxds - f f (Ve + Vyl?) dxds
0 Ja 0 Ja
E ! 28 ! p+1 p+1
+ f f lo + P dxds + f f lo| = |7 dxds (3.7
p+1Jo Ja p+1Jo Ja
e tf fs
- (s —2) %D (z)dzdxds
ri-a fo o Jo i’

- © t ' — B, n(s—2)
rda —ﬁ)LLwL(S 2)"e " (z) dzdx ds.
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We introduce the extension operators over the entire domain in the following manner:

w ifsel0,1],

Lw(S)={ :
0 ifseR\[O0,1],

and

Kkg(s) if s >0,
Lis(s) = {o ifs<0

where the kernel is defined by
y—1

—, O<vy<l1.
T(1-y) Y

Ky(t) =

We start with the following equation:

f @(s) f S(s—z)_asoz(z)dzds: f Le(s) f Lk (s — 2) (L) (2) dz ds. (3.8)
Ira-a J 0 R R

Using Parseval’s theorem, we rewrite the left-hand side of (3.8) as:

f Le(s) f Lk, (s — 2) (L) (2) dzds = f F(Lp)(0)F (L, * Lo)(0) do,
R R

where F(f) represents the standard Fourier transform of f.
Using the convolution property, we obtain:

Kyn(t) = k(1) * kp(t), O0<7y,m<]1.

Applying the Cauchy-Schwarz and Young inequalities, we obtain:

f Le(s) f Lo (s = 2)(Lgp)(2) dzds < ( f |F(Lkg)F (LSD)IZdG)2 ( f |F(Lkg)F(Lg) d(f)
R R R R (3.9)

1
<6 f |F(Lks)F(Lg,) do + — f |F(Lk<)F (L) do,
R 46 R :

where 6 > 0. From (3.9), as stated in [15], we infer:

ngO(S)fLKa(S - 2)(Lo)(z2)dzds < [5fL(p,(S)(LKa * L) (s)ds
R R R

cos (%) (3.10)

15 LQD(S)(LKQ * Lg)(s) dS]

Similarly, we have:

fL(//(s) f Lig(s — 2)(Ly)(z) dzds < [6 f Ly (s)(Lkg * Liy,)(s) ds
R R

cos (%”) R G.11)

46 X Ly (s)(Lkg * Lyy)(s) ds]
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Inserting the estimates (3.10) and (3.11) into (3.7), we deduce

W) > (1 —y)HY(OH (1) + gf (o1 + Yoyry) dx + sf f o + wf dxds

+8ff |Vg0| +|Vzp| dxds+ ff|90+w|p+1dxds+ lfflgolpzllwp;ldxds

[ f ngo,(s) (Lky * L) (8)dsdx + — f nga(s) (Lky * L) (s)ds dx]
Q

46

[ f f Ly (s) (Lig * L) (s)dsdx+ 7 f f Ly(s) (Lis % Ly (s)dsdx]

an
COoS ( 2

cos
(3.12)
If we define k = min (cos ("2 ) cos (B ”)) from (3.2) we see that
_ f f Low(s) (Lky % Loy (s) ds dx — —22 f f Li(s) (Lig % L) (5) ds dx
cos cos (ﬂ ) o Jr (3.13)

> ?[H,(O) — H'(1)].

Therefore, (3.12) and (3.13) imply:

(1) > (1 —y) H'()H (1) + gf (pop1 + o) dx + sf f (@7 +v7) dxds

+sff Vel + [VyP) dxds+ fflcp+1ﬁ|””dxds+ 1ff|¢|pz”|¢|"§'dxds

o [H ) -H®] - 1ok f fDP(S) (Lko * L) (s)ds dx

E
- fg jl; Ly(s) (Lig % Ly) (s) ds dx.

(3.14)
We now estimate the last two terms in (3.14). Using the Cauchy-Schwarz inequality, we have:
! !
f f Lo(s) (Lky * L) (s)dsdx < f ( f |L¢|2ds) ( f |L/<(,*L<p|2(s)ds) dx.
o Jr o \Jr R
Then, by Young’s inequality (see [8]), we obtain:
1 t
f f Lo(s) (Lk, * L) (s)dsdx < —( f a-l ds) ( f f |L<p|2dsdx)
St I )a (3.15)
Lo|~dsd
*Tl+a f Ll ds dx.
Similarly,
! t
ff Lo(s) (LKB*Lw) (8)dsdx < —(f £ ds) (fflb,l/lzdsdx)

2
SF(I +ﬂ)LL|Ll[/I dsdx.
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Substituting relations (3.15) and (3.16) into (3.14), one gets:

) )
W(1) > [(1 —WH(1) - ‘9—] H@o+ZH O+ f (Qog1 + o) dx

+8ff +1ﬁt dxds+8ff IVgol +|Vw| dxds
P+l dxd >l dxd
p+1f0f|<p+«//| xs+p+1ff|<p| W dxds

et® ) )
45kr(a+1)fgfo Il ds dx 45kF(,B 1)[ f WI™ds dx.

