Research article

A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments


  • Received: 29 November 2023 Revised: 21 December 2023 Accepted: 04 January 2024 Published: 11 January 2024
  • This article is concerned with the path planning of mobile robots in dynamic environments. A new path planning strategy is proposed by integrating the improved ant colony optimization (ACO) and dynamic window approach (DWA) algorithms. An improved ACO is developed to produce a globally optimal path for mobile robots in static environments. Through improvements in the initialization of pheromones, heuristic function, and updating of pheromones, the improved ACO can lead to a shorter path with fewer turning points in fewer iterations. Based on the globally optimal path, a modified DWA is presented for the path planning of mobile robots in dynamic environments. By deleting the redundant nodes, optimizing the initial orientation, and improving the evaluation function, the modified DWA can result in a more efficient path for mobile robots to avoid moving obstacles. Some simulations are conducted in different environments, which confirm the effectiveness and superiority of the proposed path planning algorithms.

    Citation: Baoye Song, Shumin Tang, Yao Li. A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2189-2211. doi: 10.3934/mbe.2024096

    Related Papers:

  • This article is concerned with the path planning of mobile robots in dynamic environments. A new path planning strategy is proposed by integrating the improved ant colony optimization (ACO) and dynamic window approach (DWA) algorithms. An improved ACO is developed to produce a globally optimal path for mobile robots in static environments. Through improvements in the initialization of pheromones, heuristic function, and updating of pheromones, the improved ACO can lead to a shorter path with fewer turning points in fewer iterations. Based on the globally optimal path, a modified DWA is presented for the path planning of mobile robots in dynamic environments. By deleting the redundant nodes, optimizing the initial orientation, and improving the evaluation function, the modified DWA can result in a more efficient path for mobile robots to avoid moving obstacles. Some simulations are conducted in different environments, which confirm the effectiveness and superiority of the proposed path planning algorithms.



