In this paper, we mainly study super-bimodules on Bihom-Jordan superalgebras and present some interesting constructions from the perspective of super-bimodules. Meanwhile, we give abelian extension through super-bimodules. In addition, we give the representations, $ \mathcal{O} $-operators and Rota–Baxter operators of Bihom-Jordan superalgebras. Specially, using $ \mathcal{O} $-operators, we characterize Bihom-pre-Jordan superalgebras.
Citation: Ying Hou, Liangyun Chen, Keli Zheng. Super-bimodules and $ \mathcal{O} $-operators of Bihom-Jordan superalgebras[J]. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264
In this paper, we mainly study super-bimodules on Bihom-Jordan superalgebras and present some interesting constructions from the perspective of super-bimodules. Meanwhile, we give abelian extension through super-bimodules. In addition, we give the representations, $ \mathcal{O} $-operators and Rota–Baxter operators of Bihom-Jordan superalgebras. Specially, using $ \mathcal{O} $-operators, we characterize Bihom-pre-Jordan superalgebras.
[1] | P. Jordan, J. von Neumann, E. P. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math., 35 (1934), 29–64. https://doi.org/10.1007/978-3-662-02781-3_21 doi: 10.1007/978-3-662-02781-3_21 |
[2] | A. A. Albert, A structure theory for Jordan algebras, Ann. Math., 48 (1947), 546–567. https://doi.org/10.2307/1969128 doi: 10.2307/1969128 |
[3] | N. Jacobson, General representation theory of Jordan algebras, Trans. Am. Math. Soc., 70 (1951), 509–530. https://doi.org/10.1007/978-1-4612-3694-8_9 doi: 10.1007/978-1-4612-3694-8_9 |
[4] | N. Jacobson, Structure of alternative and Jordan bimodules, Osaka Math. J., 6 (1954), 1–71. https://doi.org/10.1007/978-1-4612-3694-8_15 doi: 10.1007/978-1-4612-3694-8_15 |
[5] | V. G. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra, 5 (1977), 1375–1400. https://doi.org/10.1080/00927877708822224 doi: 10.1080/00927877708822224 |
[6] | N. Cantarini, V. G. Kac, Classification of linearly compact simple Jordan and generalized Poisson superalgebras, J. Algebra, 313 (2007), 100–124. https://doi.org/10.1016/j.jalgebra.2006.10.040 doi: 10.1016/j.jalgebra.2006.10.040 |
[7] | I. P. Shestakov, Alternative and Jordan superalgebras, Sib. Adv. Math., 9 (1999), 83–99. |
[8] | C. Martinez, E. Zelmanov, Representation theory of Jordan superalgebras. I, Trans. Am. Math. Soc., 362 (2010), 815–846. http://dx.doi.org/10.1090/S0002-9947-09-04883-1 doi: 10.1090/S0002-9947-09-04883-1 |
[9] | J. N. Ni, Y. Wang, D. P. Hou, Super $\mathcal{O}$-operators of Jordan superalgebras and super Jordan Yang-Baxter equations, Front. Math. China, (2014), 585–599. https://doi.org/10.1007/s11464-014-0339-9 doi: 10.1007/s11464-014-0339-9 |
[10] | J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036 |
[11] | D. Larsson, S. D. Silvestrov, Quasi-Hom-Lie algebras, Central Extensions and 2-cocycle-like identities, J. Algebra, 288 (2005), 321–344. https://doi.org/10.1016/j.jalgebra.2005.02.032 doi: 10.1016/j.jalgebra.2005.02.032 |
[12] | G. Graziani, A. Makhlouf, C. Menini, F. Panaite, BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), 086. https://doi.org/10.3842/SIGMA.2015.086 doi: 10.3842/SIGMA.2015.086 |
[13] | E. K. Abdaoui, F. Ammar, A. Makhlouf, Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras, Bull. Malays. Math. Sci. Soc., 40 (2017), 439–472. https://doi.org/10.1007/s40840-016-0323-5 doi: 10.1007/s40840-016-0323-5 |
[14] | S. Attan, H. Hounnon, B. Kpamegan, Hom-Jordan and Hom-alternative bimodules, Extr. Math., 35 (2020), 69–97. https://doi.org/10.17398/2605-5686.35.1.69 doi: 10.17398/2605-5686.35.1.69 |
[15] | A. Makhlouf, Hom-alternative algebras and Hom-Jordan algebras, Int. Electron. J. Algebra, 8 (2010), 177–190. https://doi.org/10.48550/arXiv.0909.0326 doi: 10.48550/arXiv.0909.0326 |
[16] | A. Makhlouf, S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. http://dx.doi.org/10.4303/jglta/S070206 doi: 10.4303/jglta/S070206 |
[17] | D. Yau, Hom-Maltsev, Hom-alternative and Hom-Jordan algebras, Int. Electron. J. Algebra, 11 (2012), 177–217. https://doi.org/10.48550/arXiv.1002.3944 doi: 10.48550/arXiv.1002.3944 |
[18] | T. Chtioui, S. Mabrouk, A. Makhlouf, BiHom-alternative, BiHom-Malcev and BiHom-Jordan algebras, Rocky Mountain J. Math., 50 (2020), 69–90. https://doi.org/10.1216/rmj.2020.50.69 doi: 10.1216/rmj.2020.50.69 |
[19] | Y. Hou, L. Y. Chen, Constructions of three kinds of Bihom-superalgebras, Electron. Res. Arch., 29 (2021), 3741–3760. https://doi.org/10.3934/era.2021059. doi: 10.3934/era.2021059 |
[20] | A. Ben Hassine, L. Y. Chen, J. Li, Representations and T$^*$-extensions of $\delta$-Bihom-Jordan-Lie algebras, Hacet. J. Math. Stat., 49 (2020), 648–675. https://doi.org/10.15672/hujms.588684 doi: 10.15672/hujms.588684 |
[21] | S. J. Guo, X. H. Zhang, S. X. Wang, The construction and deformation of BiHom-Novikov algebras, J. Geom. Phys., 132 (2018), 460–472. https://doi.org/10.1016/j.geomphys.2018.06.011 doi: 10.1016/j.geomphys.2018.06.011 |
[22] | J. Zhang, L. Y. Chen, C. P. Zhang, On split regular BiHom-Lie superalgebras, J. Geom. Phys., 128 (2018), 38–47. https://doi.org/10.1016/j.geomphys.2018.02.005 doi: 10.1016/j.geomphys.2018.02.005 |
[23] | C. Jia, Representation of Bihom-Jordan algebra, Pure Math., 10 (2020), 478–487. https://doi.org/10.12677/pm.2020.105058 doi: 10.12677/pm.2020.105058 |
[24] | S. Attan, I. Laraiedh, Construtions and bimodules of BiHom-alternative and BiHom-Jordan algebras, preprint, arXiv: 2008.07020. |
[25] | S. X. Wang, S. J. Guo, Bihom-Lie superalgebra structures and Bihom-Yang-Baxter equations, Adv. Appl. Clifford Algebras, 30 (2020), 35. https://doi.org/10.1007/s00006-020-01060-0 doi: 10.1007/s00006-020-01060-0 |