Choosing 6 = MkH™(t) for some M > 0, we obtain:

+

Y1) 2 [(1 -y) - Me] HY(OH (1) + eMH 7 (H' (0) + Sf (pop1 + Yoi1) dx
Q

! t
+gff gof+w,2 dde+8ff(|V§0|2+|V¢|2) drds
Q
+1 2e ' prl o prl
|<p+w|” dxds+ lpl = W12 dxds
p+1 +1Jo Jo

gt”HV(t) f 5 ePH (1) f’ 5
T AMT(a + 1) el dsdx = et J, J, WFdsdx

(3.17)
+

To bound the last two terms in (3.17), we apply Holder’s inequality and Lemma 2.2:

! p-1 1 4 ﬁ
f f o2 ds dx < |QrT 7T ( f f |<p|”+1dxds)
0 Q 0 Q
i

<|Q|1’+‘Tp+1 ( f f |¢|P+1+|¢|P+1) dxds) (3.18)

=¢ ff ol ol 7 [y | dxd §
< — e+ + ——¢p| ? 2 ,
1 o Jo\pr1 p+y D+ 1 ol 2y xas
where C| = |Q|5;} TZ:. Similarly, we have:

2

ffwclsdxscl(ff( ! lo +ylP* + |1//|2)dxds)p+l. (3.19)
0 Jo 0o Ja\p+1 p+
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By recalling the definition of H(¢), we obtain:

[ [

2 p+1 p+1 P+l
+ P+ ——|o| T |7 | dxd
Tl ¥l p+1|90| 1 ) x S)

1 ' 1 +1 2 Ly ad 2 2 7
< p+1f0fg(p+1lso+¢fl” +—+1|sol 7 )dxds+(dt+l)fg(<po+wo)dx]

' 1 +1 5 p%
x(fOL(p+1|¢p+1//|p + |¢//| )dxds)

! ftf ! |¢+¢|P+‘+—|¢|”T”|¢/|% dxdsy (3.20)
(p+1"\Jy Ja\p+1 p+1 ’
+<dr+l>7( f (so%w%)dx) ( f f (p+l|sa+w|!’“ 2l W)dxds)“‘

7+p+] Y
<c1(ff( +1|<,o +ylt + |90| It/fIZ)dxds) +(dt+l)7(f(so§+w3)dx)
Q
><(fo fg(p+1

|90| |t//| 2 )dde) ,
where ¢; =

We choose y < 1 — ==, and one gets:

(p +1)7 +1’

Y
1+ff( +1|<P+¢|"’+1 |s0| It//I2)dde]+(dT+l)7(f(soo+¢’o)dX)

I<C1

(3.21)
+1 % %
x 1+f0 fg(p+ o +ul? +—p+ el i )dxds].
Substituting (3.18), (3.19), (3.20), and (3.21) into (3.17) yields:
W0 2 [(1 =)= Me] H7(OH () + sMH ™ (DH'(0) + & f (pogr + o) dx
Q
0 Q 0 Q
(3.22)

vo [ [ [oaqterure 2 |so|”z“|w|”¥‘)dxds
+1
co e [ (et e 2 axas|.

where B = [FC(E:I) + r%il)] [C3 +dT + 1) (fg(cpo +y7) dx) ] .
We select € > 0 such that € < =%, Then, from (3.22), we deduce:

V(1) > sf (po1 + Yoy) dx + sf f(cp, + w,) dxds

B
1__ prl dxd _fo
+8 ff(p+1|"0 d "MZ) AR V7ES
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Moreover, by adding and subtracting AeH(f) with 0 < A < p + 1, we obtain:

Y'(1) > AeH(t) + sf (o1 + Yoyry) dx + 8(1 + %)f f(go,z + :,l/,z) dxds
Q 0 Ja

A
vas f f |Vsp|2+|wx|2 dxds

—_— p+1 p+
+8( MK2 /lff( —le+ ¥l |90| yl'T )dxds

eB
—/ls(dt+l)f;2 90(2)"‘90(2) dx—M—kz.