    加载中


    [1] S. Zhu, W. Zhu, X. Zhang, T. Cao, Path planning of lunar robot based on dynamic adaptive ant colony algorithm and obstacle avoidance, Int. J. Adv. Rob. Syst., 17 (2020). http://doi.org/10.1177/1729881419898979
    [2] E. Fernandes, P. Costa, J. Lima, G. Veiga, Towards an orientation enhanced astar algorithm for robotic navigation, in 2015 IEEE International Conference on Industrial Technology (ICIT), (2015), 3320–3325. https://doi.org/10.1109/ICIT.2015.7125590
    [3] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, P. Wang, Path planning techniques for mobile robots: Review and prospect, Expert Syst. Appl., 227 (2023), 120254. https://doi.org/10.1016/j.eswa.2023.120254 doi: 10.1016/j.eswa.2023.120254
    [4] G. Che, L. Liu, Z. Yu, An improved ant colony optimization algorithm based on particle swarm optimization algorithm for path planning of autonomous underwater vehicle, J. Ambient Intell. Hum. Comput., 11 (2020), 3349–3354. https://doi.org/10.1007/s12652-019-01531-8 doi: 10.1007/s12652-019-01531-8
    [5] A. Yazici, G. Kirlik, O. Parlaktuna, A. Sipahioglu, A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints, IEEE Trans. Cybern., 44 (2014), 305–314. https://doi.org/10.1109/TCYB.2013.2253605 doi: 10.1109/TCYB.2013.2253605
    [6] L. Liu, J. Lin, J. Yao, D. He, J. Zheng, J. Huang, et al., Path planning for smart car based on dijkstra algorithm and dynamic window approach, Wireless Commun. Mobile Comput., 2021 (2021), 8881684. https://doi.org/10.1155/2021/8881684 doi: 10.1155/2021/8881684
    [7] F. Duchon, A. Babinec, M. Kajan, P. Beno, M. Florek, T. Fico, et al., Path planning with modified a star algorithm for a mobile robot, Procedia Eng., 96 (2014), 59–69. https://doi.org/10.1016/j.proeng.2014.12.098 doi: 10.1016/j.proeng.2014.12.098
    [8] Z. Wu, J. Dai, B. Jiang, H. R. Karimi, Robot path planning based on artificial potential field with deterministic annealing, ISA Trans., 138 (2023), 74–87. https://doi.org/10.1016/j.isatra.2023.02.018 doi: 10.1016/j.isatra.2023.02.018
    [9] N. Wang, H. Xu, C. Li, J. Yin, Hierarchical path planning of unmanned surface vehicle: A fuzzy artificial potential field approach, Int. J. Fuzzy Syst., 23 (2021), 1797–1808. https://doi.org/10.1007/s40815-020-00912-y doi: 10.1007/s40815-020-00912-y
    [10] E. Li, K. Qi, Ant colony algorithm for path planning based on grid feature point extraction, J. Shanghai Jiaotong Univ. (Sci.), 28 (2023), 86–99. https://doi.org/10.1007/s12204-023-2572-4 doi: 10.1007/s12204-023-2572-4
    [11] N. Zeng, H. Zhang, Y. Chen, B. Chen, Y. Liu, Path planning for intelligent robot based on switching local evolutionary PSO algorithm, Assem. Autom., 36 (2016), 120–126. https://doi.org/10.1108/AA-10-2015-079 doi: 10.1108/AA-10-2015-079
    [12] J. Ballesteros, C. Urdiales, A. B. M. Velasco, G. Ramos-Jimenez, A biomimetical dynamic window approach to navigation for collaborative control, IEEE Trans. Hum. Mach. Syst., 47 (2017), 1123–1133. https://doi.org/10.1109/THMS.2017.2700633 doi: 10.1109/THMS.2017.2700633
    [13] J. Kim, G. Yang, Improvement of dynamic window approach using reinforcement learning in dynamic environments, Int. J. Control Autom. Syst., 20 (2022), 2983–2992. https://doi.org/10.1007/s12555-021-0462-9 doi: 10.1007/s12555-021-0462-9
    [14] W. Yang, P. Wu, X. Zhou, H. Lv, X. Liu, G. Zhang, et al., Improved artificial potential field and dynamic window method for amphibious robot fish path planning, Appl. Sci., 11 (2021), 2114. https://doi.org/10.3390/app11052114 doi: 10.3390/app11052114
    [15] B. Wu, X. Chi, C. Zhao, W. Zhang, Y. Lu, D. Jiang, Dynamic path planning for forklift AGV based on smoothing A$^*$ and improved DWA hybrid algorithm, Sensors, 22 (2022), 7079. https://doi.org/10.3390/s22187079 doi: 10.3390/s22187079
    [16] L. Chang, L. Shan, Y. Dai, Z. Qi, Multi-robot formation control in unknown environment based on improved DWA (in Chinese), Control Decis., 37 (2021), 2524–2534. http://doi.org/10.13195/j.kzyjc.2020.1817 doi: 10.13195/j.kzyjc.2020.1817
    [17] M. Si, X. Zhou, Y. Zhang, Improvement of dynamic window approach in dynamic obstacle environment, J. Phys. Conf. Ser., 2477 (2023), 012059. https://doi.org/10.1088/1742-6596/2477/1/012059 doi: 10.1088/1742-6596/2477/1/012059
    [18] Y. Peng, Z. Huang, S. Li, Research on automatic obstacle avoidance navigation of mobile robot based on dynamic window method (in Chinese), Autom. Instrum., 41 (2020), 26–29+33. https://doi.org/10.16086/j.cnki.issn1000-0380.2020020004 doi: 10.16086/j.cnki.issn1000-0380.2020020004
    [19] Y. Wang, Y. Tian, X. Li, L. Li, Self-adaptive dynamic window approach in dense obstacles (in Chinese), Control Decis., 34 (2018), 927–936. https://doi.org/10.13195/j.kzyjc.2017.1497 doi: 10.13195/j.kzyjc.2017.1497
    [20] H. Zhang, M. Li, Rapid path planning algorithm for mobile robot in dynamic environment, Adv. Mech. Eng., 9 (2017). https://doi.org/10.1177/1687814017747400
    [21] F. Wang, T. Li, J. Liu, H. Zhao, Research on autonomous path planning and obstacle avoidance of construction robot based on BIM (in Chinese), Comput. Eng. Appl., 56 (2020), 224–230.
    [22] C. Lao, P. Li, Y. Feng, Path planning of greenhouse robot based on fusion of improved A$^*$ algorithm and dynamic window approach (in Chinese), Trans. Chin. Soc. Agric. Mach., 52 (2021), 14–22. https://doi.org/10.6041/j.issn.1000-1298.2021.01.002 doi: 10.6041/j.issn.1000-1298.2021.01.002
    [23] Y. Li, J. Zhao, Z. Chen, G. Xiong, S. Liu, A robot path planning method based on improved genetic algorithm and improved dynamic window approach, Sustainability, 15 (2023), 4656. https://doi.org/10.3390/su15054656 doi: 10.3390/su15054656
    [24] L. Yang, L. Fu, P. Li, J. Mao, N. Guo, An effective dynamic path planning approach for mobile robots based on ant colony fusion dynamic windows, Machines, 10 (2022), 50. https://doi.org/10.3390/machines10010050 doi: 10.3390/machines10010050
    [25] Y. Zhang, H. Quan, J. Wen, Mobile robot path planning based on the wolf ant colony hybrid algorithm (in Chinese), J. Huazhong Univ. Sci. Technol. (Nat. Sci.), 48 (2020), 127–132. https://doi.org/10.13245/j.hust.200123 doi: 10.13245/j.hust.200123
    [26] W. Wang, J. Zhao, Z. Li, J. Huang, Smooth path planning of mobile robot based on improved ant colony algorithm, J. Rob., 2021 (2021), 4109821. https://doi.org/10.1155/2021/4109821 doi: 10.1155/2021/4109821
    [27] W. Hou, Z. Xiong, C. Wang, H. Chen, Enhanced ant colony algorithm with communication mechanism for mobile robot path planning, Rob. Auton. Syst., 148 (2022), 103949. https://doi.org/10.1016/j.robot.2021.103949 doi: 10.1016/j.robot.2021.103949
    [28] W. Li, L. Xia, Y. Huang, M. Soroosh, An ant colony optimization algorithm with adaptive greedy strategy to optimize path problems, J. Ambient Intell. Hum. Comput., 13 (2021), 1557–1571. https://doi.org/10.1007/s12652-021-03120-0 doi: 10.1007/s12652-021-03120-0
    [29] L. Xu, M. Cao, B. Song, A new approach to smooth path planning of mobile robot based on quartic Bezier transition curve and improved PSO algorithm, Neurocomputing, 473 (2022), 98–106. https://doi.org/10.1016/j.neucom.2021.12.016 doi: 10.1016/j.neucom.2021.12.016
    [30] X. Xiong, H. Min, Y. Yu, P. Wang, Application improvement of A$^*$ algorithm in intelligent vehicle trajectory planning, Math. Biosci. Eng., 18 (2020), 1–21. https://doi.org/10.3934/mbe.2021001 doi: 10.3934/mbe.2021001