(3.23)

We choose ¢y, ¢1, ¥, and ¢¥; such that

f (o1 + Yoyrn) dx — Al f (5 + w5) dx > 0,
Q Q

and M is sufficiently large so that

fg(sﬁo‘ﬁl + o) dx — A(dT + l)fg(gog +!,//(2)) dx> .

Next, we select b such that 0 < b < 1 — — A. Inequality (3.23) takes the form

2 t
)ffgotz+tp,2 dxds

—le+ + P+ —|90| Ilﬁlz)dde-

MK2

() > AsH(1) + s(ﬂ hl

AN

Step 3. Alternatively, we have:

H(@) + 8117 (f f (oo, + ) a,’xds)y
0

and (3.25)

( f f (0 + ) dxds)l
0 Q

(3.24)

W (1) < 275

b

K S(ff¢go,dxds)w+(ffwwtdxds)y.
0 Jo

Utilizing the Cauchy-Schwarz and Holder’s inequalities, one observes:

(fo J. w,dms)lfv < fo( [ dx) ( fl"'”f' dx) ds]u
< ( ( f ol d )( f 2|910,| dx) ds)
<ol [(foara ] ([ frorasa)
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for some c¢3 > 0. By applying Young’s inequality and Holder’s inequality again, we obtain

! = ! f = =
([ fomaca " = | [ Lopasans [ Lore "o
0 v 0 Je 0 \Wa (3.26)
! ! M !
cs [ f f |go,|2dxds+( f ds) f f lg|P*! dxds],
0 Q 0 0 Q

Similarly,

IA

IA

_prl
(p+D(1-2y)"

(ffww,dxds)l_
0 Ja

5 t t
< ¢s [ f f W.l> dxds + T* f f ] +! a’xds]. (3.27)
0 Ja 0 Ja
From (3.26) and (3.27), we have

( f f (0, + Yr) dxa's) N
0 Q

A f f (@7 +u7) dxds + T* f f (|¢|p+1+|¢|p+l)dxds] (3.28)
0 Q 0 Q

/lftf(so,2+lﬁt2)dxds+T"ftf(
0 Jo 0 Ja

Substituting (3.28) in (3.25), we get:

for some ¢4, > 0 and u =

IA

p+l

1 2 ptl
+ P ——|o T T | dxds)|.
p+1|<p Yl erl|90| || ) x S]

IA

W) < 25H@O + 25 e A [ [ (97 +v?) dxds

! 1 2 ptl p+l (329)
+ TH + Yt o+ T|yY|T | dxds|.
fofg(wlkp e LANL ) x s]
Obviously, from (3.24) and (3.29), the inequality
W5 (1) < R (1), (3.30)
holds for sufficiently large R. Integrating (3.30) implies
i 1
Y@ 2 —— ot (3.31)
Y0 - ms
provided that the expression ‘I’_I]?(O) - R(ly ) is positive. Therefore, (¢f) blows up at a
-y
certain moment R(1
<Y,
y¥=(0)

Noting that 7* depends on the fractional orders « and 5, we observe that R, which is essential in
determining T*, is related to b as expressed in Eq (3.24). Moreover, b depends on B, where B is
explicitly a function of @ and 3, as defined after Eq (3.22). This establishes the connection between
the blow-up time and the fractional parameters, further reinforcing the influence of these orders on the
solution’s behavior. O
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4. Conclusions

In this study, we have investigated the blow-up behavior of solutions to a system of nonlinear wave
equations with fractional damping and source terms. Our analysis demonstrates that the introduction of
fractional derivatives significantly impacts the stability and blow-up characteristics of the system. We
provided a detailed examination of how fractional orders influence the blow-up time 7, revealing that
T* is intricately related to the fractional orders « and . Specifically, we established that T* depends
on the parameters involved in the system, including those introduced in the energy functional.

Our results offer new insights into the dynamics of systems with fractional damping, which are
often encountered in real-world applications involving complex dissipation and memory effects. The
approach of combining classical analysis with fractional calculus not only enriches the theoretical
understanding but also opens new avenues for practical applications in material science
and engineering.

Future research could explore further implications of fractional derivatives in other nonlinear
systems and extend the analysis to higher dimensions or different types of sources and damping
mechanisms. Overall, this work contributes to a deeper understanding of fractional wave equations
and their behavior, providing a foundation for subsequent studies in this evolving field.

Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King
Khaled University for funding this work through Large Research Project under grant number
RGP2/37/45.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. M. Caputo, Linear Models of Dissipation whose Q is almost Frequency Independent—II,
Geophys. J. Int., 13 (1967), 529-5309. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

2. K. Agre, M.A. Rammaha, System of nonlinear wave equations with damping and source terms,
Differ. Integr. Equations, 19 (2006), 1235-1270. https://doi.org/10.57262/die/1356050301

3. C. O. Alves, M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of
the 2-D wave equation with exponential source, Calc. Var. Partial Differ. Equations, 34 (2009),
377-411. https://doi.org/10.1007/s00526-008-0188-z

Electronic Research Archive Volume 32, Issue 10, 5738-5751.


http://dx.doi.org/https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/https://doi.org/10.57262/die/1356050301
http://dx.doi.org/https://doi.org/10.1007/s00526-008-0188-z

5751

4. X. Han, M. Wang, Global existence and blow-up of solution for a system of nonlinear
viscoelastic wave equations with damping and source, Nonlinear Anal., 71 (2009), 5427-5450.
https://doi.org/10.1016/j.na.2009.04.03 1

5. M. Kirane, N. Tatar, Exponential growth for fractionally damped wave equations, Z. Anal.
Anwend., 22 (2003), 167-178. https://doi.org/10.4171/zaa/1137

6. D. Matignon, J. Audounet, G. Montseny, Energy decay for wave equations with damping
of fractional order, 1998. Available from: https://www.researchgate.net/publication/2757992_
Energy_Decay_for_ Wave _Equations_with_Damping_of Fractional order.

7. N. Tatar, A blow-up result for a fractionally damped wave equation, Nonlinear Differ. Equations
Appl. NoDEA, 12 (2005), 215-226. https://doi.org/10.1007/s00030-005-0015-6

8. M. R. Alaimia, N. Tatar, Blow up for the wave equation with a fractional damping, J. Appl. Anal.,
11 (2005), 133—144. https://doi.org/10.1515/JAA.2005.133

9. J. M. Ball, Remarks on blow up and non-existence theorems for nonlinear evolution equations,
Quart. J. Math. Oxford, 28 (1977), 473—-486.

10. H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equations of the
form Pu, = Au+ F(u), Trans. Am. Math. Soc., 192 (1974), 1-21. https://doi.org/10.2307/1996814

11. H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear
wave equations of the form Pu, = Au + F(u), SIAM J. Math. Anal., 5§ (1974), 138-146.
https://doi.org/10.1137/0505015

12. V. Georgiev, G. Todorova, Existence of solutions of the wave equation with nonlinear damping and
source terms, J. Differ. Equations, 109 (1994), 295-308. https://doi.org/10.1006/jdeq.1994.1051

13. J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear
evolution equations, J. Differ. Equations, 27 (1978), 224-265. https://doi.org/10.1016/0022-
0396(78)90032-3

14. J. A. Nohel, D. E. Shea, Frequency domain methods for Volterra equations, Adv. Math., 22 (1976),
278-304. https://doi.org/10.1016/0001-8708(76)90096-7

15. G. Gripenberg, S. O. Londen, O. Staffans, Volterra Integral and Functional Equations, Cambridge
University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511662805

©2024 the Author(s), licensee AIMS Press. This
_ is an open access article distributed under the
@gé; AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 10, 5738-5751.


http://dx.doi.org/https://doi.org/10.1016/j.na.2009.04.031
http://dx.doi.org/https://doi.org/10.4171/zaa/1137
https://www.researchgate.net/publication/2757992_Energy_Decay_for_Wave_Equations_with_Damping_of_Fractional_order
https://www.researchgate.net/publication/2757992_Energy_Decay_for_Wave_Equations_with_Damping_of_Fractional_order
http://dx.doi.org/https://doi.org/10.1007/s00030-005-0015-6
http://dx.doi.org/https://doi.org/10.1515/JAA.2005.133
http://dx.doi.org/https://doi.org/10.2307/1996814
http://dx.doi.org/https://doi.org/10.1137/0505015
http://dx.doi.org/https://doi.org/10.1006/jdeq.1994.1051
http://dx.doi.org/https://doi.org/10.1016/0022-0396(78)90032-3
http://dx.doi.org/https://doi.org/10.1016/0022-0396(78)90032-3
http://dx.doi.org/https://doi.org/10.1016/0001-8708(76)90096-7
http://dx.doi.org/https://doi.org/10.1017/CBO9780511662805
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Blow-up of solutions in finite time
	Conclusions