    [31] X. Dai, S. Long, Z. Zhang, D. Gong, Mobile robot path planning based on ant colony algorithm with A$^*$ heuristic method, Front. Neurorobot., 13 (2019), 1–9. https://doi.org/10.3389/fnbot.2019.00015 doi: 10.3389/fnbot.2019.00015
    [32] H. Yang, J. Qi, Y. Miao, H. Sun, J. Li, A new robot navigation algorithm based on a double-layer ant algorithm and trajectory optimization, IEEE Trans. Ind. Electron., 66 (2019), 8557–8566. https://doi.org/10.1109/TIE.2018.2886798 doi: 10.1109/TIE.2018.2886798
    [33] W. Gao, Q. Tang, B. Ye, Y. Yang, J. Yao, An enhanced heuristic ant colony optimization for mobile robot path planning, Soft Comput., 24 (2020), 6139–6150. https://doi.org/10.1007/s00500-020-04749-3 doi: 10.1007/s00500-020-04749-3
    [34] B. Song, H. Miao, L. Xu, Path planning for coal mine robot via improved ant colony optimization algorithm, Syst. Sci. Control Eng., 9 (2021), 283–289. https://doi.org/10.1080/21642583.2021.1901158 doi: 10.1080/21642583.2021.1901158
    [35] D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance, IEEE Rob. Autom. Mag., 4 (1997), 23–33. https://doi.org/10.1109/100.580977 doi: 10.1109/100.580977
    [36] X. Lai, D. Wu, D. Wu, J. Li, H. Yu, Enhanced DWA algorithm for local path planning of mobile robot, Ind. Rob., 50 (2023), 186–194. https://doi.org/10.1108/IR-05-2022-0130 doi: 10.1108/IR-05-2022-0130
    [37] Z. Mei, T. Zhao, X. Xie, Hierarchical fuzzy regression tree: A new gradient boosting approach to design a TSK fuzzy model, Inf. Sci., 652 (2024), 119740. https://doi.org/10.1016/j.ins.2023.119740 doi: 10.1016/j.ins.2023.119740
    [38] Z. Wu, H. R. Karimi, C. Dang, An approximation algorithm for graph partitioning via deterministic annealing neural network, Neural Networks, 117 (2019), 191–200. https://doi.org/10.1016/j.neunet.2019.05.010 doi: 10.1016/j.neunet.2019.05.010
    [39] H. Chen, C. Li, M. Mafarja, A. A. Heidari, Y. Chen, Z. Cai, Slime mould algorithm: A comprehensive review of recent variants and applications, Int. J. Syst. Sci., 54 (2023), 204–235. https://doi.org/10.1080/00207721.2022.2153635 doi: 10.1080/00207721.2022.2153635
    [40] Z. Yu, P. Duan, L. Meng, Y. Han, F. Ye, Multi-objective path planning for mobile robot with an improved artificial bee colony algorithm, Math. Biosci. Eng., 20 (2023), 2501–2529. https://doi.org/10.3934/mbe.2023117 doi: 10.3934/mbe.2023117
    [41] J. Wang, Y. Zhuang, Y. Liu, FSS-Net: A fast search structure for 3D point clouds in deep learning, Int. J. Network Dyn. Intell., 2 (2023), 100005. https://doi.org/10.53941/ijndi.2023.100005 doi: 10.53941/ijndi.2023.100005
    [42] Y. Wang, W. Liu, C. Wang, F. Fadzil, S. Lauria, X. Liu, A novel multi-objective optimization approach with flexible operation planning strategy for truck scheduling, Int. J. Network Dyn. Intell., 2 (2023), 100002. https://doi.org/10.53941/ijndi.2023.100002 doi: 10.53941/ijndi.2023.100002
    [43] L. Zou, Z. Wang, B. Shen, H. Dong, G. Lu, Encrypted finite-horizon energy-to-peak state estimation for time-varying systems under eavesdropping attacks: Tackling secrecy capacity, IEEE/CAA J. Autom. Sin., 10 (2023), 985–996. https://doi.org/10.1109/JAS.2023.123393 doi: 10.1109/JAS.2023.123393
    [44] L. Zou, Z. Wang, B. Shen, H. Dong, Moving horizon estimation over relay channels: Dealing with packet losses, Automatica, 155 (2023), 111079. https://doi.org/10.1016/j.automatica.2023.111079 doi: 10.1016/j.automatica.2023.111079
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1249) PDF downloads(114) Cited by(1)

Article outline

Figures and Tables

Figures(13)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog